patched lwip-eth with https://github.com/mbedmicro/mbed/commit/8222bde1af2e328e4c58d0f438827f3091e5e0eb
Fork of lwip-eth by
arch/lpc17_emac.c
- Committer:
- emilmont
- Date:
- 2012-06-22
- Revision:
- 2:5208926bd863
- Parent:
- 1:0c9d93e2f51c
- Child:
- 3:dd8b8f5b449a
File content as of revision 2:5208926bd863:
/********************************************************************** * $Id$ lpc17_emac.c 2011-11-20 *//** * @file lpc17_emac.c * @brief LPC17 ethernet driver for LWIP * @version 1.0 * @date 20. Nov. 2011 * @author NXP MCU SW Application Team * * Copyright(C) 2011, NXP Semiconductor * All rights reserved. * *********************************************************************** * Software that is described herein is for illustrative purposes only * which provides customers with programming information regarding the * products. This software is supplied "AS IS" without any warranties. * NXP Semiconductors assumes no responsibility or liability for the * use of the software, conveys no license or title under any patent, * copyright, or mask work right to the product. NXP Semiconductors * reserves the right to make changes in the software without * notification. NXP Semiconductors also make no representation or * warranty that such application will be suitable for the specified * use without further testing or modification. **********************************************************************/ #include "lwip/opt.h" #include "lwip/sys.h" #include "lwip/def.h" #include "lwip/mem.h" #include "lwip/pbuf.h" #include "lwip/stats.h" #include "lwip/snmp.h" #include "netif/etharp.h" #include "netif/ppp_oe.h" #include "lpc17xx_emac.h" #include "lpc17_emac.h" #include "lpc_emac_config.h" #include "lpc_phy.h" #include "sys_arch.h" #include "mbed_interface.h" #include <string.h> #ifndef LPC_EMAC_RMII #error LPC_EMAC_RMII is not defined! #endif #if LPC_NUM_BUFF_TXDESCS < 2 #error LPC_NUM_BUFF_TXDESCS must be at least 2 #endif #if LPC_NUM_BUFF_RXDESCS < 3 #error LPC_NUM_BUFF_RXDESCS must be at least 3 #endif /** @defgroup lwip17xx_emac_DRIVER lpc17 EMAC driver for LWIP * @ingroup lwip_emac * * @{ */ #if NO_SYS == 0 /** \brief Driver transmit and receive thread priorities * * Thread priorities for receive thread and TX cleanup thread. Alter * to prioritize receive or transmit bandwidth. In a heavily loaded * system or with LEIP_DEBUG enabled, the priorities might be better * the same. */ #define RX_PRIORITY (osPriorityNormal) #define TX_PRIORITY (osPriorityNormal) /** \brief Debug output formatter lock define * * When using FreeRTOS and with LWIP_DEBUG enabled, enabling this * define will allow RX debug messages to not interleave with the * TX messages (so they are actually readable). Not enabling this * define when the system is under load will cause the output to * be unreadable. There is a small tradeoff in performance for this * so use it only for debug. */ //#define LOCK_RX_THREAD /** \brief Receive group interrupts */ #define RXINTGROUP (EMAC_INT_RX_OVERRUN | EMAC_INT_RX_ERR | EMAC_INT_RX_DONE) /** \brief Transmit group interrupts */ #define TXINTGROUP (EMAC_INT_TX_UNDERRUN | EMAC_INT_TX_ERR | EMAC_INT_TX_DONE) #else #define RXINTGROUP 0 #define TXINTGROUP 0 #endif /** \brief Structure of a TX/RX descriptor */ typedef struct { volatile u32_t packet; /**< Pointer to buffer */ volatile u32_t control; /**< Control word */ } LPC_TXRX_DESC_T; /** \brief Structure of a RX status entry */ typedef struct { volatile u32_t statusinfo; /**< RX status word */ volatile u32_t