Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: test-lpc1768 oldheating gps motorhome ... more
Homepage
Aim¶
To program the MBED LPC1768 using just the online compiler and the UM10360.pdf manual.
As a hobbyist I want to do the fun stuff - programming the various peripherals to make them do what I wanted them to do - unfortunately the Mbed OS libraries have done all that while leaving the mundane for me to do.
The Mbed OS libraries have to cope with multiple compilers, multiple targets and all the peripherals even if not used; making them large and putting many layers between you and the registers of the LPC1768.
We, on he other hand, can limit ourselves to a single compiler (the online ARM CC compiler), one target (the MBED LPC1768), and those few peripherals we need which, together with limiting some abilities such as dynamic allocation of interrupt vectors, allows us to dramatically reduces the number of files required and means we can specify and understand each and every bit of our application.
Technical¶
Bit Banding¶
Use bit-banding to access the individual bits by mapping each bit in the region base (GPIO 0x2000 0000 or peripheral 0x4000 0000) to a word in the region alias (GPIO 0x2200 0000 or peripheral 0x4200 0000).
The formula is therefore ALIAS + ((((registerAddress - BASE) << 3) + BIT) << 2))
which calculates the number of bits above the base [bytes * 8 plus bit number]; converts it to the number of bytes [ *4] and adds that to the alias.
Writing with bit banding still involves a read modify write cycle; the difference is that the cycle and bit twiddling is managed in hardware and is atomic.
For GPIO writes it is better to use the SET and CLR registers without bit banding to eliminate the surplus read.
Startup code¶
From the ARM Information Center:
__maincalls__scatterloadthen calls__rt_entry__scatterloadgoes through the region table and initializes the various execution-time regions__rt_entrycalls__user_setup_stackheapto initialise the stack and heap, then calls__rt_lib_initto initialise the C library sub systems and finally calls the user-levelmain
Files used¶
These are the files listed roughly in the order you might create them.
Files you would not normally touch are in the lpc1768 library to make them easier to maintain, while files you would normally modify to suit your application are in the main folder.
lpc1768 contains static files for:
- startup - memory layout in a scatter file and a routine to calculate the stack and heap locations
- bitband - macros for each of the two bit band regions
- system - set up the PLL to take the CPU clock from 12 to 96MHz
- gpio - addresses of the various GPIO registers
- led - leds 1 to 4: get, toggle and set
- serialpc - the serial link to the PC using uart0
- firmware - contains routines to handle the uploading of new firmware without having to plug into the usb port
- semihost - contains routines to do various jobs such as MAC, reset and local file handling
- fault - saves the location of a fault across restarts in a small area left aside in the scatter file
- handlers - hard fault and default handlers: other handlers are defined in the module that uses them
- watchdog - watchdog handler
main contains files to modify for:
- vectors - a simple list of handler addresses without any code
- periphs - a list of peripherals to power up and their clock dividers
- main - the start up routine which calls periphs, system, and led initialisation then loops flashing an led
startup.sct¶
Contains the scatter file where the different memory regions are defined for the linker.
Derived from targets/TARGET_NXP/TARGET_LPC176X/device/TOOLCHAIN_ARM_STD/LPC1768.sct.
I have removed the NIVT and IAP reserved areas by not moving the vector table into ram (therefore have to specify the handlers at link time: they cannot be dynamically allocated) and by not using In Application Programming.
The .CRPSection, together with a line in startup.c ensures that the value -1 is stored in location 0x2FC thereby setting code read protection to none.
