just a fork with another display choosen. LCD at D1 ROBOT shield seems to in YWROBOT configuration.

Dependents:   Nucleo_praktyki

Fork of TextLCD by Wim Huiskamp

Committer:
wim
Date:
Tue Nov 25 19:21:18 2014 +0000
Revision:
36:9f5f86dfd44a
Parent:
35:311be6444a39
Child:
37:ce348c002929
Added ST7070 and KS0073 support, added setIcon(), clrIcon() and setInvert() method for supported devices.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
simon 1:ac48b187213c 1 /* mbed TextLCD Library, for a 4-bit LCD based on HD44780
simon 6:e4cb7ddee0d3 2 * Copyright (c) 2007-2010, sford, http://mbed.org
wim 14:0c32b66b14b8 3 * 2013, v01: WH, Added LCD types, fixed LCD address issues, added Cursor and UDCs
wim 14:0c32b66b14b8 4 * 2013, v02: WH, Added I2C and SPI bus interfaces
wim 15:b70ebfffb258 5 * 2013, v03: WH, Added support for LCD40x4 which uses 2 controllers
wim 18:bd65dc10f27f 6 * 2013, v04: WH, Added support for Display On/Off, improved 4bit bootprocess
wim 18:bd65dc10f27f 7 * 2013, v05: WH, Added support for 8x2B, added some UDCs
wim 19:c747b9e2e7b8 8 * 2013, v06: WH, Added support for devices that use internal DC/DC converters
wim 20:e0da005a777f 9 * 2013, v07: WH, Added support for backlight and include portdefinitions for LCD2004 Module from DFROBOT
wim 22:35742ec80c24 10 * 2014, v08: WH, Refactored in Base and Derived Classes to deal with mbed lib change regarding 'NC' defined pins
wim 25:6162b31128c9 11 * 2014, v09: WH/EO, Added Class for Native SPI controllers such as ST7032
wim 26:bd897a001012 12 * 2014, v10: WH, Added Class for Native I2C controllers such as ST7032i, Added support for MCP23008 I2C portexpander, Added support for Adafruit module
wim 30:033048611c01 13 * 2014, v11: WH, Added support for native I2C controllers such as PCF21XX, Improved the _initCtrl() method to deal with differences between all supported controllers
wim 32:59c4b8f648d4 14 * 2014, v12: WH, Added support for native I2C controller PCF2119 and native I2C/SPI controllers SSD1803, ST7036, added setContrast method (by JH1PJL) for supported devices (eg ST7032i)
wim 34:e5a0dcb43ecc 15 * 2014, v13: WH, Added support for controllers US2066/SSD1311 (OLED), added setUDCBlink() method for supported devices (eg SSD1803), fixed issue in setPower()
wim 34:e5a0dcb43ecc 16 * 2014, v14: WH, Added support for PT6314 (VFD), added setOrient() method for supported devices (eg SSD1803, US2066), added Double Height lines for supported devices,
wim 34:e5a0dcb43ecc 17 * added 16 UDCs for supported devices (eg PCF2103), moved UDC defines to TextLCD_UDC file, added TextLCD_Config.h for feature and footprint settings.
wim 35:311be6444a39 18 * 2014, v15: WH, Added AC780 support, added I2C expander modules, fixed setBacklight() for inverted logic modules. Fixed bug in LCD_SPI_N define
wim 36:9f5f86dfd44a 19 * 2014, v16: WH, Added ST7070 and KS0073 support, added setIcon(), clrIcon() and setInvert() method for supported devices
simon 1:ac48b187213c 20 *
simon 1:ac48b187213c 21 * Permission is hereby granted, free of charge, to any person obtaining a copy
simon 1:ac48b187213c 22 * of this software and associated documentation files (the "Software"), to deal
simon 1:ac48b187213c 23 * in the Software without restriction, including without limitation the rights
simon 1:ac48b187213c 24 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
simon 1:ac48b187213c 25 * copies of the Software, and to permit persons to whom the Software is
simon 1:ac48b187213c 26 * furnished to do so, subject to the following conditions:
simon 1:ac48b187213c 27 *
simon 1:ac48b187213c 28 * The above copyright notice and this permission notice shall be included in
simon 1:ac48b187213c 29 * all copies or substantial portions of the Software.
simon 1:ac48b187213c 30 *
simon 1:ac48b187213c 31 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
simon 1:ac48b187213c 32 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
simon 1:ac48b187213c 33 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
simon 1:ac48b187213c 34 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
simon 1:ac48b187213c 35 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
simon 1:ac48b187213c 36 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
simon 1:ac48b187213c 37 * THE SOFTWARE.
simon 1:ac48b187213c 38 */
wim 34:e5a0dcb43ecc 39 #include "mbed.h"
simon 1:ac48b187213c 40 #include "TextLCD.h"
wim 34:e5a0dcb43ecc 41 #include "TextLCD_UDC.inc"
wim 34:e5a0dcb43ecc 42
wim 21:9eb628d9e164 43 /** Create a TextLCD_Base interface
wim 15:b70ebfffb258 44 *
wim 21:9eb628d9e164 45 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 21:9eb628d9e164 46 * @param ctrl LCD controller (default = HD44780)
wim 15:b70ebfffb258 47 */
wim 21:9eb628d9e164 48 TextLCD_Base::TextLCD_Base(LCDType type, LCDCtrl ctrl) : _type(type), _ctrl(ctrl) {
wim 30:033048611c01 49
wim 30:033048611c01 50 // Extract LCDType data
wim 30:033048611c01 51
wim 30:033048611c01 52 // Columns encoded in b7..b0
wim 30:033048611c01 53 _nr_cols = (_type & 0xFF);
wim 30:033048611c01 54
wim 30:033048611c01 55 // Rows encoded in b15..b8
wim 30:033048611c01 56 _nr_rows = ((_type >> 8) & 0xFF);
wim 30:033048611c01 57
wim 30:033048611c01 58 // Addressing mode encoded in b19..b16
wim 30:033048611c01 59 _addr_mode = _type & LCD_T_ADR_MSK;
wim 14:0c32b66b14b8 60 }
wim 14:0c32b66b14b8 61
wim 21:9eb628d9e164 62 /** Init the LCD Controller(s)
wim 21:9eb628d9e164 63 * Clear display
wim 36:9f5f86dfd44a 64 * @param _LCDDatalength dl sets the datalength of data/commands
wim 36:9f5f86dfd44a 65 * @return none
wim 21:9eb628d9e164 66 */
wim 36:9f5f86dfd44a 67 void TextLCD_Base::_init(_LCDDatalength dl) {
wim 15:b70ebfffb258 68
wim 15:b70ebfffb258 69 // Select and configure second LCD controller when needed
wim 15:b70ebfffb258 70 if(_type==LCD40x4) {
wim 30:033048611c01 71 _ctrl_idx=_LCDCtrl_1; // Select 2nd controller
wim 36:9f5f86dfd44a 72 _initCtrl(dl); // Init 2nd controller
wim 15:b70ebfffb258 73 }
wim 15:b70ebfffb258 74
wim 15:b70ebfffb258 75 // Select and configure primary LCD controller
wim 27:22d5086f6ba6 76 _ctrl_idx=_LCDCtrl_0; // Select primary controller
wim 36:9f5f86dfd44a 77 _initCtrl(dl); // Init primary controller
wim 28:30fa94f7341c 78
wim 32:59c4b8f648d4 79 // Clear whole display and Reset Cursor location
wim 32:59c4b8f648d4 80 // Note: This will make sure that some 3-line displays that skip topline of a 4-line configuration
wim 32:59c4b8f648d4 81 // are cleared and init cursor correctly.
wim 32:59c4b8f648d4 82 cls();
wim 15:b70ebfffb258 83 }
wim 15:b70ebfffb258 84
wim 21:9eb628d9e164 85 /** Init the LCD controller
wim 36:9f5f86dfd44a 86 * Set number of lines, fonttype, no cursor etc
wim 36:9f5f86dfd44a 87 * The controller is accessed in 4-bit parallel mode either directly via mbed pins or through I2C or SPI expander.
wim 36:9f5f86dfd44a 88 * Some controllers also support native I2C or SPI interfaces.
wim 36:9f5f86dfd44a 89 *
wim 36:9f5f86dfd44a 90 * @param _LCDDatalength dl sets the 4 or 8 bit datalength of data/commands. Required for some native serial modes.
wim 36:9f5f86dfd44a 91 * @return none
wim 30:033048611c01 92 *
wim 30:033048611c01 93 * Note: some configurations are commented out because they have not yet been tested due to lack of hardware
wim 21:9eb628d9e164 94 */
wim 36:9f5f86dfd44a 95 void TextLCD_Base::_initCtrl(_LCDDatalength dl) {
wim 32:59c4b8f648d4 96 int _bias_lines=0; // Set Bias and lines (Instr Set 1), temporary variable.
wim 32:59c4b8f648d4 97 int _lines=0; // Set lines (Ext Instr Set), temporary variable.
wim 36:9f5f86dfd44a 98
wim 26:bd897a001012 99 this->_setRS(false); // command mode
wim 13:24506ba22480 100
wim 26:bd897a001012 101 wait_ms(20); // Wait 20ms to ensure powered up
simon 1:ac48b187213c 102
wim 33:900a94bc7585 103 // The Controller could be in 8 bit mode (power-on reset) or in 4 bit mode (warm reboot) at this point.
wim 33:900a94bc7585 104 // Follow this procedure to make sure the Controller enters the correct state. The hardware interface
wim 33:900a94bc7585 105 // between the uP and the LCD can only write the 4 most significant bits (Most Significant Nibble, MSN).
wim 33:900a94bc7585 106 // In 4 bit mode the LCD expects the MSN first, followed by the LSN.
wim 33:900a94bc7585 107 //
wim 33:900a94bc7585 108 // Current state: 8 bit mode | 4 bit mode, MSN is next | 4 bit mode, LSN is next
wim 33:900a94bc7585 109 //-------------------------------------------------------------------------------------------------
wim 33:900a94bc7585 110 _writeNibble(0x3); // set 8 bit mode (MSN) and dummy LSN, | set 8 bit mode (MSN), | set dummy LSN,
wim 33:900a94bc7585 111 // remains in 8 bit mode | change to 8 bit mode | remains in 4 bit mode
wim 33:900a94bc7585 112 wait_ms(15); //
wim 33:900a94bc7585 113
wim 33:900a94bc7585 114 _writeNibble(0x3); // set 8 bit mode and dummy LSN, | set 8 bit mode and dummy LSN, | set 8bit mode (MSN),
wim 33:900a94bc7585 115 // remains in 8 bit mode | remains in 8 bit mode | remains in 4 bit mode
wim 33:900a94bc7585 116 wait_ms(15); //
wim 33:900a94bc7585 117
wim 33:900a94bc7585 118 _writeNibble(0x3); // set 8 bit mode and dummy LSN, | set 8 bit mode and dummy LSN, | set dummy LSN,
wim 33:900a94bc7585 119 // remains in 8 bit mode | remains in 8 bit mode | change to 8 bit mode
wim 33:900a94bc7585 120 wait_ms(15); //
wim 33:900a94bc7585 121
wim 33:900a94bc7585 122 // Controller is now in 8 bit mode
wim 33:900a94bc7585 123
wim 33:900a94bc7585 124 _writeNibble(0x2); // Change to 4-bit mode (MSN), the LSN is undefined dummy
wim 17:652ab113bc2e 125 wait_us(40); // most instructions take 40us
wim 18:bd65dc10f27f 126
wim 18:bd65dc10f27f 127 // Display is now in 4-bit mode
wim 33:900a94bc7585 128 // Note: 4/8 bit mode is ignored for most native SPI and I2C devices. They dont use the parallel bus.