statushashcrc; /**< RX hash CRC */ } LPC_TXRX_STATUS_T; /* LPC EMAC driver data structure */ struct lpc_enetdata { /* prxs must be 8 byte aligned! */ LPC_TXRX_STATUS_T prxs[LPC_NUM_BUFF_RXDESCS]; /**< Pointer to RX statuses */ struct netif *netif; /**< Reference back to LWIP parent netif */ LPC_TXRX_DESC_T ptxd[LPC_NUM_BUFF_TXDESCS]; /**< Pointer to TX descriptor list */ LPC_TXRX_STATUS_T ptxs[LPC_NUM_BUFF_TXDESCS]; /**< Pointer to TX statuses */ LPC_TXRX_DESC_T prxd[LPC_NUM_BUFF_RXDESCS]; /**< Pointer to RX descriptor list */ struct pbuf *rxb[LPC_NUM_BUFF_RXDESCS]; /**< RX pbuf pointer list, zero-copy mode */ u32_t rx_fill_desc_index; /**< RX descriptor next available index */ volatile u32_t rx_free_descs; /**< Count of free RX descriptors */ struct pbuf *txb[LPC_NUM_BUFF_TXDESCS]; /**< TX pbuf pointer list, zero-copy mode */ u32_t lpc_last_tx_idx; /**< TX last descriptor index, zero-copy mode */ #if NO_SYS == 0 sys_sem_t RxSem; /**< RX receive thread wakeup semaphore */ sys_sem_t TxCleanSem; /**< TX cleanup thread wakeup semaphore */ sys_mutex_t TXLockMutex; /**< TX critical section mutex */ sys_sem_t xTXDCountSem; /**< TX free buffer counting semaphore */ #endif }; /** \brief LPC EMAC driver work data */ ALIGNED(8) struct lpc_enetdata lpc_enetdata; /* Write a value via the MII link (non-blocking) */ void lpc_mii_write_noblock(u32_t PhyReg, u32_t Value) { /* Write value at PHY address and register */ LPC_EMAC->MADR = (LPC_PHYDEF_PHYADDR << 8) | PhyReg; LPC_EMAC->MWTD = Value; } /* Write a value via the MII link (blocking) */ err_t lpc_mii_write(u32_t PhyReg, u32_t Value) { u32_t mst = 250; err_t sts = ERR_OK; /* Write value at PHY address and register */ lpc_mii_write_noblock(PhyReg, Value); /* Wait for unbusy status */ while (mst > 0) { sts = LPC_EMAC->MIND; if ((sts & EMAC_MIND_BUSY) == 0) mst = 0; else { mst--; osDelay(1); } } if (sts != 0) sts = ERR_TIMEOUT; return sts; } /* Reads current MII link busy status */ u32_t lpc_mii_is_busy(void) { return (u32_t) (LPC_EMAC->MIND & EMAC_MIND_BUSY); } /* Starts a read operation via the MII link (non-blocking) */ u32_t lpc_mii_read_data(void) { u32_t data = LPC_EMAC->MRDD; LPC_EMAC->MCMD = 0; return data; } /* Starts a read operation via the MII link (non-blocking) */ void lpc_mii_read_noblock(u32_t PhyReg) { /* Read value at PHY address and register */ LPC_EMAC->MADR = (LPC_PHYDEF_PHYADDR << 8) | PhyReg; LPC_EMAC->MCMD = EMAC_MCMD_READ; } /* Read a value via the MII link (blocking) */ err_t lpc_mii_read(u32_t PhyReg, u32_t *data) { u32_t mst = 250; err_t sts = ERR_OK; /* Read value at PHY address and register */ lpc_mii_read_noblock(PhyReg); /* Wait for unbusy status */ while (mst > 0) { sts = LPC_EMAC->MIND & ~EMAC_MIND_MII_LINK_FAIL; if ((sts & EMAC_MIND_BUSY) == 0) { mst = 0; *data = LPC_EMAC->MRDD; } else { mst--; osDelay(1); } } LPC_EMAC->MCMD = 0; if (sts != 0) sts = ERR_TIMEOUT; return sts; } /** \brief Queues a pbuf into the RX descriptor list * * \param[in] lpc_enetif Pointer to the drvier data structure * \param[in] p Pointer to pbuf to queue */ static void lpc_rxqueue_pbuf(struct lpc_enetdata *lpc_enetif, struct pbuf *p) { u32_t idx; /* Get next free descriptor index */ idx = lpc_enetif->rx_fill_desc_index; /* Setup descriptor and clear statuses */ lpc_enetif->prxd[idx].control = EMAC_RCTRL_INT | ((u32_t) (p->len - 1)); lpc_enetif->prxd[idx].packet = (u32_t) p->payload; lpc_enetif->prxs[idx].statusinfo = 0xFFFFFFFF; lpc_enetif->prxs[idx].statushashcrc = 0xFFFFFFFF; /* Save pbuf pointer for push to