The following sections are specified:
RESET- used in vectors.S.CRPSection- used in startup.c to ensure that Code Read Protection is set to noneInRoot$$Sections- used for code which must execute at its load addressAHBSRAM0- used in the log module for use as buffer; normally dedicated to USB if you use itAHBSRAM1- used in the net module for the ethernet buffersfault- Leave 4 bytes for the fault code at 20083FFCCANRAM- normally dedicated to Controller Area Network if you use it
startup.sct
#! armcc -E
#define MBED_APP_START 0x00000000
#define MBED_APP_SIZE 0x80000
LR_IROM1 MBED_APP_START MBED_APP_SIZE ; load region size_region
{
ER_IROM0 MBED_APP_START 0x2FC ; load address = execution address
{
*.o (RESET, +First)
.ANY (+RO)
}
ER_CRP (MBED_APP_START + 0x2FC) FIXED 4
{
*.o (.CRPSection)
}
ER_IROM1 (MBED_APP_START + (0x2FC + 4)) FIXED (MBED_APP_SIZE - (0x2FC + 4))
{
*(InRoot$$Sections)
.ANY (+RO)
}
RW_IRAM1 0x10000000 0x8000 ; RW and ZI
{
.ANY (+RW +ZI)
}
RW_IRAM2 0x2007C000 0x4000 ; RW data, USB RAM used by the Log module
{
.ANY (AHBSRAM0)
}
RW_IRAM3 0x20080000 0x3FFC ; RW data, ETH RAM used by the Net module. Leave 4 bytes for the fault code at 20083FFC
{
.ANY (AHBSRAM1)
}
RW_IRAM4 0x40038000 0x0800 ; RW data, CAN RAM
{
.ANY (CANRAM)
}
}
startup.c¶
Contains the c function __user_setup_stackheap which is called from __main to calculate the stack and heap positions prior to main being called .
Derived from platform/mbed_retarget.cpp.
startup.c
#include <stdint.h>
#include <rt_misc.h>
__attribute__ ((section (".CRPSection"), used)) const long crpKey = -1; //Don't use Code Read Protection
extern char Image$$RW_IRAM1$$ZI$$Limit[];
__value_in_regs struct __initial_stackheap __user_setup_stackheap(uint32_t R0, uint32_t R1, uint32_t R2, uint32_t R3)
{
uint32_t zi_limit = (uint32_t)Image$$RW_IRAM1$$ZI$$Limit;
uint32_t sp_limit = __current_sp();
zi_limit = (zi_limit + 7) & ~0x7; // ensure zi_limit is 8-byte aligned
struct __initial_stackheap r;
r.heap_base = zi_limit;
r.heap_limit = sp_limit;
return r;
}
vectors.S¶
Contains the vector table specified in assembly; there is no code here: just pointers
Derived from targets/TARGET_NXP/TARGET_LPC176X/device/TOOLCHAIN_ARM_STD/startup_LPC17xx.S.
There are two difference from Mbed:
- I have not specified a
ResetHandlerorSystemInitfunction but have just put__maindirectly into the table and calledSystemInitfrommain: there is no longer assembly code for a reset handler which callsSystemInitthen__main. - I define the handlers in the module they are used (the default and hard fault handlers have been given their own module) and put the name directly into the table: they are no longer weak references which default to an infinite loop if not defined.