wim 33:900a94bc7585 129 // However, _writeNibble() method is void anyway for native SPI and I2C devices.
wim 25:6162b31128c9 130
wim 29:a3663151aa65 131 // Device specific initialisations: DC/DC converter to generate VLCD or VLED, number of lines etc
wim 19:c747b9e2e7b8 132 switch (_ctrl) {
wim 32:59c4b8f648d4 133
wim 36:9f5f86dfd44a 134 case KS0073:
wim 36:9f5f86dfd44a 135 // Initialise Display configuration
wim 36:9f5f86dfd44a 136 switch (_type) {
wim 36:9f5f86dfd44a 137 case LCD8x1: //8x1 is a regular 1 line display
wim 36:9f5f86dfd44a 138 case LCD12x1:
wim 36:9f5f86dfd44a 139 case LCD16x1:
wim 36:9f5f86dfd44a 140 case LCD20x1:
wim 36:9f5f86dfd44a 141 case LCD24x1:
wim 36:9f5f86dfd44a 142 // case LCD32x1: // EXT pin is High, extension driver needed
wim 36:9f5f86dfd44a 143 // case LCD40x1: // EXT pin is High, extension driver needed
wim 36:9f5f86dfd44a 144 _function = 0x02; // Function set 001 DL N RE(0) DH REV (Std Regs)
wim 36:9f5f86dfd44a 145 // DL=0 (4 bits bus)
wim 36:9f5f86dfd44a 146 // N=0 (1-line mode, N=1 2-line mode)
wim 36:9f5f86dfd44a 147 // RE=0 (Dis. Extended Regs, special mode for KS0073)
wim 36:9f5f86dfd44a 148 // DH=1 (Disp shift enable, special mode for KS0073)
wim 36:9f5f86dfd44a 149 // REV=0 (Reverse normal, special mode for KS0073)
wim 36:9f5f86dfd44a 150
wim 36:9f5f86dfd44a 151 _function_1 = 0x04; // Function set 001 DL N RE(1) BE LP (Ext Regs)
wim 36:9f5f86dfd44a 152 // DL=0 (4 bits bus)
wim 36:9f5f86dfd44a 153 // N=0 (1-line mode, N=1 2-line mode)
wim 36:9f5f86dfd44a 154 // RE=1 (Ena Extended Regs, special mode for KS0073)
wim 36:9f5f86dfd44a 155 // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0073)
wim 36:9f5f86dfd44a 156 // LP=0 (LP=1 Low power mode, LP=0 Normal)
wim 36:9f5f86dfd44a 157
wim 36:9f5f86dfd44a 158 _function_x = 0x00; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 36:9f5f86dfd44a 159 // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0073)
wim 36:9f5f86dfd44a 160 break;
wim 36:9f5f86dfd44a 161
wim 36:9f5f86dfd44a 162 // case LCD12x3D: // Special mode for KS0073, KS0078 and PCF21XX
wim 36:9f5f86dfd44a 163 // case LCD12x3D1: // Special mode for KS0073, KS0078 and PCF21XX
wim 36:9f5f86dfd44a 164 case LCD12x4D: // Special mode for KS0073, KS0078 and PCF21XX
wim 36:9f5f86dfd44a 165 // case LCD16x3D: // Special mode for KS0073, KS0078
wim 36:9f5f86dfd44a 166 // case LCD16x4D: // Special mode for KS0073, KS0078
wim 36:9f5f86dfd44a 167 case LCD20x4D: // Special mode for KS0073, KS0078
wim 36:9f5f86dfd44a 168 _function = 0x02; // Function set 001 DL N RE(0) DH REV (Std Regs)
wim 36:9f5f86dfd44a 169 // DL=0 (4 bits bus)
wim 36:9f5f86dfd44a 170 // N=0 (dont care for 4 line mode)
wim 36:9f5f86dfd44a 171 // RE=0 (Dis. Extended Regs, special mode for KS0073)
wim 36:9f5f86dfd44a 172 // DH=1 (Disp shift enable, special mode for KS0073)
wim 36:9f5f86dfd44a 173 // REV=0 (Reverse normal, special mode for KS0073)
wim 36:9f5f86dfd44a 174
wim 36:9f5f86dfd44a 175 _function_1 = 0x04; // Function set 001 DL N RE(1) BE LP (Ext Regs)
wim 36:9f5f86dfd44a 176 // DL=0 (4 bits bus)
wim 36:9f5f86dfd44a 177 // N=0 (1-line mode), N=1 (2-line mode)
wim 36:9f5f86dfd44a 178 // RE=1 (Ena Extended Regs, special mode for KS0073)
wim 36:9f5f86dfd44a 179 // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0073)
wim 36:9f5f86dfd44a 180 // LP=0 (LP=1 Low power mode, LP=0 Normal)
wim 36:9f5f86dfd44a 181
wim 36:9f5f86dfd44a 182 _function_x = 0x01; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 36:9f5f86dfd44a 183 // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0073)
wim 36:9f5f86dfd44a 184 break;
wim 36:9f5f86dfd44a 185
wim 36:9f5f86dfd44a 186
wim 36:9f5f86dfd44a 187 case LCD16x3G: // Special mode for ST7036
wim 36:9f5f86dfd44a 188 // case LCD24x3D: // Special mode for KS0078
wim 36:9f5f86dfd44a 189 // case LCD24x3D1: // Special mode for KS0078
wim 36:9f5f86dfd44a 190 case LCD24x4D: // Special mode for KS0078
wim 36:9f5f86dfd44a 191 error("Error: LCD Controller type does not support this Display type\n\r");
wim 36:9f5f86dfd44a 192 break;
wim 36:9f5f86dfd44a 193
wim 36:9f5f86dfd44a 194 default:
wim 36:9f5f86dfd44a 195 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 36:9f5f86dfd44a 196 _function = 0x0A; // Function set 001 DL N RE(0) DH REV (Std Regs)
wim 36:9f5f86dfd44a 197 // DL=0 (4 bits bus)
wim 36:9f5f86dfd44a 198 // N=1 (2-line mode), N=0 (1-line mode)
wim 36:9f5f86dfd44a 199 // RE=0 (Dis. Extended Regs, special mode for KS0073)
wim 36:9f5f86dfd44a 200 // DH=1 (Disp shift enable, special mode for KS0073)
wim 36:9f5f86dfd44a 201 // REV=0 (Reverse normal, special mode for KS0073)
wim 36:9f5f86dfd44a 202
wim 36:9f5f86dfd44a 203 _function_1 = 0x0C; // Function set 001 DL N RE(1) BE LP (Ext Regs)
wim 36:9f5f86dfd44a 204 // DL=0 (4 bits bus)
wim 36:9f5f86dfd44a 205 // N=1 (2 line mode), N=0 (1-line mode)
wim 36:9f5f86dfd44a 206 // RE=1 (Ena Extended Regs, special mode for KS0073)
wim 36:9f5f86dfd44a 207 // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0073)
wim 36:9f5f86dfd44a 208 // LP=0 (LP=1 Low power mode, LP=0 Normal)
wim 36:9f5f86dfd44a 209
wim 36:9f5f86dfd44a 210 _function_x = 0x00; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 36:9f5f86dfd44a 211 // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0073)
wim 36:9f5f86dfd44a 212 break;
wim 36:9f5f86dfd44a 213 } // switch type
wim 36:9f5f86dfd44a 214
wim 36:9f5f86dfd44a 215 // init special features
wim 36:9f5f86dfd44a 216 _writeCommand(0x20 | _function_1);// Function set 001 DL N RE(1) BE LP (Ext Regs)
wim 36:9f5f86dfd44a 217 // DL=0 (4 bits bus), DL=1 (8 bits mode)
wim 36:9f5f86dfd44a 218 // N=0 (1 line mode), N=1 (2 line mode)
wim 36:9f5f86dfd44a 219 // RE=1 (Ena Extended Regs, special mode for KS0073)
wim 36:9f5f86dfd44a 220 // BE=0 (Blink Enable/Disable, CG/SEG RAM, special mode for KS0073)
wim 36:9f5f86dfd44a 221 // LP=0 (LP=1 Low power mode, LP=0 Normal)
wim 36:9f5f86dfd44a 222
wim 36:9f5f86dfd44a 223 _writeCommand(0x08 | _function_x); // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 36:9f5f86dfd44a 224 // FW=0 (5-dot font, special mode for KS0073)
wim 36:9f5f86dfd44a 225 // BW=0 (Cur BW invert disable, special mode for KS0073)
wim 36:9f5f86dfd44a 226 // NW=0 (1,2 Line), NW=1 (4 line, special mode for KS0073)
wim 36:9f5f86dfd44a 227
wim 36:9f5f86dfd44a 228 _writeCommand(0x10); // Scroll/Shift set 0001 DS/HS4 DS/HS3 DS/HS2 DS/HS1 (Ext Regs)
wim 36:9f5f86dfd44a 229 // Dotscroll/Display shift enable (Special mode for KS0073)
wim 36:9f5f86dfd44a 230
wim 36:9f5f86dfd44a 231 _writeCommand(0x80); // Scroll Quantity set 1 0 SQ5 SQ4 SQ3 SQ2 SQ1 SQ0 (Ext Regs)
wim 36:9f5f86dfd44a 232 // Scroll quantity (Special mode for KS0073)
wim 36:9f5f86dfd44a 233
wim 36:9f5f86dfd44a 234 _writeCommand(0x20 | _function); // Function set 001 DL N RE(0) DH REV (Std Regs)
wim 36:9f5f86dfd44a 235 // DL=0 (4 bits bus), DL=1 (8 bits mode)
wim 36:9f5f86dfd44a 236 // N=0 (1 line mode), N=1 (2 line mode)
wim 36:9f5f86dfd44a 237 // RE=0 (Dis. Extended Regs, special mode for KS0073)
wim 36:9f5f86dfd44a 238 // DH=1 (Disp shift enable/disable, special mode for KS0073)
wim 36:9f5f86dfd44a 239 // REV=0 (Reverse/Normal, special mode for KS0073)
wim 36:9f5f86dfd44a 240 break; // case KS0073 Controller
wim 36:9f5f86dfd44a 241
wim 36:9f5f86dfd44a 242
wim 29:a3663151aa65 243 case KS0078:
wim 29:a3663151aa65 244 // Initialise Display configuration
wim 29:a3663151aa65 245 switch (_type) {
wim 29:a3663151aa65 246 case LCD8x1: //8x1 is a regular 1 line display
wim 29:a3663151aa65 247 case LCD8x2B: //8x2B is a special case of 16x1
wim 29:a3663151aa65 248 // case LCD12x1:
wim 29:a3663151aa65 249 case LCD16x1:
wim 30:033048611c01 250 // case LCD20x1:
wim 29:a3663151aa65 251 case LCD24x1:
wim 32:59c4b8f648d4 252 _function = 0x02; // Function set 001 DL N RE(0) DH REV (Std Regs)
wim 32:59c4b8f648d4 253 // DL=0 (4 bits bus)
wim 32:59c4b8f648d4 254 // N=0 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 255 // RE=0 (Dis. Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 256 // DH=1 (Disp shift enable, special mode for KS0078)