network layer later */ lpc_enetif->rxb[idx] = p; /* Wrap at end of descriptor list */ idx++; if (idx >= LPC_NUM_BUFF_RXDESCS) idx = 0; /* Queue descriptor(s) */ lpc_enetif->rx_free_descs -= 1; lpc_enetif->rx_fill_desc_index = idx; LPC_EMAC->RxConsumeIndex = idx; LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE, ("lpc_rxqueue_pbuf: pbuf packet queued: %p (free desc=%d)\n", p, lpc_enetif->rx_free_descs)); } /** \brief Attempt to allocate and requeue a new pbuf for RX * * \param[in] netif Pointer to the netif structure * \returns 1 if a packet was allocated and requeued, otherwise 0 */ s32_t lpc_rx_queue(struct netif *netif) { struct lpc_enetdata *lpc_enetif = netif->state; struct pbuf *p; s32_t queued = 0; /* Attempt to requeue as many packets as possible */ while (lpc_enetif->rx_free_descs > 0) { /* Allocate a pbuf from the pool. We need to allocate at the maximum size as we don't know the size of the yet to be received packet. */ p = pbuf_alloc(PBUF_RAW, (u16_t) EMAC_ETH_MAX_FLEN, PBUF_RAM); if (p == NULL) { LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE, ("lpc_rx_queue: could not allocate RX pbuf (free desc=%d)\n", lpc_enetif->rx_free_descs)); return queued; } /* pbufs allocated from the RAM pool should be non-chained. */ LWIP_ASSERT("lpc_rx_queue: pbuf is not contiguous (chained)", pbuf_clen(p) <= 1); /* Queue packet */ lpc_rxqueue_pbuf(lpc_enetif, p); /* Update queued count */ queued++; } return queued; } /** \brief Sets up the RX descriptor ring buffers. * * This function sets up the descriptor list used for receive packets. * * \param[in] lpc_enetif Pointer to driver data structure * \returns Always returns ERR_OK */ static err_t lpc_rx_setup(struct lpc_enetdata *lpc_enetif) { /* Setup pointers to RX structures */ LPC_EMAC->RxDescriptor = (u32_t) &lpc_enetif->prxd[0]; LPC_EMAC->RxStatus = (u32_t) &lpc_enetif->prxs[0]; LPC_EMAC->RxDescriptorNumber = LPC_NUM_BUFF_RXDESCS - 1; lpc_enetif->rx_free_descs = LPC_NUM_BUFF_RXDESCS; lpc_enetif->rx_fill_desc_index = 0; /* Build RX buffer and descriptors */ lpc_rx_queue(lpc_enetif->netif); return ERR_OK; } /** \brief Allocates a pbuf and returns the data from the incoming packet. * * \param[in] netif the lwip network interface structure for this lpc_enetif * \return a pbuf filled with the received packet (including MAC header) * NULL on memory error */ static struct pbuf *lpc_low_level_input(struct netif *netif) { struct lpc_enetdata *lpc_enetif = netif->state; struct pbuf *p = NULL; u32_t idx, length; #ifdef LOCK_RX_THREAD #if NO_SYS == 0 /* Get exclusive access */ sys_mutex_lock(&lpc_enetif->TXLockMutex); #endif #endif /* Monitor RX overrun status. This should never happen unless (possibly) the internal bus is behing held up by something. Unless your system is running at a very low clock speed or there are possibilities that the internal buses may be held up for a long time, this can probably safely be removed. */ if (LPC_EMAC->IntStatus & EMAC_INT_RX_OVERRUN) { LINK_STATS_INC(link.err); LINK_STATS_INC(link.drop); /* Temporarily disable RX */ LPC_EMAC->MAC1 &= ~EMAC_MAC1_REC_EN; /* Reset the RX side */ LPC_EMAC->MAC1 |= EMAC_MAC1_RES_RX; LPC_EMAC->IntClear = EMAC_INT_RX_OVERRUN; /* De-allocate all queued RX pbufs */ for (idx = 0; idx < LPC_NUM_BUFF_RXDESCS; idx++) { if (lpc_enetif->rxb[idx] != NULL) { pbuf_free(lpc_enetif->rxb[idx]); lpc_enetif->rxb[idx] = NULL; } } /* Start RX side again */ lpc_rx_setup(lpc_enetif); /* Re-enable RX */ LPC_EMAC->MAC1 |= EMAC_MAC1_REC_EN; #ifdef LOCK_RX_THREAD #if NO_SYS == 0 sys_mutex_unlock(&lpc_enetif->TXLockMutex); #endif #endif return NULL; } /* Determine if a frame has been received */ length = 0; idx = LPC_EMAC->RxConsumeIndex; if (LPC_EMAC->RxProduceIndex != idx) { /* Handle errors */ if (lpc_enetif->prxs[idx].statusinfo & (EMAC_RINFO_CRC_ERR | EMAC_RINFO_SYM_ERR | EMAC_RINFO_ALIGN_ERR | EMAC_RINFO_LEN_ERR)) { #if LINK_STATS if (lpc_enetif->prxs[idx].statusinfo & (EMAC_RINFO_CRC_ERR | EMAC_RINFO_SYM_ERR | EMAC_RINFO_ALIGN_ERR)) LINK_STATS_INC(link.chkerr); if (lpc_enetif->prxs[idx].statusinfo & EMAC_RINFO_LEN_ERR) LINK_STATS_INC(link.lenerr); #endif /* Drop the frame */ LINK_STATS_INC(link.drop); /* Re-queue the pbuf for receive */ lpc_enetif->rx_free_descs++; p = lpc_enetif->rxb[idx]; lpc_enetif->rxb[idx] = NULL; lpc_rxqueue_pbuf(lpc_enetif, p); LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE, ("lpc_low_level_input: Packet dropped with errors (0x%x)\n", lpc_enetif->prxs[idx].statusinfo)); } else { /* A packet is waiting, get length */ length = (lpc_enetif->prxs[idx].statusinfo & 0x7FF) + 1; /* Zero-copy */ p = lpc_enetif->rxb[idx]; p->len = (u16_t) length; /* Free pbuf from desriptor */ lpc_enetif->rxb[idx] = NULL; lpc_enetif->rx_free_descs++; LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE, ("lpc_low_level_input: Packet received: %p, size %d (index=%d)\n", p, length, idx)); /* Save size */ p->tot_len = (u16_t) length; LINK_STATS_INC(link.recv); /* Queue new buffer(s) */ lpc_rx_queue(lpc_enetif->netif); } } #ifdef LOCK_RX_THREAD #if NO_SYS == 0 sys_mutex_unlock(&lpc_enetif->TXLockMutex); #endif #endif return p; } /** \brief Attempt to read a packet from the EMAC interface. * * \param[in] netif the lwip network interface structure for this lpc_enetif */ void lpc_enetif_input(struct netif *netif) { struct eth_hdr *ethhdr; struct pbuf *p; /* move received packet into a new pbuf */ p = lpc_low_level_input(netif); if (p == NULL) return; /* points to packet payload, which starts with an Ethernet header */ ethhdr = p->payload; switch (htons(ethhdr->type)) { case ETHTYPE_IP: case ETHTYPE_ARP: #if PPPOE_SUPPORT case ETHTYPE_PPPOEDISC: case ETHTYPE_PPPOE: #endif /* PPPOE_SUPPORT */ /* full packet send to tcpip_thread to process */ if (netif->input(p, netif) != ERR_OK) { LWIP_DEBUGF(NETIF_DEBUG, ("lpc_enetif_input: IP input error\n")); /* Free buffer */ pbuf_free(p); } break; default: /* Return buffer */ pbuf_free(p); break; } } /** \brief Determine if the passed address is usable for the ethernet * DMA controller. * * \param[in] addr Address of packet to check for DMA safe operation * \return 1 if the packet address is not safe, otherwise 0 */ static s32_t lpc_packet_addr_notsafe(void *addr) { /* Check for legal address ranges */ if ((((u32_t) addr >= 0x2007C000) && ((u32_t) addr < 0x20083FFF))) { return 0; } return 1; } /** \brief Sets up the TX descriptor ring buffers. * * This function sets up the descriptor list used for transmit packets. * * \param[in] lpc_enetif Pointer to driver data structure */ static err_t lpc_tx_setup(struct lpc_enetdata *lpc_enetif) { s32_t idx; /* Build TX descriptors for local buffers */ for (idx = 0; idx < LPC_NUM_BUFF_TXDESCS; idx++) { lpc_enetif->ptxd[idx].control = 0; lpc_enetif->ptxs[idx].statusinfo = 0xFFFFFFFF; } /* Setup pointers to TX structures */ LPC_EMAC->TxDescriptor = (u32_t) &lpc_enetif->ptxd[0]; LPC_EMAC->TxStatus = (u32_t) &lpc_enetif->ptxs[0]; LPC_EMAC->TxDescriptorNumber = LPC_NUM_BUFF_TXDESCS - 1; lpc_enetif->lpc_last_tx_idx = 0; return ERR_OK; } /** \brief