To define an interrupt handler in a given application:
- Define the handler (void parameters and returns void) in its module using the attribute
__irq - Add the name of the handler to the list of IMPORTs
- Replace 'DefaultHandler' on the relevant line of __Vectors with the name of the handler
vectors.S
__initial_sp EQU 0x10008000 ; Top of RAM from LPC1768
PRESERVE8
THUMB
; Vector Table Mapped to Address 0 at Reset
AREA RESET, DATA, READONLY
EXPORT __Vectors
IMPORT __main
IMPORT DefaultHandler
IMPORT HardFaultHandler
IMPORT WatchdogHandler
__Vectors DCD __initial_sp ; Top of Stack
DCD __main ; Reset Handler
DCD DefaultHandler ; NMI Handler
DCD HardFaultHandler ; Hard Fault Handler
DCD DefaultHandler ; MPU Fault Handler
DCD DefaultHandler ; Bus Fault Handler
DCD DefaultHandler ; Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD DefaultHandler ; SVCall Handler
DCD DefaultHandler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD DefaultHandler ; PendSV Handler
DCD DefaultHandler ; SysTick Handler
; External Interrupts
DCD WatchdogHandler ; Watchdog Timer
DCD DefaultHandler ; Timer0
DCD DefaultHandler ; Timer1
DCD DefaultHandler ; Timer2
DCD DefaultHandler ; Timer3
DCD DefaultHandler ; UART0
DCD DefaultHandler ; UART1
DCD DefaultHandler ; UART2
DCD DefaultHandler ; UART3
DCD DefaultHandler ; PWM1
DCD DefaultHandler ; I2C0
DCD DefaultHandler ; I2C1
DCD DefaultHandler ; I2C2
DCD DefaultHandler ; SPI
DCD DefaultHandler ; SSP0
DCD DefaultHandler ; SSP1
DCD DefaultHandler ; PLL0 Lock (Main PLL)
DCD DefaultHandler ; Real Time Clock
DCD DefaultHandler ; External Interrupt 0
DCD DefaultHandler ; External Interrupt 1
DCD DefaultHandler ; External Interrupt 2
DCD DefaultHandler ; External Interrupt 3
DCD DefaultHandler ; A/D Converter
DCD DefaultHandler ; Brown-Out Detect
DCD DefaultHandler ; USB
DCD DefaultHandler ; CAN
DCD DefaultHandler ; General Purpose DMA
DCD DefaultHandler ; I2S
DCD DefaultHandler ; Ethernet
DCD DefaultHandler ; Repetitive Interrupt Timer
DCD DefaultHandler ; Motor Control PWM
DCD DefaultHandler ; Quadrature Encoder Interface
DCD DefaultHandler ; PLL1 Lock (USB PLL)
ALIGN
END
bitband.h¶
bitband.h
#define ALIAS4 0x42000000 #define BASE4 0x40000000 #define BIT_BAND4(ADDR_PAR, BIT_PAR) *((volatile unsigned *)(ALIAS4 + ((((ADDR_PAR - BASE4) << 3) + BIT_PAR) << 2)))
periphs.c¶
Power up, select the clock divider and select the pins for the peripherals you need; before the PLL is enabled.
periphs.c
#define PCONP (*((volatile unsigned *) 0x400FC0C4))
#define PCLKSEL0 (*((volatile unsigned *) 0x400FC1A8))
#define PCLKSEL1 (*((volatile unsigned *) 0x400FC1AC))
#define PINSEL0 (*((volatile unsigned *) 0x4002C000))
#define PINSEL1 (*((volatile unsigned *) 0x4002C004))
#define PINSEL2 (*((volatile unsigned *) 0x4002C008))
#define PINSEL3 (*((volatile unsigned *) 0x4002C00C))
void PeriphsInit (void)
{
//Peripheral power - Table 46
PCONP = 0;
PCONP |= 1 << 1; //TIMER0
PCONP |= 1 << 3; //UART0
PCONP |= 1 << 4; //UART1
PCONP |= 1 << 9; //RTC
PCONP |= 1 << 10; //SSP1
PCONP |= 1 << 15; //GPIO
PCONP |= 1 << 30; //ENET
//Peripheral clocks; default is 00 to divide by 4; specify 01 to divide by 1
PCLKSEL0 = 0;
PCLKSEL0 |= 1 << 2; //TIM0
PCLKSEL0 |= 1 << 6; //UART0
PCLKSEL0 |= 1 << 8; //UART1
PCLKSEL0 |= 1 << 20; //SSP1
//Pin functions table 80.