wim 32:59c4b8f648d4 257 // REV=0 (Reverse normal, special mode for KS0078)
wim 32:59c4b8f648d4 258
wim 33:900a94bc7585 259 _function_1 = 0x04; // Function set 001 DL N RE(1) BE 0 (Ext Regs)
wim 32:59c4b8f648d4 260 // DL=0 (4 bits bus)
wim 32:59c4b8f648d4 261 // N=0 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 262 // RE=1 (Ena Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 263 // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0078)
wim 32:59c4b8f648d4 264 // 0
wim 30:033048611c01 265
wim 32:59c4b8f648d4 266 _function_x = 0x00; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 32:59c4b8f648d4 267 // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0078)
wim 29:a3663151aa65 268 break;
wim 29:a3663151aa65 269
wim 36:9f5f86dfd44a 270 // case LCD12x3D: // Special mode for KS0073, KS0078 and PCF21XX
wim 36:9f5f86dfd44a 271 // case LCD12x3D1: // Special mode for KS0073, KS0078 and PCF21XX
wim 36:9f5f86dfd44a 272 // case LCD12x4D: // Special mode for KS0073, KS0078 and PCF21XX
wim 36:9f5f86dfd44a 273 // case LCD16x3D: // Special mode for KS0073, KS0078
wim 36:9f5f86dfd44a 274 // case LCD16x4D: // Special mode for KS0073, KS0078
wim 36:9f5f86dfd44a 275 // case LCD20x4D: // Special mode for KS0073, KS0078
wim 30:033048611c01 276 // case LCD24x3D: // Special mode for KS0078
wim 30:033048611c01 277 // case LCD24x3D1: // Special mode for KS0078
wim 30:033048611c01 278 case LCD24x4D: // Special mode for KS0078
wim 32:59c4b8f648d4 279 _function = 0x02; // Function set 001 DL N RE(0) DH REV (Std Regs)
wim 32:59c4b8f648d4 280 // DL=0 (4 bits bus)
wim 32:59c4b8f648d4 281 // N=0 (dont care for 4 line mode)
wim 32:59c4b8f648d4 282 // RE=0 (Dis. Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 283 // DH=1 (Disp shift enable, special mode for KS0078)
wim 32:59c4b8f648d4 284 // REV=0 (Reverse normal, special mode for KS0078)
wim 32:59c4b8f648d4 285
wim 33:900a94bc7585 286 _function_1 = 0x04; // Function set 001 DL N RE(1) BE 0 (Ext Regs)
wim 32:59c4b8f648d4 287 // DL=0 (4 bits bus)
wim 32:59c4b8f648d4 288 // N=0 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 289 // RE=1 (Ena Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 290 // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0078)
wim 32:59c4b8f648d4 291 // 0
wim 29:a3663151aa65 292
wim 32:59c4b8f648d4 293 _function_x = 0x01; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 32:59c4b8f648d4 294 // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0078)
wim 30:033048611c01 295 break;
wim 33:900a94bc7585 296
wim 33:900a94bc7585 297 case LCD16x3G: // Special mode for ST7036
wim 33:900a94bc7585 298 error("Error: LCD Controller type does not support this Display type\n\r");
wim 33:900a94bc7585 299 break;
wim 30:033048611c01 300
wim 29:a3663151aa65 301 default:
wim 30:033048611c01 302 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 32:59c4b8f648d4 303 _function = 0x0A; // Function set 001 DL N RE(0) DH REV (Std Regs)
wim 32:59c4b8f648d4 304 // DL=0 (4 bits bus)
wim 32:59c4b8f648d4 305 // N=1 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 306 // RE=0 (Dis. Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 307 // DH=1 (Disp shift enable, special mode for KS0078)
wim 32:59c4b8f648d4 308 // REV=0 (Reverse normal, special mode for KS0078)
wim 32:59c4b8f648d4 309
wim 33:900a94bc7585 310 _function_1 = 0x0C; // Function set 001 DL N RE(1) BE 0 (Ext Regs)
wim 32:59c4b8f648d4 311 // DL=0 (4 bits bus)
wim 32:59c4b8f648d4 312 // N=1 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 313 // RE=1 (Ena Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 314 // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0078)
wim 32:59c4b8f648d4 315 // 0
wim 30:033048611c01 316
wim 32:59c4b8f648d4 317 _function_x = 0x00; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 32:59c4b8f648d4 318 // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0078)
wim 29:a3663151aa65 319 break;
wim 29:a3663151aa65 320 } // switch type
wim 29:a3663151aa65 321
wim 32:59c4b8f648d4 322 // init special features
wim 32:59c4b8f648d4 323 _writeCommand(0x20 | _function_1);// Function set 001 DL N RE(1) BE 0 (Ext Regs)
wim 32:59c4b8f648d4 324 // DL=0 (4 bits bus), DL=1 (8 bits mode)
wim 32:59c4b8f648d4 325 // N=0 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 326 // RE=1 (Ena Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 327 // BE=0 (Blink Enable/Disable, CG/SEG RAM, special mode for KS0078)
wim 32:59c4b8f648d4 328 // 0
wim 32:59c4b8f648d4 329
wim 32:59c4b8f648d4 330 _writeCommand(0x08 | _function_x); // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 32:59c4b8f648d4 331 // FW=0 (5-dot font, special mode for KS0078)
wim 32:59c4b8f648d4 332 // BW=0 (Cur BW invert disable, special mode for KS0078)
wim 32:59c4b8f648d4 333 // NW=0 (1,2 Line), NW=1 (4 line, special mode for KS0078)
wim 32:59c4b8f648d4 334
wim 32:59c4b8f648d4 335 _writeCommand(0x10); // Scroll/Shift set 0001 DS/HS4 DS/HS3 DS/HS2 DS/HS1 (Ext Regs)
wim 32:59c4b8f648d4 336 // Dotscroll/Display shift enable (Special mode for KS0078)
wim 32:59c4b8f648d4 337
wim 32:59c4b8f648d4 338 _writeCommand(0x80); // Scroll Quantity set 1 0 SQ5 SQ4 SQ3 SQ2 SQ1 SQ0 (Ext Regs)
wim 32:59c4b8f648d4 339 // Scroll quantity (Special mode for KS0078)
wim 32:59c4b8f648d4 340
wim 32:59c4b8f648d4 341 _writeCommand(0x20 | _function); // Function set 001 DL N RE(0) DH REV (Std Regs)
wim 32:59c4b8f648d4 342 // DL=0 (4 bits bus), DL=1 (8 bits mode)
wim 32:59c4b8f648d4 343 // N=0 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 344 // RE=0 (Dis. Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 345 // DH=1 (Disp shift enable/disable, special mode for KS0078)
wim 32:59c4b8f648d4 346 // REV=0 (Reverse/Normal, special mode for KS0078)
wim 29:a3663151aa65 347 break; // case KS0078 Controller
wim 29:a3663151aa65 348
wim 26:bd897a001012 349 case ST7032_3V3:
wim 26:bd897a001012 350 // ST7032 controller: Initialise Voltage booster for VLCD. VDD=3V3
wim 26:bd897a001012 351 case ST7032_5V:
wim 32:59c4b8f648d4 352 // ST7032 controller: Disable Voltage booster for VLCD. VDD=5V
wim 29:a3663151aa65 353
wim 29:a3663151aa65 354 // Initialise Display configuration
wim 29:a3663151aa65 355 switch (_type) {
wim 29:a3663151aa65 356 case LCD8x1: //8x1 is a regular 1 line display
wim 29:a3663151aa65 357 case LCD8x2B: //8x2B is a special case of 16x1
wim 29:a3663151aa65 358 // case LCD12x1:
wim 29:a3663151aa65 359 case LCD16x1:
wim 30:033048611c01 360 // case LCD20x1:
wim 32:59c4b8f648d4 361 case LCD24x1:
wim 32:59c4b8f648d4 362 _function = 0x00; // FUNCTION SET 0 0 1 DL=0 (4 bit), N=0 (1-line display mode), F=0 (5*7dot), 0, IS
wim 32:59c4b8f648d4 363 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 364 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 365 break;
wim 28:30fa94f7341c 366
wim 32:59c4b8f648d4 367 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 368 case LCD12x3D1: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 369 case LCD12x4D: // Special mode for KS0078 and PCF21XX
wim 33:900a94bc7585 370 case LCD16x3G: // Special mode for ST7036
wim 32:59c4b8f648d4 371 case LCD24x4D: // Special mode for KS0078
wim 32:59c4b8f648d4 372 error("Error: LCD Controller type does not support this Display type\n\r");
wim 30:033048611c01 373 break;
wim 29:a3663151aa65 374
wim 32:59c4b8f648d4 375 default:
wim 32:59c4b8f648d4 376 // All other LCD types are initialised as 2 Line displays
wim 32:59c4b8f648d4 377 _function = 0x08; // FUNCTION SET 0 0 1 DL=0 (4 bit), N=1 (2-line display mode), F=0 (5*7dot), 0, IS
wim 32:59c4b8f648d4 378 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 379 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 380 break;
wim 32:59c4b8f648d4 381 } // switch type
wim 32:59c4b8f648d4 382
wim 32:59c4b8f648d4 383 // init special features
wim 33:900a94bc7585 384 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N F 0 IS=1 Select Instr Set = 1
wim 33:900a94bc7585 385
wim 33:900a94bc7585 386 _writeCommand(0x1C); // Internal OSC frequency adjustment Framefreq=183HZ, Bias will be 1/4 (Instr Set=1)