Free TX buffers that are complete * * \param[in] lpc_enetif Pointer to driver data structure * \param[in] cidx EMAC current descriptor comsumer index */ static void lpc_tx_reclaim_st(struct lpc_enetdata *lpc_enetif, u32_t cidx) { #if NO_SYS == 0 /* Get exclusive access */ sys_mutex_lock(&lpc_enetif->TXLockMutex); #endif while (cidx != lpc_enetif->lpc_last_tx_idx) { if (lpc_enetif->txb[lpc_enetif->lpc_last_tx_idx] != NULL) { LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE, ("lpc_tx_reclaim_st: Freeing packet %p (index %d)\n", lpc_enetif->txb[lpc_enetif->lpc_last_tx_idx], lpc_enetif->lpc_last_tx_idx)); pbuf_free(lpc_enetif->txb[lpc_enetif->lpc_last_tx_idx]); lpc_enetif->txb[lpc_enetif->lpc_last_tx_idx] = NULL; } #if NO_SYS == 0 osSemaphoreRelease(lpc_enetif->xTXDCountSem.id); #endif lpc_enetif->lpc_last_tx_idx++; if (lpc_enetif->lpc_last_tx_idx >= LPC_NUM_BUFF_TXDESCS) lpc_enetif->lpc_last_tx_idx = 0; } #if NO_SYS == 0 /* Restore access */ sys_mutex_unlock(&lpc_enetif->TXLockMutex); #endif } /** \brief User call for freeingTX buffers that are complete * * \param[in] netif the lwip network interface structure for this lpc_enetif */ void lpc_tx_reclaim(struct netif *netif) { lpc_tx_reclaim_st((struct lpc_enetdata *) netif->state, LPC_EMAC->TxConsumeIndex); } /** \brief Polls if an available TX descriptor is ready. Can be used to * determine if the low level transmit function will block. * * \param[in] netif the lwip network interface structure for this lpc_enetif * \return 0 if no descriptors are read, or >0 */ s32_t lpc_tx_ready(struct netif *netif) { s32_t fb; u32_t idx, cidx; cidx = LPC_EMAC->TxConsumeIndex; idx = LPC_EMAC->TxProduceIndex; /* Determine number of free buffers */ if (idx == cidx) fb = LPC_NUM_BUFF_TXDESCS; else if (cidx > idx) fb = (LPC_NUM_BUFF_TXDESCS - 1) - ((idx + LPC_NUM_BUFF_TXDESCS) - cidx); else fb = (LPC_NUM_BUFF_TXDESCS - 1) - (cidx - idx); return fb; } /** \brief Low level output of a packet. Never call this from an * interrupt context, as it may block until TX descriptors * become available. * * \param[in] netif the lwip network interface structure for this lpc_enetif * \param[in] p the MAC packet to send (e.g. IP packet including MAC addresses and type) * \return ERR_OK if the packet could be sent or an err_t value if the packet couldn't be sent */ static err_t lpc_low_level_output(struct netif *netif, struct pbuf *p) { struct lpc_enetdata *lpc_enetif = netif->state; struct pbuf *q; u8_t *dst; u32_t idx; struct pbuf *np; u32_t dn, notdmasafe = 0; /* Zero-copy TX buffers may be fragmented across mutliple payload chains. Determine the number of descriptors needed for the transfer. The pbuf chaining can be a mess! */ dn = (u32_t) pbuf_clen(p); /* Test to make sure packet addresses are DMA safe. A DMA safe address is once that uses external memory or periphheral RAM. IRAM and FLASH are not safe! */ for (q = p; q != NULL; q = q->next) notdmasafe += lpc_packet_addr_notsafe(q->payload); #if LPC_TX_PBUF_BOUNCE_EN==1 /* If the pbuf is not DMA safe, a new bounce buffer (pbuf) will be created that will be used instead. This requires an copy from the non-safe DMA region to the new pbuf */ if (notdmasafe) { /* Allocate a pbuf in DMA memory */ np = pbuf_alloc(PBUF_RAW, p->tot_len, PBUF_RAM); if (np == NULL) return ERR_MEM; /* This buffer better be contiguous! */ LWIP_ASSERT("lpc_low_level_output: New transmit pbuf is chained", (pbuf_clen(np) == 1)); /* Copy to DMA safe pbuf */ dst = (u8_t *) np->payload; for(q = p; q != NULL; q = q->next) { /* Copy