PINSEL0 = 0;
PINSEL0 |= 1U << 4; //P0.02 01 TXD0 UART0
PINSEL0 |= 1U << 6; //P0.03 01 RXD0 UART0
PINSEL0 |= 2U << 14; //P0.07 10 SCK1 SSP1
PINSEL0 |= 2U << 16; //P0.08 10 MISO1 SSP1
PINSEL0 |= 2U << 18; //P0.09 10 MOSI1 SSP1
PINSEL0 |= 1U << 30; //P0.15 01 TXD1 UART1
PINSEL1 = 0;
PINSEL1 |= 1U << 0; //P0.16 01 RXD1 UART1
PINSEL2 = 0;
PINSEL2 |= 1U << 0; //P1.00 01 ENET_TXD0
PINSEL2 |= 1U << 2; //P1.01 01 ENET_TXD1
PINSEL2 |= 1U << 8; //P1.04 01 ENET_TX_EN
PINSEL2 |= 1U << 16; //P1.08 01 ENET_CRS
PINSEL2 |= 1U << 18; //P1.09 01 ENET_RXD0
PINSEL2 |= 1U << 20; //P1.10 01 ENET_RXD1
PINSEL2 |= 1U << 28; //P1.14 01 ENET_RX_ER
PINSEL2 |= 1U << 30; //P1.15 01 ENET_REF_CLK
PINSEL3 = 0;
PINSEL3 |= 1U << 0; //P1.16 01 ENET_MDC
PINSEL3 |= 1U << 2; //P1.17 01 ENET_MDIO
}
system.c¶
Sets up the flash wait states, the main oscillator and finally starts the PLL to move from 12MHz to 96MHz. The peripheral clocks have to be set before the PLL is enabled.
system.c
#include "bitband.h"
//Addresses
#define FLASHCFG_ADDR 0x400FC000 // Flash Accelerator Configuration Register; controls flash access timing R/W 0x303A
#define CCLKCFG_ADDR 0x400FC104 // CPU Clock Configuration Register R/W 0
#define CLKSRCSEL_ADDR 0x400FC10C // Clock Source Select Register R/W 0
#define SCS_ADDR 0x400FC1A0 // System Control and Status R/W 0
#define PLL0CON_ADDR 0x400FC080 // PLL0 Control Register R/W 0
#define PLL0CFG_ADDR 0x400FC084 // PLL0 Configuration Register R/W 0
#define PLL0STAT_ADDR 0x400FC088 // PLL0 Status Register RO 0
#define PLL0FEED_ADDR 0x400FC08C // PLL0 Feed Register WO NA
#define USBCLKCFG_ADDR 0x400FC108 // USB Clock Configuration Register R/W 0
#define CLKOUTCFG_ADDR 0x400FC1C8 // Clock Output Configuration Register R/W 0
//Registers
#define FLASHCFG *((volatile unsigned *) FLASHCFG_ADDR)
#define CCLKCFG *((volatile unsigned *) CCLKCFG_ADDR)
#define CLKSRCSEL *((volatile unsigned *) CLKSRCSEL_ADDR)
#define PLL0CFG *((volatile unsigned *) PLL0CFG_ADDR)
#define PLL0FEED *((volatile unsigned *) PLL0FEED_ADDR)
#define USBCLKCFG *((volatile unsigned *) USBCLKCFG_ADDR)
#define CLKOUTCFG *((volatile unsigned *) CLKOUTCFG_ADDR)
//Bits
#define PLLE0 BIT_BAND4( PLL0CON_ADDR, 0)
#define PLLC0 BIT_BAND4( PLL0CON_ADDR, 1)
#define PLOCK0 BIT_BAND4(PLL0STAT_ADDR, 26) //Reflects the PLL0 Lock status.
#define OSCRANGE BIT_BAND4( SCS_ADDR, 4)
#define OSCEN BIT_BAND4( SCS_ADDR, 5)
#define OSCSTAT BIT_BAND4( SCS_ADDR, 6)
void SystemInit()
{
//Flash config
FLASHCFG &= ~(0xF << 12); // b15:12 0b0100 Flash accesses use 5 CPU clocks. Use for up to 100 MHz CPU clock.