wim 32:59c4b8f648d4 387
wim 32:59c4b8f648d4 388 _contrast = LCD_ST7032_CONTRAST;
wim 32:59c4b8f648d4 389 _writeCommand(0x70 | (_contrast & 0x0F)); // Set Contrast Low bits, 0 1 1 1 C3 C2 C1 C0 (IS=1)
wim 32:59c4b8f648d4 390
wim 32:59c4b8f648d4 391
wim 32:59c4b8f648d4 392 if (_ctrl == ST7032_3V3) {
wim 36:9f5f86dfd44a 393 // _icon_power = 0x04; // Icon display off, Booster circuit is turned on (IS=1)
wim 36:9f5f86dfd44a 394 _icon_power = 0x0C; // Icon display on, Booster circuit is turned on (IS=1)
wim 32:59c4b8f648d4 395 // Saved to allow contrast change at later time
wim 32:59c4b8f648d4 396 }
wim 32:59c4b8f648d4 397 else {
wim 36:9f5f86dfd44a 398 // _icon_power = 0x00; // Icon display off, Booster circuit is turned off (IS=1)
wim 36:9f5f86dfd44a 399 _icon_power = 0x08; // Icon display on, Booster circuit is turned off (IS=1)
wim 32:59c4b8f648d4 400 // Saved to allow contrast change at later time
wim 32:59c4b8f648d4 401 }
wim 32:59c4b8f648d4 402 _writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Set Icon, Booster and Contrast High bits, 0 1 0 1 Ion Bon C5 C4 (IS=1)
wim 32:59c4b8f648d4 403 wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 404
wim 32:59c4b8f648d4 405 _writeCommand(0x68 | (LCD_ST7032_RAB & 0x07)); // Voltage follower, 0 1 1 0 FOn=1, Ampl ratio Rab2=1, Rab1=0, Rab0=0 (IS=1)
wim 32:59c4b8f648d4 406 wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 407
wim 32:59c4b8f648d4 408 _writeCommand(0x20 | _function); // Select Instruction Set = 0
wim 32:59c4b8f648d4 409
wim 32:59c4b8f648d4 410 break; // case ST7032_3V3 Controller
wim 32:59c4b8f648d4 411 // case ST7032_5V Controller
wim 32:59c4b8f648d4 412
wim 32:59c4b8f648d4 413 case ST7036_3V3:
wim 32:59c4b8f648d4 414 // ST7036 controller: Initialise Voltage booster for VLCD. VDD=3V3
wim 32:59c4b8f648d4 415 // Note: supports 1,2 (LCD_T_A) or 3 lines (LCD_T_G)
wim 32:59c4b8f648d4 416 case ST7036_5V:
wim 32:59c4b8f648d4 417 // ST7036 controller: Disable Voltage booster for VLCD. VDD=5V
wim 32:59c4b8f648d4 418 // Note: supports 1,2 (LCD_T_A) or 3 lines (LCD_T_G)
wim 32:59c4b8f648d4 419
wim 32:59c4b8f648d4 420 // Initialise Display configuration
wim 32:59c4b8f648d4 421 switch (_type) {
wim 32:59c4b8f648d4 422 case LCD8x1: //8x1 is a regular 1 line display
wim 32:59c4b8f648d4 423 case LCD8x2B: //8x2D is a special case of 16x1
wim 32:59c4b8f648d4 424 // case LCD12x1:
wim 32:59c4b8f648d4 425 case LCD16x1:
wim 32:59c4b8f648d4 426 case LCD24x1:
wim 32:59c4b8f648d4 427 _function = 0x00; // Set function, 0 0 1 DL=0 (4-bit Databus), N=0 (1 Line), DH=0 (5x7font), IS2, IS1 (Select Instruction Set)
wim 32:59c4b8f648d4 428 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 429 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 430
wim 32:59c4b8f648d4 431 _bias_lines = 0x04; // Bias: 1/5, 1 or 2-Lines LCD
wim 32:59c4b8f648d4 432 break;
wim 32:59c4b8f648d4 433
wim 32:59c4b8f648d4 434 // case LCD12x3G: // Special mode for ST7036
wim 32:59c4b8f648d4 435 case LCD16x3G: // Special mode for ST7036
wim 32:59c4b8f648d4 436 _function = 0x08; // Set function, 0 0 1 DL=0 (4-bit Databus), N=1 (2 Line), DH=0 (5x7font), IS2,IS1 (Select Instruction Set)
wim 32:59c4b8f648d4 437 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 438 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 439
wim 32:59c4b8f648d4 440 _bias_lines = 0x05; // Bias: 1/5, 3-Lines LCD
wim 32:59c4b8f648d4 441 break;
wim 32:59c4b8f648d4 442
wim 32:59c4b8f648d4 443 // case LCD12x3D1: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 444 // case LCD16x3D1: // Special mode for SSD1803
wim 30:033048611c01 445 case LCD12x4D: // Special mode for PCF2116
wim 30:033048611c01 446 case LCD24x4D: // Special mode for KS0078
wim 30:033048611c01 447 error("Error: LCD Controller type does not support this Display type\n\r");
wim 29:a3663151aa65 448 break;
wim 28:30fa94f7341c 449
wim 29:a3663151aa65 450 default:
wim 32:59c4b8f648d4 451 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 32:59c4b8f648d4 452 _function = 0x08; // Set function, 0 0 1 DL=0 (4-bit Databus), N=1 (2 Line), DH=0 (5x7font), IS2,IS1 (Select Instruction Set)
wim 32:59c4b8f648d4 453 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 454 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 455
wim 32:59c4b8f648d4 456 _bias_lines = 0x04; // Bias: 1/5, 1 or 2-Lines LCD
wim 32:59c4b8f648d4 457 break;
wim 32:59c4b8f648d4 458 } // switch type
wim 32:59c4b8f648d4 459
wim 29:a3663151aa65 460
wim 32:59c4b8f648d4 461 // init special features
wim 33:900a94bc7585 462 _writeCommand(0x20 | _function | 0x01); // Set function, IS2,IS1 = 01 (Select Instr Set = 1)
wim 32:59c4b8f648d4 463 _writeCommand(0x10 | _bias_lines); // Set Bias and 1,2 or 3 lines (Instr Set 1)
wim 29:a3663151aa65 464
wim 32:59c4b8f648d4 465 _contrast = LCD_ST7036_CONTRAST;
wim 32:59c4b8f648d4 466 _writeCommand(0x70 | (_contrast & 0x0F)); // Set Contrast, 0 1 1 1 C3 C2 C1 C0 (Instr Set 1)
wim 32:59c4b8f648d4 467
wim 32:59c4b8f648d4 468 if (_ctrl == ST7036_3V3) {
wim 36:9f5f86dfd44a 469 _icon_power = 0x0C; // Set Icon, Booster, Contrast High bits, 0 1 0 1 Ion=1 Bon=1 C5 C4 (Instr Set 1)
wim 36:9f5f86dfd44a 470 // _icon_power = 0x04; // Set Icon, Booster, Contrast High bits, 0 1 0 1 Ion=0 Bon=1 C5 C4 (Instr Set 1)
wim 32:59c4b8f648d4 471 // Saved to allow contrast change at later time
wim 32:59c4b8f648d4 472 }
wim 32:59c4b8f648d4 473 else {
wim 36:9f5f86dfd44a 474 _icon_power = 0x08; // Set Icon, Booster, Contrast High bits, 0 1 0 1 Ion=1 Bon=0 C5 C4 (Instr Set 1)
wim 36:9f5f86dfd44a 475 // _icon_power = 0x00; // Set Icon, Booster, Contrast High bits, 0 1 0 1 Ion=0 Bon=0 C5 C4 (Instr Set 1)
wim 32:59c4b8f648d4 476 }
wim 29:a3663151aa65 477
wim 32:59c4b8f648d4 478 _writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Set Contrast C5, C4 (Instr Set 1)
wim 32:59c4b8f648d4 479 wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 480
wim 32:59c4b8f648d4 481 _writeCommand(0x68 | (LCD_ST7036_RAB & 0x07)); // Voltagefollower On = 1, Ampl ratio Rab2, Rab1, Rab0 = 1 0 1 (Instr Set 1)
wim 32:59c4b8f648d4 482 wait_ms(10); // Wait 10ms to ensure powered up
wim 28:30fa94f7341c 483
wim 32:59c4b8f648d4 484 _writeCommand(0x20 | _function); // Set function, IS2,IS1 = 00 (Select Instruction Set = 0)
wim 32:59c4b8f648d4 485
wim 32:59c4b8f648d4 486 break; // case ST7036_3V3 Controller
wim 32:59c4b8f648d4 487 // case ST7036_5V Controller
wim 36:9f5f86dfd44a 488
wim 36:9f5f86dfd44a 489 case ST7070:
wim 36:9f5f86dfd44a 490 // Initialise Display configuration
wim 36:9f5f86dfd44a 491 switch (_type) {
wim 36:9f5f86dfd44a 492 case LCD8x1: //8x1 is a regular 1 line display
wim 36:9f5f86dfd44a 493 case LCD8x2B: //8x2D is a special case of 16x1
wim 36:9f5f86dfd44a 494 // case LCD12x1:
wim 36:9f5f86dfd44a 495 case LCD16x1:
wim 36:9f5f86dfd44a 496 case LCD24x1:
wim 36:9f5f86dfd44a 497 _function = dl | 0x00; // Set function, 0 0 1 DL=0 (4-bit Databus), N=0 (1 Line), EXT=0, x, x
wim 36:9f5f86dfd44a 498 // Note: 4 bit mode is NOT ignored for native SPI !
wim 36:9f5f86dfd44a 499 // Saved to allow switch between Instruction sets at later time
wim 36:9f5f86dfd44a 500 break;
wim 36:9f5f86dfd44a 501
wim 36:9f5f86dfd44a 502 // case LCD12x3D1: // Special mode for KS0078 and PCF21XX
wim 36:9f5f86dfd44a 503 // case LCD16x3D1: // Special mode for SSD1803
wim 36:9f5f86dfd44a 504 case LCD12x4D: // Special mode for PCF2116
wim 36:9f5f86dfd44a 505 case LCD24x4D: // Special mode for KS0078
wim 36:9f5f86dfd44a 506 // case LCD12x3G: // Special mode for ST7036
wim 36:9f5f86dfd44a 507 case LCD16x3G: // Special mode for ST7036
wim 36:9f5f86dfd44a 508 error("Error: LCD Controller type does not support this Display type\n\r");
wim 36:9f5f86dfd44a 509 break;
wim 36:9f5f86dfd44a 510
wim 36:9f5f86dfd44a 511 default:
wim 36:9f5f86dfd44a 512 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 36:9f5f86dfd44a 513 _function = dl | 0x08; // Set function, 0 0 1 DL, N=1 (2 Line), EXT=0, x, x
wim 36:9f5f86dfd44a 514 // Note: 4 bit mode is NOT ignored for native SPI !