the buffer to the descriptor's buffer */ MEMCPY(dst, (u8_t *) q->payload, q->len); dst += q->len; } np->len = p->tot_len; LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE, ("lpc_low_level_output: Switched to DMA safe buffer, old=%p, new=%p\n", q, np)); /* use the new buffer for descrptor queueing. The original pbuf will be de-allocated outsuide this driver. */ p = np; dn = 1; } #else if (notdmasafe) LWIP_ASSERT("lpc_low_level_output: Not a DMA safe pbuf", (notdmasafe == 0)); #endif /* Wait until enough descriptors are available for the transfer. */ /* THIS WILL BLOCK UNTIL THERE ARE ENOUGH DESCRIPTORS AVAILABLE */ while (dn > lpc_tx_ready(netif)) #if NO_SYS == 0 osSemaphoreWait(lpc_enetif->xTXDCountSem.id, osWaitForever); #else osDelay(1); #endif /* Get free TX buffer index */ idx = LPC_EMAC->TxProduceIndex; #if NO_SYS == 0 /* Get exclusive access */ sys_mutex_lock(&lpc_enetif->TXLockMutex); #endif /* Prevent LWIP from de-allocating this pbuf. The driver will free it once it's been transmitted. */ if (!notdmasafe) pbuf_ref(p); /* Setup transfers */ q = p; while (dn > 0) { dn--; /* Only save pointer to free on last descriptor */ if (dn == 0) { /* Save size of packet and signal it's ready */ lpc_enetif->ptxd[idx].control = (q->len - 1) | EMAC_TCTRL_INT | EMAC_TCTRL_LAST; lpc_enetif->txb[idx] = p; } else { /* Save size of packet, descriptor is not last */ lpc_enetif->ptxd[idx].control = (q->len - 1) | EMAC_TCTRL_INT; lpc_enetif->txb[idx] = NULL; } LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE, ("lpc_low_level_output: pbuf packet(%p) sent, chain#=%d," " size = %d (index=%d)\n", q->payload, dn, q->len, idx)); lpc_enetif->ptxd[idx].packet = (u32_t) q->payload; q = q->next; idx++; if (idx >= LPC_NUM_BUFF_TXDESCS) idx = 0; } LPC_EMAC->TxProduceIndex = idx; LINK_STATS_INC(link.xmit); #if NO_SYS == 0 /* Restore access */ sys_mutex_unlock(&lpc_enetif->TXLockMutex); #endif return ERR_OK; } /** \brief LPC EMAC interrupt handler. * * This function handles the transmit, receive, and error interrupt of * the LPC177x_8x. This is meant to be used when NO_SYS=0. */ void ENET_IRQHandler(void) { #if NO_SYS == 1 /* Interrupts are not used without an RTOS */ NVIC_DisableIRQ(ENET_IRQn); #else uint32_t ints; /* Interrupts are of 2 groups - transmit or receive. Based on the interrupt, kick off the receive or transmit (cleanup) task */ /* Get pending interrupts */ ints = LPC_EMAC->IntStatus; if (ints & RXINTGROUP) { /* RX group interrupt(s): Give semaphore to wakeup RX receive task.*/ sys_sem_signal(&lpc_enetdata.RxSem); } if (ints & TXINTGROUP) { /* TX group interrupt(s): Give semaphore to wakeup TX cleanup task. */ sys_sem_signal(&lpc_enetdata.TxCleanSem); } /* Clear pending interrupts */ LPC_EMAC->IntClear = ints; #endif } #if NO_SYS == 0 /** \brief Packet reception task * * This task is called when a packet is received. It will * pass the packet to the LWIP core. * * \param[in] pvParameters Not used yet */ static void packet_rx(void* pvParameters) { struct lpc_enetdata *lpc_enetif = pvParameters; while (1) { /* Wait for receive task to wakeup */ sys_arch_sem_wait(&lpc_enetif->RxSem, 0); /* Process packets until all empty */ while (LPC_EMAC->RxConsumeIndex != LPC_EMAC->RxProduceIndex) lpc_enetif_input(lpc_enetif->netif); } } /** \brief Transmit cleanup task * * This task is called when a transmit interrupt occurs and * reclaims the pbuf and descriptor used for the packet once * the packet has been transferred. * * \param[in] pvParameters Not used yet */ static