FLASHCFG |= 0x4 << 12 ;
//Enable the main oscillator and wait for it to be ready
OSCRANGE = 0; //Main Oscillator Range Select: 0= 1 MHz to 20 MHz; 1= 15 MHz to 25 MHz
OSCEN = 1; //Main Oscillator Enable
while (!OSCSTAT) __nop(); //Wait for Main Oscillator to be ready
// bit 7:0 CCLKSEL: Divide value for the CPU clock (CCLK) from the PLL0 output.
CCLKCFG = 2; // 2 == divide by 3
//PLL0 Clock Source Select
CLKSRCSEL = 1; //01 selects the main oscillator
//PLLO Configuration
PLL0CFG = 11; //MSEL0=11 == M=12 == multiply by 24; NSEL=0 == divide by 1
PLL0FEED = 0xAA;
PLL0FEED = 0x55;
//PLL0 Control
PLLE0 = 1; // PLL0 Enable
PLL0FEED = 0xAA;
PLL0FEED = 0x55;
while (!PLOCK0) __nop(); // Wait for PLL to be locked
PLLC0 = 1; // PLL0 Connect
PLL0FEED = 0xAA;
PLL0FEED = 0x55;
//USB Clock divider
USBCLKCFG = 5; // 5 == divide by 6
//Clock Output
CLKOUTCFG = 0; //No clock output
}
gpio.h¶
gpio.h
#define FIO0DIR_ADDR 0x2009C000 #define FIO1DIR_ADDR 0x2009C020 #define FIO2DIR_ADDR 0x2009C040 #define FIO0PIN_ADDR 0x2009C014 #define FIO1PIN_ADDR 0x2009C034 #define FIO2PIN_ADDR 0x2009C054 #define FIO0SET_ADDR 0x2009C018 #define FIO1SET_ADDR 0x2009C038 #define FIO2SET_ADDR 0x2009C058 #define FIO0CLR_ADDR 0x2009C01C #define FIO1CLR_ADDR 0x2009C03C #define FIO2CLR_ADDR 0x2009C05C #define FIO0SET(BIT_PAR) *((volatile unsigned *) FIO0SET_ADDR) = 1U << BIT_PAR #define FIO1SET(BIT_PAR) *((volatile unsigned *) FIO1SET_ADDR) = 1U << BIT_PAR #define FIO2SET(BIT_PAR) *((volatile unsigned *) FIO2SET_ADDR) = 1U << BIT_PAR #define FIO0CLR(BIT_PAR) *((volatile unsigned *) FIO0CLR_ADDR) = 1U << BIT_PAR #define FIO1CLR(BIT_PAR) *((volatile unsigned *) FIO1CLR_ADDR) = 1U << BIT_PAR #define FIO2CLR(BIT_PAR) *((volatile unsigned *) FIO2CLR_ADDR) = 1U << BIT_PAR #define ALIAS2 0x22000000 #define BASE2 0x20000000 #define BIT_BAND2(ADDR_PAR, BIT_PAR) *((volatile unsigned *)(ALIAS2 + ((((ADDR_PAR - BASE2) << 3) + BIT_PAR) << 2))) #define FIO0PIN(BIT_PAR) BIT_BAND2(FIO0PIN_ADDR, BIT_PAR) #define FIO1PIN(BIT_PAR) BIT_BAND2(FIO1PIN_ADDR, BIT_PAR) #define FIO2PIN(BIT_PAR) BIT_BAND2(FIO2PIN_ADDR, BIT_PAR) #define FIO0DIR(BIT_PAR) BIT_BAND2(FIO0DIR_ADDR, BIT_PAR) #define FIO1DIR(BIT_PAR) BIT_BAND2(FIO1DIR_ADDR, BIT_PAR) #define FIO2DIR(BIT_PAR) BIT_BAND2(FIO2DIR_ADDR, BIT_PAR)
led.c¶
led.c
#include <stdbool.h>
#include "bitband.h"
#include "gpio.h"
#define LED1BIT 18
#define LED2BIT 20
#define LED3BIT 21
#define LED4BIT 23
#define LED1DIR BIT_BAND2(FIO1DIR_ADDR, LED1BIT)
#define LED2DIR BIT_BAND2(FIO1DIR_ADDR, LED2BIT)
#define LED3DIR BIT_BAND2(FIO1DIR_ADDR, LED3BIT)
#define LED4DIR BIT_BAND2(FIO1DIR_ADDR, LED4BIT)