wim 36:9f5f86dfd44a 515 // Saved to allow switch between Instruction sets at later time
wim 36:9f5f86dfd44a 516 break;
wim 36:9f5f86dfd44a 517 } // switch type
wim 36:9f5f86dfd44a 518
wim 36:9f5f86dfd44a 519 // _writeCommand(0x00); // NOP, make sure to sync SPI
wim 36:9f5f86dfd44a 520
wim 36:9f5f86dfd44a 521 // init special features
wim 36:9f5f86dfd44a 522 _writeCommand(0x20 | _function | 0x04); // Set function, 0 0 1 DL N EXT=1 x x (Select Instr Set = 1)
wim 36:9f5f86dfd44a 523
wim 36:9f5f86dfd44a 524 _writeCommand(0x04 | 0x00); // Set Bias resistors 0 0 0 0 0 1 Rb1,Rb0= 0 0 (Extern Res) (Instr Set 1)
wim 36:9f5f86dfd44a 525
wim 36:9f5f86dfd44a 526 _writeCommand(0x40 | 0x00); // COM/SEG directions 0 1 0 0 C1, C2, S1, S2 (Instr Set 1)
wim 36:9f5f86dfd44a 527 // C1=1: Com1-8 -> Com8-1; C2=1: Com9-16 -> Com16-9
wim 36:9f5f86dfd44a 528 // S1=1: Seg1-40 -> Seg40-1; S2=1: Seg41-80 -> Seg80-41
wim 36:9f5f86dfd44a 529
wim 36:9f5f86dfd44a 530 _writeCommand(0x20 | _function); // Set function, EXT=0 (Select Instr Set = 0)
wim 36:9f5f86dfd44a 531
wim 36:9f5f86dfd44a 532 break; // case ST7070 Controller
wim 36:9f5f86dfd44a 533
wim 32:59c4b8f648d4 534 case SSD1803_3V3:
wim 32:59c4b8f648d4 535 // SSD1803 controller: Initialise Voltage booster for VLCD. VDD=3V3
wim 32:59c4b8f648d4 536 // Note: supports 1,2, 3 or 4 lines
wim 32:59c4b8f648d4 537 // case SSD1803_5V:
wim 32:59c4b8f648d4 538 // SSD1803 controller: No Voltage booster for VLCD. VDD=5V
wim 32:59c4b8f648d4 539
wim 29:a3663151aa65 540 // Initialise Display configuration
wim 29:a3663151aa65 541 switch (_type) {
wim 29:a3663151aa65 542 case LCD8x1: //8x1 is a regular 1 line display
wim 30:033048611c01 543 case LCD8x2B: //8x2D is a special case of 16x1
wim 29:a3663151aa65 544 // case LCD12x1:
wim 29:a3663151aa65 545 case LCD16x1:
wim 29:a3663151aa65 546 case LCD24x1:
wim 32:59c4b8f648d4 547 _function = 0x00; // Set function 0 0 1 DL N DH RE(0) IS
wim 32:59c4b8f648d4 548 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 549 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 550 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 551 // N=0 1 Line / 3 Line
wim 32:59c4b8f648d4 552 // DH=0 Double Height disable
wim 32:59c4b8f648d4 553 // IS=0
wim 32:59c4b8f648d4 554
wim 33:900a94bc7585 555 _function_1 = 0x02; // Set function, 0 0 1 DL N BE RE(1) REV
wim 32:59c4b8f648d4 556 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 557 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 558 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 559 // N=0 1 Line / 3 Line
wim 32:59c4b8f648d4 560 // BE=0 Blink Enable off, special feature of SSD1803
wim 32:59c4b8f648d4 561 // REV=0 Reverse off, special feature of SSD1803
wim 32:59c4b8f648d4 562
wim 32:59c4b8f648d4 563 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
wim 32:59c4b8f648d4 564 // NW=0 1-Line LCD (N=0)
wim 29:a3663151aa65 565 break;
wim 32:59c4b8f648d4 566
wim 33:900a94bc7585 567 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 568 // case LCD12x3D1: // Special mode for KS0078 and PCF21XX
wim 33:900a94bc7585 569 case LCD16x3D: // Special mode for KS0078
wim 32:59c4b8f648d4 570 // case LCD16x3D1: // Special mode for SSD1803
wim 32:59c4b8f648d4 571 // case LCD20x3D: // Special mode for SSD1803
wim 32:59c4b8f648d4 572 _function = 0x00; // Set function 0 0 1 DL N DH RE(0) IS
wim 32:59c4b8f648d4 573 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 574 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 575 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 576 // N=0 1 Line / 3 Line
wim 32:59c4b8f648d4 577 // DH=0 Double Height disable
wim 32:59c4b8f648d4 578 // IS=0
wim 32:59c4b8f648d4 579
wim 33:900a94bc7585 580 _function_1 = 0x02; // Set function, 0 0 1 DL N BE RE(1) REV
wim 32:59c4b8f648d4 581 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 582 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 583 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 584 // N=0 1 Line / 3 Line
wim 32:59c4b8f648d4 585 // BE=0 Blink Enable off, special feature of SSD1803
wim 32:59c4b8f648d4 586 // REV=0 Reverse off, special feature of SSD1803
wim 32:59c4b8f648d4 587
wim 32:59c4b8f648d4 588 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
wim 32:59c4b8f648d4 589 // NW=1 3-Line LCD (N=0)
wim 29:a3663151aa65 590 break;
wim 30:033048611c01 591
wim 32:59c4b8f648d4 592 case LCD20x4D: // Special mode for SSD1803
wim 32:59c4b8f648d4 593 _function = 0x08; // Set function 0 0 1 DL N DH RE(0) IS
wim 32:59c4b8f648d4 594 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 595 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 596 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 597 // N=1 4 Line
wim 32:59c4b8f648d4 598 // DH=0 Double Height disable
wim 32:59c4b8f648d4 599 // IS=0
wim 32:59c4b8f648d4 600
wim 33:900a94bc7585 601 _function_1 = 0x0A; // Set function, 0 0 1 DL N BE RE(1) REV
wim 32:59c4b8f648d4 602 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 603 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 604 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 605 // N=1 4 Line
wim 32:59c4b8f648d4 606 // BE=0 Blink Enable off, special feature of SSD1803
wim 32:59c4b8f648d4 607 // REV=0 Reverse off, special feature of SSD1803
wim 32:59c4b8f648d4 608
wim 32:59c4b8f648d4 609 _lines = 0x01; // Ext function set 0 0 0 0 1 FW BW NW
wim 32:59c4b8f648d4 610 // NW=1 4-Line LCD (N=1)
wim 32:59c4b8f648d4 611 break;
wim 32:59c4b8f648d4 612
wim 33:900a94bc7585 613 case LCD16x3G: // Special mode for ST7036
wim 32:59c4b8f648d4 614 case LCD24x4D: // Special mode for KS0078
wim 30:033048611c01 615 error("Error: LCD Controller type does not support this Display type\n\r");
wim 30:033048611c01 616 break;
wim 30:033048611c01 617
wim 29:a3663151aa65 618 default:
wim 30:033048611c01 619 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 32:59c4b8f648d4 620 _function = 0x08; // Set function 0 0 1 DL N DH RE(0) IS
wim 32:59c4b8f648d4 621 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 622 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 623 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 624 // N=1 2 line / 4 Line
wim 32:59c4b8f648d4 625 // DH=0 Double Height disable
wim 36:9f5f86dfd44a 626 // RE=0
wim 32:59c4b8f648d4 627 // IS=0
wim 29:a3663151aa65 628
wim 33:900a94bc7585 629 _function_1 = 0x0A; // Set function, 0 0 1 DL N BE RE(1) REV
wim 32:59c4b8f648d4 630 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 631 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 632 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 633 // N=1 2 line / 4 Line
wim 32:59c4b8f648d4 634 // BE=0 Blink Enable off, special feature of SSD1803
wim 36:9f5f86dfd44a 635 // RE=1
wim 32:59c4b8f648d4 636 // REV=0 Reverse off, special feature of SSD1803
wim 32:59c4b8f648d4 637
wim 32:59c4b8f648d4 638 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
wim 32:59c4b8f648d4 639 // NW=0 2-Line LCD (N=1)
wim 32:59c4b8f648d4 640 break;
wim 32:59c4b8f648d4 641 } // switch type
wim 32:59c4b8f648d4 642
wim 32:59c4b8f648d4 643
wim 32:59c4b8f648d4 644 // init special features
wim 33:900a94bc7585 645 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N BE RE(1) REV
wim 32:59c4b8f648d4 646 // Select Extended Instruction Set
wim 33:900a94bc7585 647
wim 33:900a94bc7585 648 _writeCommand(0x06); // Set ext entry mode, 0 0 0 0 0 1 BDC=1 COM1-32, BDS=0 SEG100-1 "Bottom View" (Ext Instr Set)
wim 33:900a94bc7585 649 // _writeCommand(0x05); // Set ext entry mode, 0 0 0 0 0 1 BDC=0 COM32-1, BDS=1 SEG1-100 "Top View" (Ext Instr Set)
wim 33:900a94bc7585 650 wait_ms(5); // Wait to ensure completion or SSD1803 fails to set Top/Bottom after reset..
wim 33:900a94bc7585 651
wim 33:900a94bc7585 652 _writeCommand(0x08 | _lines); // Set ext function 0 0 0 0 1 FW BW NW 1,2,3 or 4 lines (Ext Instr Set)
wim 32:59c4b8f648d4 653
wim 32:59c4b8f648d4 654 _writeCommand(0x10); // Double Height and Bias, 0 0 0 1 UD2=0, UD1=0, BS1=0 Bias 1/5, DH=0 (Ext Instr Set)
wim 32:59c4b8f648d4 655
wim 32:59c4b8f648d4 656 // _writeCommand(0x76); // Set TC Control, 0 1 1 1 0 1 1 0 (Ext Instr Set)
wim 32:59c4b8f648d4 657 // _writeData(0x02); // Set TC data, 0 0 0 0 0 TC2,TC1,TC0 = 0 1 0 (Ext Instr Set)
wim 32:59c4b8f648d4 658
wim 32:59c4b8f648d4 659 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N DH RE(0) IS=1 Select Instruction Set 1
wim 32:59c4b8f648d4 660 // Select Std Instr set, Select IS=1
wim 32:59c4b8f648d4 661
wim 32:59c4b8f648d4 662 _contrast = LCD_SSD1_CONTRAST;
wim 32:59c4b8f648d4 663 _writeCommand(0x70 | (_contrast & 0x0F)); // Set Contrast 0 1 1 1 C3, C2, C1, C0 (Instr Set 1)
wim 32:59c4b8f648d4 664
wim 36:9f5f86dfd44a 665 // _icon_power = 0x04; // Icon off, Booster on (Instr Set 1)
wim 36:9f5f86dfd44a 666 _icon_power = 0x0C; // Icon on, Booster on (Instr Set 1)
wim 32:59c4b8f648d4 667 // Saved to allow contrast change at later time
wim 32:59c4b8f648d4 668 _writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Set Power, Icon and Contrast, 0 1 0 1 Ion Bon C5 C4 (Instr Set 1)
wim 32:59c4b8f648d4 669 wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 670
wim 32:59c4b8f648d4 671 _writeCommand(0x68 | (LCD_SSD1_RAB & 0x07)); // Set Voltagefollower 0 1 1 0 Don = 1, Ampl ratio Rab2, Rab1, Rab0 = 1 1 0 (Instr Set 1)
wim 32:59c4b8f648d4 672 wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 673
wim 33:900a94bc7585 674 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N BE RE(1) REV
wim 32:59c4b8f648d4 675 // Select Extended Instruction Set 1
wim 32:59c4b8f648d4 676 _writeCommand(0x10); // Shift/Scroll enable, 0 0 0 1 DS4/HS4 DS3/HS3 DS2/HS2 DS1/HS1 (Ext Instr Set 1)
wim 32:59c4b8f648d4 677
wim 32:59c4b8f648d4 678
wim 32:59c4b8f648d4 679 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 32:59c4b8f648d4 680 // Select Std Instr set, Select IS=0
wim 32:59c4b8f648d4 681
wim 32:59c4b8f648d4 682 break; // case SSD1803 Controller
wim 32:59c4b8f648d4 683
wim 29:a3663151aa65 684
wim 32:59c4b8f648d4 685 // Note1: The PCF21XX family of controllers has several types that dont have an onboard voltage generator for V-LCD.
wim 32:59c4b8f648d4 686 // You must supply this LCD voltage externally and not try to enable VGen.
wim 32:59c4b8f648d4 687 // Note2: The early versions of PCF2116 controllers (eg PCF2116C) can not generate sufficiently negative voltage for the LCD at a VDD of 3V3.