void packet_tx(void* pvParameters) { struct lpc_enetdata *lpc_enetif = pvParameters; s32_t idx; while (1) { /* Wait for transmit cleanup task to wakeup */ sys_arch_sem_wait(&lpc_enetif->TxCleanSem, 0); /* Error handling for TX underruns. This should never happen unless something is holding the bus or the clocks are going too slow. It can probably be safely removed. */ if (LPC_EMAC->IntStatus & EMAC_INT_TX_UNDERRUN) { LINK_STATS_INC(link.err); LINK_STATS_INC(link.drop); #if NO_SYS == 0 /* Get exclusive access */ sys_mutex_lock(&lpc_enetif->TXLockMutex); #endif /* Reset the TX side */ LPC_EMAC->MAC1 |= EMAC_MAC1_RES_TX; LPC_EMAC->IntClear = EMAC_INT_TX_UNDERRUN; /* De-allocate all queued TX pbufs */ for (idx = 0; idx < LPC_NUM_BUFF_RXDESCS; idx++) { if (lpc_enetif->txb[idx] != NULL) { pbuf_free(lpc_enetif->txb[idx]); lpc_enetif->txb[idx] = NULL; } } #if NO_SYS == 0 /* Restore access */ sys_mutex_unlock(&lpc_enetif->TXLockMutex); #endif /* Start TX side again */ lpc_tx_setup(lpc_enetif); } else { /* Free TX buffers that are done sending */ lpc_tx_reclaim(lpc_enetdata.netif); } } } #endif /** \brief Low level init of the MAC and PHY. * * \param[in] netif Pointer to LWIP netif structure */ static err_t low_level_init(struct netif *netif) { struct lpc_enetdata *lpc_enetif = netif->state; err_t err = ERR_OK; /* Enable MII clocking */ LPC_SC->PCONP |= CLKPWR_PCONP_PCENET; LPC_PINCON->PINSEL2 = 0x50150105; /* Enable P1 Ethernet Pins. */ LPC_PINCON->PINSEL3 = (LPC_PINCON->PINSEL3 & ~0x0000000F) | 0x00000005; /* Reset all MAC logic */ LPC_EMAC->MAC1 = EMAC_MAC1_RES_TX | EMAC_MAC1_RES_MCS_TX | EMAC_MAC1_RES_RX | EMAC_MAC1_RES_MCS_RX | EMAC_MAC1_SIM_RES | EMAC_MAC1_SOFT_RES; LPC_EMAC->Command = EMAC_CR_REG_RES | EMAC_CR_TX_RES | EMAC_CR_RX_RES | EMAC_CR_PASS_RUNT_FRM; osDelay(10); /* Initial MAC initialization */ LPC_EMAC->MAC1 = EMAC_MAC1_PASS_ALL; LPC_EMAC->MAC2 = EMAC_MAC2_CRC_EN | EMAC_MAC2_PAD_EN | EMAC_MAC2_VLAN_PAD_EN; LPC_EMAC->MAXF = EMAC_ETH_MAX_FLEN; /* Set RMII management clock rate to lowest speed */ LPC_EMAC->MCFG = EMAC_MCFG_CLK_SEL(11) | EMAC_MCFG_RES_MII; LPC_EMAC->MCFG &= ~EMAC_MCFG_RES_MII; /* Maximum number of retries, 0x37 collision window, gap */ LPC_EMAC->CLRT = EMAC_CLRT_DEF; LPC_EMAC->IPGR = EMAC_IPGR_P1_DEF | EMAC_IPGR_P2_DEF; #if LPC_EMAC_RMII /* RMII setup */ LPC_EMAC->Command = EMAC_CR_PASS_RUNT_FRM | EMAC_CR_RMII; #else /* MII setup */ LPC_EMAC->CR = EMAC_CR_PASS_RUNT_FRM; #endif /* Initialize the PHY and reset */ err = lpc_phy_init(netif, LPC_EMAC_RMII); if (err != ERR_OK) return err; /* Save station address */ LPC_EMAC->SA2 = (u32_t) netif->hwaddr[0] | (((u32_t) netif->hwaddr[1]) << 8); LPC_EMAC->SA1 = (u32_t) netif->hwaddr[2] | (((u32_t) netif->hwaddr[3]) << 8); LPC_EMAC->SA0 = (u32_t) netif->hwaddr[4] | (((u32_t) netif->hwaddr[5]) << 8); /* Setup transmit and receive descriptors */ if (lpc_tx_setup(lpc_enetif) != ERR_OK) return ERR_BUF; if (lpc_rx_setup(lpc_enetif) != ERR_OK) return ERR_BUF; /* Enable packet reception */ #if IP_SOF_BROADCAST_RECV LPC_EMAC->RxFilterCtrl = EMAC_RFC_PERFECT_EN | EMAC_RFC_BCAST_EN; #else LPC_EMAC->RxFilterCtrl = EMAC_RFC_PERFECT_EN; #endif /* Clear and enable rx/tx interrupts */ LPC_EMAC->IntClear = 0xFFFF; LPC_EMAC->IntEnable = RXINTGROUP | TXINTGROUP; /* Enable RX and TX */ LPC_EMAC->Command |= EMAC_CR_RX_EN | EMAC_CR_TX_EN; LPC_EMAC->MAC1 |= EMAC_MAC1_REC_EN; return err; } /* This function provides a method for the PHY to setup the EMAC for the PHY negotiated duplex mode */ void lpc_emac_set_duplex(int