#define LED1PIN BIT_BAND2(FIO1PIN_ADDR, LED1BIT)
#define LED2PIN BIT_BAND2(FIO1PIN_ADDR, LED2BIT)
#define LED3PIN BIT_BAND2(FIO1PIN_ADDR, LED3BIT)
#define LED4PIN BIT_BAND2(FIO1PIN_ADDR, LED4BIT)
#define LED1SET FIO1SET = 1U << LED1BIT
#define LED1CLR FIO1CLR = 1U << LED1BIT
#define LED2SET FIO1SET = 1U << LED2BIT
#define LED2CLR FIO1CLR = 1U << LED2BIT
#define LED3SET FIO1SET = 1U << LED3BIT
#define LED3CLR FIO1CLR = 1U << LED3BIT
#define LED4SET FIO1SET = 1U << LED4BIT
#define LED4CLR FIO1CLR = 1U << LED4BIT
void LedInit()
{
LED1DIR = 1;
LED2DIR = 1;
LED3DIR = 1;
LED4DIR = 1;
}
void Led1Set(bool value) { if (value) LED1SET; else LED1CLR; }
void Led2Set(bool value) { if (value) LED2SET; else LED2CLR; }
void Led3Set(bool value) { if (value) LED3SET; else LED3CLR; }
void Led4Set(bool value) { if (value) LED4SET; else LED4CLR; }
void Led1Tgl() { if (LED1PIN) LED1CLR; else LED1SET; }
void Led2Tgl() { if (LED2PIN) LED2CLR; else LED2SET; }
void Led3Tgl() { if (LED3PIN) LED3CLR; else LED3SET; }
void Led4Tgl() { if (LED4PIN) LED4CLR; else LED4SET; }
bool Led1Get() { return LED1PIN; }
bool Led2Get() { return LED2PIN; }
bool Led3Get() { return LED3PIN; }
bool Led4Get() { return LED4PIN; }
handlers.c¶
Contains those handlers which are not defined elsewhere in code. Any handler needs to be defined with the __irq attribute.
The hard fault handler is configured to just flash led 4; this leaves the other leds available to help locate the source of the hard fault: typically something like an array overflow or accessing a peripheral that has not been powered up. Faults are saved in the fault module for later debugging
handlers.c
#include <stdint.h>
#include "fault.h"
#include "led.h"
__irq void DefaultHandler()
{
FaultSave(FAULT_TYPE_DEFAULT);
int value = 0;
int count = 0;
while (1)
{
count++;
if (count > 10000000)
{
value = !value;
Led1Set( value);
Led2Set(!value);
Led3Set(!value);
Led4Set( value);
count = 0;
}
}
}
__irq void HardFaultHandler()
{
FaultSave(FAULT_TYPE_HARD);
int value = 0;
int count = 0;
while (1)
{
count++;
if (count > 10000000)
{
value = !value;
Led4Set(value);
count = 0;
}
}
}
main.c¶
Calls PeriphsInit to power up and select the peripheral clocks, then SystemInit and LedInit. After that you can initialise anything else then go into an infinite loop as this routine never exits.
main.c
#include <stdint.h>
#include <stdbool.h>
#include "periphs.h"
#include "system.h"
#include "led.h"
int main()
{
PeriphsInit();
SystemInit();
LedInit();
int count = 0;
while (true)
{
count++;
if (count > 10000000)
{
Led1Set(!Led1Get());
count = 0;
}
}
}