wim 32:59c4b8f648d4 688 // You must supply this voltage externally and not enable VGen or you must use a higher VDD (e.g. 5V) and enable VGen.
wim 32:59c4b8f648d4 689 // More recent versions of the controller (eg PCF2116K) have an improved VGen that will work with 3V3.
wim 32:59c4b8f648d4 690 // Note3: See datasheet, PCF2116 and other types provide a V0 pin to control the LCD contrast voltage that is provided by VGen. This pins allows
wim 32:59c4b8f648d4 691 // contrast control similar to that of pin 3 on the standard 14pin LCD module connector.
wim 32:59c4b8f648d4 692 // You can disable VGen by connecting Vo to VDD. VLCD will then be used directly as LCD voltage.
wim 32:59c4b8f648d4 693 // Note4: PCF2113 and PCF2119 are different wrt to VLCD generator! There is no V0 pin. The contrast voltage is software controlled by setting the VA and VB registers.
wim 32:59c4b8f648d4 694 // Vgen is automatically switched off when the contrast voltage VA or VB is set to 0x00. Note that certain limits apply to allowed values for VA and VB.
wim 32:59c4b8f648d4 695 // Note5: See datasheet, members of the PCF21XX family support different numbers of rows/columns. Not all can support 3 or 4 rows.
wim 32:59c4b8f648d4 696 // Note6: See datasheet, the PCF21XX-C and PCF21XX-K use a non-standard character set. This may result is strange looking text when not corrected..
wim 32:59c4b8f648d4 697
wim 34:e5a0dcb43ecc 698 case PCF2103_3V3:
wim 34:e5a0dcb43ecc 699 // PCF2103 controller: No Voltage generator for VLCD, VDD=3V3..5V, VLCD input controls contrast voltage.
wim 34:e5a0dcb43ecc 700 // Initialise Display configuration
wim 34:e5a0dcb43ecc 701 switch (_type) {
wim 34:e5a0dcb43ecc 702 case LCD24x1:
wim 34:e5a0dcb43ecc 703 _function = 0x00; //FUNCTION SET 0 0 1 DL=0 4-bit, 0, M=0 1-line/24 chars display mode, 0, H=0
wim 34:e5a0dcb43ecc 704 //Note: 4 bit mode is ignored for I2C mode
wim 34:e5a0dcb43ecc 705 break;
wim 34:e5a0dcb43ecc 706
wim 34:e5a0dcb43ecc 707 // case LCD12x1D: //Special mode for PCF21XX, Only top line used
wim 34:e5a0dcb43ecc 708 case LCD12x2:
wim 34:e5a0dcb43ecc 709 _function = 0x04; //FUNCTION SET 0 0 1 DL=0 4-bit, 0, M=1 2-line/12 chars display mode, 0, H=0
wim 34:e5a0dcb43ecc 710 //Note: 4 bit mode is ignored for I2C mode
wim 34:e5a0dcb43ecc 711 break;
wim 34:e5a0dcb43ecc 712
wim 34:e5a0dcb43ecc 713 default:
wim 34:e5a0dcb43ecc 714 error("Error: LCD Controller type does not support this Display type\n\r");
wim 34:e5a0dcb43ecc 715 break;
wim 34:e5a0dcb43ecc 716
wim 34:e5a0dcb43ecc 717 } // switch type
wim 34:e5a0dcb43ecc 718
wim 34:e5a0dcb43ecc 719 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 34:e5a0dcb43ecc 720 wait_ms(10); // Wait 10ms to ensure powered up
wim 34:e5a0dcb43ecc 721
wim 34:e5a0dcb43ecc 722 // Note: Display from GA628 shows 12 chars. This is actually the right half of a 24x1 display. The commons have been connected in reverse order.
wim 34:e5a0dcb43ecc 723 _writeCommand(0x05); // Display Conf Set 0000 0, 1, P=0, Q=1 (Instr. Set 1)
wim 34:e5a0dcb43ecc 724
wim 34:e5a0dcb43ecc 725 _writeCommand(0x02); // Screen Config 0000 001, L=0 (Instr. Set 1)
wim 34:e5a0dcb43ecc 726 _writeCommand(0x08); // ICON Conf 0000 1, IM=0 (Char mode), IB=0 (no Icon blink), 0 (Instr. Set 1)
wim 34:e5a0dcb43ecc 727
wim 34:e5a0dcb43ecc 728 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 34:e5a0dcb43ecc 729
wim 36:9f5f86dfd44a 730 #if(0)
wim 34:e5a0dcb43ecc 731 // Select CG RAM
wim 34:e5a0dcb43ecc 732 _writeCommand(0x40); //Set CG-RAM address, 8 sequential locations needed per UDC
wim 34:e5a0dcb43ecc 733 // Store UDC/Icon pattern:
wim 34:e5a0dcb43ecc 734 // 3 x 8 rows x 5 bits = 120 bits for Normal pattern (UDC 0..2) and
wim 34:e5a0dcb43ecc 735 // 3 x 8 rows x 5 bits = 120 bits for Blink pattern (UDC 4..6)
wim 34:e5a0dcb43ecc 736 for (int i=0; i<(8 * 8); i++) {
wim 34:e5a0dcb43ecc 737 // _writeData(0x1F); // All On
wim 34:e5a0dcb43ecc 738 _writeData(0x00); // All Off
wim 34:e5a0dcb43ecc 739 }
wim 36:9f5f86dfd44a 740 #endif
wim 34:e5a0dcb43ecc 741 break; // case PCF2103_3V3 Controller
wim 34:e5a0dcb43ecc 742
wim 30:033048611c01 743 case PCF2113_3V3:
wim 32:59c4b8f648d4 744 // PCF2113 controller: Initialise Voltage booster for VLCD. VDD=3V3. VA and VB control contrast.
wim 29:a3663151aa65 745 // Initialise Display configuration
wim 29:a3663151aa65 746 switch (_type) {
wim 29:a3663151aa65 747 // case LCD12x1:
wim 33:900a94bc7585 748 // _function = 0x02; // FUNCTION SET 0 0 1 DL=0 4 bit, 0, M=0 1-line/12 chars display mode, SL=1, IS=0
wim 32:59c4b8f648d4 749 // Note: 4 bit mode is ignored for I2C mode
wim 29:a3663151aa65 750 case LCD24x1:
wim 33:900a94bc7585 751 _function = 0x00; // FUNCTION SET 0 0 1 DL=0 4 bit, 0, M=0 1-line/24 chars display mode, SL=0, IS=0
wim 32:59c4b8f648d4 752 // Note: 4 bit mode is ignored for I2C mode
wim 30:033048611c01 753 break;
wim 30:033048611c01 754
wim 30:033048611c01 755 case LCD12x2:
wim 33:900a94bc7585 756 _function = 0x04; // FUNCTION SET 0 0 1 DL=0 4 bit, 0, M=1 2-line/12 chars display mode, SL=0, IS=0
wim 30:033048611c01 757 break;
wim 30:033048611c01 758
wim 30:033048611c01 759 default:
wim 30:033048611c01 760 error("Error: LCD Controller type does not support this Display type\n\r");
wim 30:033048611c01 761 break;
wim 30:033048611c01 762
wim 30:033048611c01 763 } // switch type
wim 30:033048611c01 764
wim 32:59c4b8f648d4 765 // Init special features
wim 33:900a94bc7585 766 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 33:900a94bc7585 767
wim 33:900a94bc7585 768 _writeCommand(0x04); // Display Conf Set 0000 0, 1, P=0, Q=0 (Instr. Set 1)
wim 33:900a94bc7585 769 _writeCommand(0x10); // Temp Compensation Set 0001 0, 0, TC1=0, TC2=0 (Instr. Set 1)
wim 33:900a94bc7585 770 // _writeCommand(0x42); // HV GEN 0100 S1=1, S2=0 (2x multiplier) (Instr. Set 1)
wim 33:900a94bc7585 771 _writeCommand(0x40 | (LCD_PCF2_S12 & 0x03)); // HV Gen 0100 S1=1, S2=0 (2x multiplier) (Instr. Set 1)
wim 32:59c4b8f648d4 772
wim 32:59c4b8f648d4 773 _contrast = LCD_PCF2_CONTRAST;
wim 33:900a94bc7585 774 _writeCommand(0x80 | 0x00 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) 1, V=0, VA=contrast
wim 33:900a94bc7585 775 _writeCommand(0x80 | 0x40 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) 1, V=1, VB=contrast
wim 32:59c4b8f648d4 776 wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 777
wim 33:900a94bc7585 778 _writeCommand(0x02); // Screen Config 0000 001, L=0 (Instr. Set 1)
wim 33:900a94bc7585 779 _writeCommand(0x08); // ICON Conf 0000 1, IM=0 (Char mode), IB=0 (no icon blink) DM=0 (no direct mode) (Instr. Set 1)
wim 33:900a94bc7585 780
wim 33:900a94bc7585 781 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 32:59c4b8f648d4 782
wim 30:033048611c01 783 break; // case PCF2113_3V3 Controller
wim 30:033048611c01 784
wim 30:033048611c01 785
wim 32:59c4b8f648d4 786 // case PCF2113_5V:
wim 32:59c4b8f648d4 787 // PCF2113 controller: No Voltage generator for VLCD. VDD=5V. Contrast voltage controlled by VA or VB.
wim 32:59c4b8f648d4 788 //@TODO
wim 32:59c4b8f648d4 789
wim 30:033048611c01 790
wim 30:033048611c01 791 case PCF2116_3V3:
wim 32:59c4b8f648d4 792 // PCF2116 controller: Voltage generator for VLCD. VDD=5V. V0 controls contrast voltage.
wim 30:033048611c01 793 // Initialise Display configuration
wim 30:033048611c01 794 switch (_type) {
wim 30:033048611c01 795 // case LCD12x1:
wim 30:033048611c01 796 // case LCD12x2:
wim 30:033048611c01 797 case LCD24x1:
wim 34:e5a0dcb43ecc 798 _writeCommand(0x22); //FUNCTION SET 0 0 1 DL=0 4-bit, N=0/M=0 1-line/24 chars display mode, G=1 Vgen on, 0
wim 29:a3663151aa65 799 //Note: 4 bit mode is ignored for I2C mode
wim 29:a3663151aa65 800 wait_ms(10); // Wait 10ms to ensure powered up
wim 29:a3663151aa65 801 break;
wim 29:a3663151aa65 802
wim 32:59c4b8f648d4 803 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 804 case LCD12x3D1: // Special mode for PCF21XX
wim 32:59c4b8f648d4 805 case LCD12x4D: // Special mode for PCF21XX:
wim 34:e5a0dcb43ecc 806 _writeCommand(0x2E); //FUNCTION SET 0 0 1 DL=0 4-bit, N=1/M=1 4-line/12 chars display mode, G=1 VGen on, 0
wim 29:a3663151aa65 807 //Note: 4 bit mode is ignored for I2C mode
wim 29:a3663151aa65 808 wait_ms(10); // Wait 10ms to ensure powered up
wim 29:a3663151aa65 809 break;
wim 30:033048611c01 810
wim 30:033048611c01 811 case LCD24x2:
wim 34:e5a0dcb43ecc 812 _writeCommand(0x2A); //FUNCTION SET 0 0 1 DL=0 4-bit, N=1/M=0 2-line/24 chars display mode, G=1 VGen on, 0
wim 29:a3663151aa65 813 //Note: 4 bit mode is ignored for I2C mode
wim 30:033048611c01 814 wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 815 break;
wim 32:59c4b8f648d4 816
wim 30:033048611c01 817 default:
wim 30:033048611c01 818 error("Error: LCD Controller type does not support this Display type\n\r");
wim 30:033048611c01 819 break;
wim 30:033048611c01 820
wim 29:a3663151aa65 821 } // switch type
wim 29:a3663151aa65 822
wim 30:033048611c01 823 break; // case PCF2116_3V3 Controller
wim 29:a3663151aa65 824
wim 32:59c4b8f648d4 825
wim 32:59c4b8f648d4 826 //Experimental for cellphone 3-line display, SA=0x74, No Ack supported, Character set C or K, DL = 8 bit, N=0,M=1 (reserved mode !!), external VLCD -2V5
wim 32:59c4b8f648d4 827 //@TODO
wim 32:59c4b8f648d4 828 case PCF2116_5V:
wim 32:59c4b8f648d4 829 // PCF2116 controller: No Voltage generator for VLCD. VDD=5V. V0 controls contrast voltage.