full_duplex) { if (full_duplex) { LPC_EMAC->MAC2 |= EMAC_MAC2_FULL_DUP; LPC_EMAC->Command |= EMAC_CR_FULL_DUP; LPC_EMAC->IPGT = EMAC_IPGT_FULL_DUP; } else { LPC_EMAC->MAC2 &= ~EMAC_MAC2_FULL_DUP; LPC_EMAC->Command &= ~EMAC_CR_FULL_DUP; LPC_EMAC->IPGT = EMAC_IPGT_HALF_DUP; } } /* This function provides a method for the PHY to setup the EMAC for the PHY negotiated bit rate */ void lpc_emac_set_speed(int mbs_100) { if (mbs_100) LPC_EMAC->SUPP = EMAC_SUPP_SPEED; else LPC_EMAC->SUPP = 0; } /** * This function is the ethernet packet send function. It calls * etharp_output after checking link status. * * \param[in] netif the lwip network interface structure for this lpc_enetif * \param[in] q Pointer to pbug to send * \param[in] ipaddr IP address * \return ERR_OK or error code */ err_t lpc_etharp_output(struct netif *netif, struct pbuf *q, ip_addr_t *ipaddr) { /* Only send packet is link is up */ if (netif->flags & NETIF_FLAG_LINK_UP) return etharp_output(netif, q, ipaddr); return ERR_CONN; } #if NO_SYS == 0 /* periodic PHY status update */ void phy_update(void const *nif) { lpc_phy_sts_sm((struct netif*)nif); } osTimerDef(phy_update, phy_update); #endif /** * Should be called at the beginning of the program to set up the * network interface. * * This function should be passed as a parameter to netif_add(). * * @param[in] netif the lwip network interface structure for this lpc_enetif * @return ERR_OK if the loopif is initialized * ERR_MEM if private data couldn't be allocated * any other err_t on error */ err_t lpc_enetif_init(struct netif *netif) { err_t err; LWIP_ASSERT("netif != NULL", (netif != NULL)); lpc_enetdata.netif = netif; /* set MAC hardware address */ mbed_mac_address((char *)netif->hwaddr); netif->hwaddr_len = ETHARP_HWADDR_LEN; /* maximum transfer unit */ netif->mtu = 1500; /* device capabilities */ netif->flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_ETHERNET; /* Initialize the hardware */ netif->state = &lpc_enetdata; err = low_level_init(netif); if (err != ERR_OK) return err; #if LWIP_NETIF_HOSTNAME /* Initialize interface hostname */ netif->hostname = "lwiplpc"; #endif /* LWIP_NETIF_HOSTNAME */ netif->name[0] = 'e'; netif->name[1] = 'n'; netif->output = lpc_etharp_output; netif->linkoutput = lpc_low_level_output; /* CMSIS-RTOS, start tasks */ #if NO_SYS == 0 #ifdef CMSIS_OS_RTX memset(lpc_enetdata.xTXDCountSem.data, 0, sizeof(lpc_enetdata.xTXDCountSem.data)); lpc_enetdata.xTXDCountSem.def.semaphore = lpc_enetdata.xTXDCountSem.data; #endif lpc_enetdata.xTXDCountSem.id = osSemaphoreCreate(&lpc_enetdata.xTXDCountSem.def, LPC_NUM_BUFF_TXDESCS); LWIP_ASSERT("xTXDCountSem creation error", (lpc_enetdata.xTXDCountSem.id != NULL)); err = sys_mutex_new(&lpc_enetdata.TXLockMutex); LWIP_ASSERT("TXLockMutex creation error", (err == ERR_OK)); /* Packet receive task */ err = sys_sem_new(&lpc_enetdata.RxSem, 0); LWIP_ASSERT("RxSem creation error", (err == ERR_OK)); sys_thread_new("receive_thread", packet_rx, netif->state, DEFAULT_THREAD_STACKSIZE, RX_PRIORITY); /* Transmit cleanup task */ err = sys_sem_new(&lpc_enetdata.TxCleanSem, 0); LWIP_ASSERT("TxCleanSem creation error", (err == ERR_OK)); sys_thread_new("txclean_thread", packet_tx, netif->state, DEFAULT_THREAD_STACKSIZE, TX_PRIORITY); /* periodic PHY status update */ osTimerId phy_timer = osTimerCreate(osTimer(phy_update), osTimerPeriodic, (void *)netif); osTimerStart(phy_timer, 250); #endif return ERR_OK; } /** * @} */ /* --------------------------------- End Of File ------------------------------ */