wim 32:59c4b8f648d4 830 // Initialise Display configuration
wim 32:59c4b8f648d4 831 switch (_type) {
wim 32:59c4b8f648d4 832 // case LCD12x1:
wim 32:59c4b8f648d4 833 // case LCD12x2:
wim 32:59c4b8f648d4 834 // case LCD24x1:
wim 34:e5a0dcb43ecc 835 // _writeCommand(0x20); //FUNCTION SET 0 0 1 DL=0 4-bit, N=0/M=0 1-line/24 chars display mode, G=0 no Vgen, 0
wim 32:59c4b8f648d4 836 //Note: 4 bit mode is ignored for I2C mode
wim 32:59c4b8f648d4 837 // wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 838 // break;
wim 32:59c4b8f648d4 839
wim 32:59c4b8f648d4 840 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 841 case LCD12x3D1: // Special mode for PCF21XX
wim 32:59c4b8f648d4 842 case LCD12x4D: // Special mode for PCF21XX:
wim 32:59c4b8f648d4 843 // _writeCommand(0x34); //FUNCTION SET 8 bit, N=0/M=1 4-line/12 chars display mode OK
wim 32:59c4b8f648d4 844 // _writeCommand(0x24); //FUNCTION SET 4 bit, N=0/M=1 4-line/12 chars display mode OK
wim 34:e5a0dcb43ecc 845 _writeCommand(0x2C); //FUNCTION SET 0 0 1 DL=0 4-bit, N=1/M=1 4-line/12 chars display mode, G=0 no Vgen, 0 OK
wim 32:59c4b8f648d4 846 //Note: 4 bit mode is ignored for I2C mode
wim 32:59c4b8f648d4 847 wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 848 break;
wim 32:59c4b8f648d4 849
wim 32:59c4b8f648d4 850 // case LCD24x2:
wim 32:59c4b8f648d4 851 // _writeCommand(0x28); //FUNCTION SET 4 bit, N=1/M=0 2-line/24 chars display mode
wim 32:59c4b8f648d4 852 //Note: 4 bit mode is ignored for I2C mode
wim 32:59c4b8f648d4 853 // wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 854 // break;
wim 32:59c4b8f648d4 855
wim 32:59c4b8f648d4 856 default:
wim 32:59c4b8f648d4 857 error("Error: LCD Controller type does not support this Display type\n\r");
wim 32:59c4b8f648d4 858 break;
wim 32:59c4b8f648d4 859
wim 32:59c4b8f648d4 860 } // switch type
wim 32:59c4b8f648d4 861
wim 32:59c4b8f648d4 862 break; // case PCF2116_5V Controller
wim 32:59c4b8f648d4 863
wim 32:59c4b8f648d4 864 case PCF2119_3V3:
wim 32:59c4b8f648d4 865 // PCF2119 controller: Initialise Voltage booster for VLCD. VDD=3V3. VA and VB control contrast.
wim 32:59c4b8f648d4 866 // Note1: See datasheet, the PCF2119 supports icons and provides separate constrast control for Icons and characters.
wim 32:59c4b8f648d4 867 // Note2: Vgen is switched off when the contrast voltage VA or VB is set to 0x00.
wim 32:59c4b8f648d4 868
wim 32:59c4b8f648d4 869 //POR or Hardware Reset should be applied
wim 32:59c4b8f648d4 870 wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 871
wim 32:59c4b8f648d4 872 // Initialise Display configuration
wim 32:59c4b8f648d4 873 switch (_type) {
wim 32:59c4b8f648d4 874 case LCD8x1:
wim 32:59c4b8f648d4 875 // case LCD12x1:
wim 32:59c4b8f648d4 876 case LCD16x1:
wim 34:e5a0dcb43ecc 877 _function = 0x02; // FUNCTION SET 0 0 1 DL=0 4-bit, 0 , M=0 1-line/16 chars display mode, SL=1
wim 32:59c4b8f648d4 878 // Note: 4 bit mode is ignored for I2C mode
wim 32:59c4b8f648d4 879 break;
wim 32:59c4b8f648d4 880
wim 32:59c4b8f648d4 881 case LCD24x1:
wim 32:59c4b8f648d4 882 // case LCD32x1:
wim 34:e5a0dcb43ecc 883 _function = 0x00; // FUNCTION SET 0 0 1 DL=0 4-bit, 0 , M=0 1-line/32 chars display mode, SL=0
wim 32:59c4b8f648d4 884 // Note: 4 bit mode is ignored for I2C mode
wim 32:59c4b8f648d4 885 break;
wim 32:59c4b8f648d4 886
wim 32:59c4b8f648d4 887 case LCD8x2:
wim 32:59c4b8f648d4 888 // case LCD12x2:
wim 32:59c4b8f648d4 889 case LCD16x2:
wim 34:e5a0dcb43ecc 890 _function = 0x04; // FUNCTION SET 0 0 1 DL=0 4-bit, 0, M=1 2-line/16 chars display mode, SL=0
wim 32:59c4b8f648d4 891 // Note: 4 bit mode is ignored for I2C mode
wim 32:59c4b8f648d4 892 break;
wim 32:59c4b8f648d4 893
wim 32:59c4b8f648d4 894 default:
wim 32:59c4b8f648d4 895 error("Error: LCD Controller type does not support this Display type\n\r");
wim 32:59c4b8f648d4 896 break;
wim 32:59c4b8f648d4 897
wim 32:59c4b8f648d4 898 } // switch type
wim 32:59c4b8f648d4 899
wim 32:59c4b8f648d4 900 // Init special features
wim 32:59c4b8f648d4 901 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instruction Set = 1
wim 32:59c4b8f648d4 902
wim 32:59c4b8f648d4 903 _writeCommand(0x04); // DISP CONF SET (Instr. Set 1) 0000, 0, 1, P=0, Q=0
wim 32:59c4b8f648d4 904 _writeCommand(0x10); // TEMP CTRL SET (Instr. Set 1) 0001, 0, 0, TC1=0, TC2=0
wim 32:59c4b8f648d4 905 // _writeCommand(0x42); // HV GEN (Instr. Set 1) 0100, 0, 0, S1=1, S2=0 (2x multiplier)
wim 32:59c4b8f648d4 906 _writeCommand(0x40 | (LCD_PCF2_S12 & 0x03)); // HV GEN (Instr. Set 1) 0100, 0, 0, S1=1, S2=0 (2x multiplier)
wim 32:59c4b8f648d4 907
wim 32:59c4b8f648d4 908 _contrast = LCD_PCF2_CONTRAST;
wim 32:59c4b8f648d4 909 _writeCommand(0x80 | 0x00 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=0, VA=contrast
wim 32:59c4b8f648d4 910 _writeCommand(0x80 | 0x40 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=1, VB=contrast
wim 32:59c4b8f648d4 911 wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 912
wim 32:59c4b8f648d4 913 _writeCommand(0x02); // SCRN CONF (Instr. Set 1) L=0
wim 32:59c4b8f648d4 914 _writeCommand(0x08); // ICON CONF (Instr. Set 1) IM=0 (Char mode) IB=0 (no icon blink) DM=0 (no direct mode)
wim 32:59c4b8f648d4 915
wim 32:59c4b8f648d4 916 _writeCommand(0x20 | _function); // Select Instruction Set = 0
wim 32:59c4b8f648d4 917
wim 32:59c4b8f648d4 918 break; // case PCF2119_3V3 Controller
wim 32:59c4b8f648d4 919
wim 32:59c4b8f648d4 920 // case PCF2119_5V:
wim 32:59c4b8f648d4 921 // PCF2119 controller: No Voltage booster for VLCD. VDD=3V3. VA and VB control contrast.
wim 32:59c4b8f648d4 922 // Note1: See datasheet, the PCF2119 supports icons and provides separate constrast control for Icons and characters.
wim 32:59c4b8f648d4 923 // Note2: Vgen is switched off when the contrast voltage VA or VB is set to 0x00.
wim 30:033048611c01 924 //@TODO
wim 29:a3663151aa65 925
wim 19:c747b9e2e7b8 926 case WS0010:
wim 19:c747b9e2e7b8 927 // WS0010 OLED controller: Initialise DC/DC Voltage converter for LEDs
wim 30:033048611c01 928 // Note1: Identical to RS0010
wim 30:033048611c01 929 // Note2: supports 1 or 2 lines (and 16x100 graphics)
wim 30:033048611c01 930 // supports 4 fonts (English/Japanese (default), Western European-I, English/Russian, Western European-II)
wim 19:c747b9e2e7b8 931 // Cursor/Disp shift set 0001 SC RL 0 0
wim 19:c747b9e2e7b8 932 //
wim 30:033048611c01 933 // Mode and Power set 0001 GC PWR 1 1
wim 19:c747b9e2e7b8 934 // GC = 0 (Graph Mode=1, Char Mode=0)
wim 30:033048611c01 935 // PWR = 1 (DC/DC On/Off)
wim 30:033048611c01 936
wim 30:033048611c01 937 //@Todo: This may be needed to enable a warm reboot
wim 32:59c4b8f648d4 938 //_writeCommand(0x13); // Char mode, DC/DC off
wim 30:033048611c01 939 //wait_ms(10); // Wait 10ms to ensure powered down
wim 32:59c4b8f648d4 940 _writeCommand(0x17); // Char mode, DC/DC on
wim 30:033048611c01 941 wait_ms(10); // Wait 10ms to ensure powered up
wim 29:a3663151aa65 942
wim 29:a3663151aa65 943 // Initialise Display configuration
wim 29:a3663151aa65 944 switch (_type) {
wim 29:a3663151aa65 945 case LCD8x1: //8x1 is a regular 1 line display
wim 29:a3663151aa65 946 case LCD8x2B: //8x2B is a special case of 16x1
wim 29:a3663151aa65 947 // case LCD12x1:
wim 29:a3663151aa65 948 case LCD16x1:
wim 30:033048611c01 949 case LCD24x1:
wim 30:033048611c01 950 _writeCommand(0x20); // Function set 001 DL N F FT1 FT0
wim 30:033048611c01 951 // DL=0 (4 bits bus)
wim 30:033048611c01 952 // N=0 (1 line)
wim 30:033048611c01 953 // F=0 (5x7 dots font)
wim 30:033048611c01 954 // FT=00 (00 = Engl/Jap, 01 = WestEur1, 10 = Engl/Russian, 11 = WestEur2
wim 30:033048611c01 955 break;
wim 30:033048611c01 956
wim 32:59c4b8f648d4 957 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 958 case LCD12x3D1: // Special mode for PCF21XX
wim 32:59c4b8f648d4 959 case LCD12x4D: // Special mode for PCF21XX:
wim 33:900a94bc7585 960 case LCD16x3G: // Special mode for ST7036
wim 30:033048611c01 961 case LCD24x4D: // Special mode for KS0078
wim 30:033048611c01 962 error("Error: LCD Controller type does not support this Display type\n\r");
wim 29:a3663151aa65 963 break;
wim 29:a3663151aa65 964
wim 29:a3663151aa65 965 default:
wim 30:033048611c01 966 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 30:033048611c01 967 _writeCommand(0x28); // Function set 001 DL N F FT1 FT0
wim 30:033048611c01 968 // DL=0 (4 bits bus)
wim 30:033048611c01 969 // N=1 (2 lines)
wim 30:033048611c01 970 // F=0 (5x7 dots font)
wim 30:033048611c01 971 // FT=00 (00 = Engl/Jap, 01 = WestEur1, 10 = Engl/Russian, 11 = WestEur2
wim 30:033048611c01 972
wim 29:a3663151aa65 973 break;
wim 29:a3663151aa65 974 } // switch type
wim 29:a3663151aa65 975
wim 32:59c4b8f648d4 976 break; // case WS0010 Controller
wim 33:900a94bc7585 977
wim 33:900a94bc7585 978
wim 33:900a94bc7585 979 case US2066_3V3:
wim 33:900a94bc7585 980 // US2066/SSD1311 OLED controller, Initialise for VDD=3V3
wim 33:900a94bc7585 981 // Note: supports 1,2, 3 or 4 lines
wim 33:900a94bc7585 982 // case USS2066_5V:
wim 33:900a94bc7585 983 // US2066 controller, VDD=5V
wim 33:900a94bc7585 984
wim 33:900a94bc7585 985 // Initialise Display configuration
wim 33:900a94bc7585 986 switch (_type) {
wim 33:900a94bc7585 987 case LCD8x1: //8x1 is a regular 1 line display
wim 33:900a94bc7585 988 case LCD8x2B: //8x2D is a special case of 16x1
wim 33:900a94bc7585 989 // case LCD12x1:
wim 33:900a94bc7585 990 case LCD16x1:
wim 33:900a94bc7585 991 // case LCD20x1:
wim 33:900a94bc7585 992 _function = 0x00; // Set function 0 0 1 X N DH RE(0) IS
wim 33:900a94bc7585 993 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 994 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 995 // N=0 1 Line / 3 Line
wim 33:900a94bc7585 996 // DH=0 Double Height disable
wim 33:900a94bc7585 997 // IS=0
wim 33:900a94bc7585 998
wim 33:900a94bc7585 999 _function_1 = 0x02; // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 1000 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1001 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1002 // N=0 1 Line / 3 Line
wim 33:900a94bc7585 1003 // BE=0 Blink Enable off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1004 // REV=0 Reverse off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1005
wim 33:900a94bc7585 1006 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
wim 33:900a94bc7585 1007 // NW=0 1-Line LCD (N=0)
wim 33:900a94bc7585 1008 break;
wim 33:900a94bc7585 1009
wim 33:900a94bc7585 1010 case LCD16x1C:
wim 33:900a94bc7585 1011 case LCD8x2:
wim 33:900a94bc7585 1012 case LCD16x2:
wim 33:900a94bc7585 1013 case LCD20x2:
wim 33:900a94bc7585 1014 _function = 0x08; // Set function 0 0 1 X N DH RE(0) IS
wim 33:900a94bc7585 1015 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1016 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1017 // N=1 2 line / 4 Line
wim 33:900a94bc7585 1018 // DH=0 Double Height disable
wim 33:900a94bc7585 1019 // IS=0
wim 33:900a94bc7585 1020
wim 33:900a94bc7585 1021 _function_1 = 0x0A; // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 1022 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1023 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1024 // N=1 2 line / 4 Line
wim 33:900a94bc7585 1025 // BE=0 Blink Enable off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1026 // REV=0 Reverse off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1027
wim 33:900a94bc7585 1028 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
wim 33:900a94bc7585 1029 // NW=0 2-Line LCD (N=1)
wim 33:900a94bc7585 1030 break;
wim 33:900a94bc7585 1031
wim 33:900a94bc7585 1032 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 33:900a94bc7585 1033 // case LCD12x3D1: // Special mode for KS0078 and PCF21XX
wim 33:900a94bc7585 1034 case LCD16x3D: // Special mode for KS0078, SSD1803 and US2066
wim 33:900a94bc7585 1035 // case LCD16x3D1: // Special mode for SSD1803, US2066
wim 33:900a94bc7585 1036 // case LCD20x3D: // Special mode for SSD1803, US2066
wim 33:900a94bc7585 1037 _function = 0x00; // Set function 0 0 1 X N DH RE(0) IS
wim 33:900a94bc7585 1038 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1039 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1040 // N=0 1 Line / 3 Line
wim 33:900a94bc7585 1041 // DH=0 Double Height disable
wim 33:900a94bc7585 1042 // IS=0
wim 33:900a94bc7585 1043
wim 33:900a94bc7585 1044 _function_1 = 0x02; // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 1045 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1046 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1047 // N=0 1 Line / 3 Line
wim 33:900a94bc7585 1048 // BE=0 Blink Enable off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1049 // REV=0 Reverse off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1050
wim 33:900a94bc7585 1051 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
wim 33:900a94bc7585 1052 // NW=1 3-Line LCD (N=0)
wim 33:900a94bc7585 1053 break;
wim 33:900a94bc7585 1054
wim 33:900a94bc7585 1055 case LCD20x4D: // Special mode for SSD1803, US2066
wim 33:900a94bc7585 1056 _function = 0x08; // Set function 0 0 1 X N DH RE(0) IS
wim 33:900a94bc7585 1057 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1058 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1059 // N=1 2 line / 4 Line
wim 33:900a94bc7585 1060 // DH=0 Double Height disable
wim 33:900a94bc7585 1061 // IS=0
wim 33:900a94bc7585 1062
wim 33:900a94bc7585 1063 _function_1 = 0x0A; // Set function, 0 0 1 DL N BE RE(1) REV
wim 33:900a94bc7585 1064 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1065 // DL=0 bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1066 // N=1 2 line / 4 Line
wim 33:900a94bc7585 1067 // BE=0 Blink Enable off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1068 // REV=0 Reverse off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1069
wim 33:900a94bc7585 1070 _lines = 0x01; // Ext function set 0 0 0 0 1 FW BW NW
wim 33:900a94bc7585 1071 // NW=1 4-Line LCD (N=1)
wim 33:900a94bc7585 1072 break;
wim 33:900a94bc7585 1073
wim 33:900a94bc7585 1074 // case LCD24x1:
wim 33:900a94bc7585 1075 // case LCD16x3G: // Special mode for ST7036
wim 33:900a94bc7585 1076 // case LCD24x4D: // Special mode for KS0078
wim 33:900a94bc7585 1077 default:
wim 33:900a94bc7585 1078 error("Error: LCD Controller type does not support this Display type\n\r");
wim 33:900a94bc7585 1079 break;
wim 33:900a94bc7585 1080
wim 33:900a94bc7585 1081 } // switch type
wim 33:900a94bc7585 1082
wim 34:e5a0dcb43ecc 1083 _writeCommand(0x00); // NOP, make sure to sync SPI
wim 33:900a94bc7585 1084
wim 33:900a94bc7585 1085 // init special features
wim 33:900a94bc7585 1086 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 1087 // Select Extended Instruction Set
wim 33:900a94bc7585 1088
wim 33:900a94bc7585 1089 _writeCommand(0x71); // Function Select A: 0 1 1 1 0 0 0 1 (Ext Instr Set)
wim 33:900a94bc7585 1090 _writeData(0x00); // Disable Internal VDD
wim 33:900a94bc7585 1091
wim 33:900a94bc7585 1092 _writeCommand(0x79); // Function Select OLED: 0 1 1 1 1 0 0 1 (Ext Instr Set)
wim 33:900a94bc7585 1093
wim 33:900a94bc7585 1094 _writeCommand(0xD5); // Display Clock Divide Ratio: 1 1 0 1 0 1 0 1 (Ext Instr Set, OLED Instr Set)
wim 33:900a94bc7585 1095 _writeCommand(0x70); // Display Clock Divide Ratio value: 0 1 1 1 0 0 0 0 (Ext Instr Set, OLED Instr Set)
wim 33:900a94bc7585 1096
wim 33:900a94bc7585 1097 _writeCommand(0x78); // Function Disable OLED: 0 1 1 1 1 0 0 0 (Ext Instr Set)
wim 33:900a94bc7585 1098
wim 33:900a94bc7585 1099 // _writeCommand(0x06); // Set ext entry mode, 0 0 0 0 0 1 BDC=1 COM1-32, BDS=0 SEG100-1 "Bottom View" (Ext Instr Set)
wim 33:900a94bc7585 1100 _writeCommand(0x05); // Set ext entry mode, 0 0 0 0 0 1 BDC=0 COM32-1, BDS=1 SEG1-100 "Top View" (Ext Instr Set)
wim 33:900a94bc7585 1101
wim 33:900a94bc7585 1102 _writeCommand(0x08 | _lines); // Set ext function 0 0 0 0 1 FW BW NW 1,2,3 or 4 lines (Ext Instr Set)
wim 33:900a94bc7585 1103
wim 34:e5a0dcb43ecc 1104 // _writeCommand(0x1C); // Double Height, 0 0 0 1 UD2=1, UD1=1, X, DH'=0 (Ext Instr Set)
wim 33:900a94bc7585 1105 // // Default
wim 33:900a94bc7585 1106
wim 33:900a94bc7585 1107 _writeCommand(0x72); // Function Select B: 0 1 1 1 0 0 1 0 (Ext Instr Set)
wim 33:900a94bc7585 1108 _writeData(0x01); // Select ROM A (CGRAM 8, CGROM 248)
wim 33:900a94bc7585 1109
wim 33:900a94bc7585 1110 _writeCommand(0x79); // Function Select OLED: 0 1 1 1 1 0 0 1 (Ext Instr Set)
wim 33:900a94bc7585 1111
wim 33:900a94bc7585 1112 _writeCommand(0xDA); // Set Segm Pins Config: 1 1 0 1 1 0 1 0 (Ext Instr Set, OLED)
wim 33:900a94bc7585 1113 _writeCommand(0x10); // Set Segm Pins Config value: Altern Odd/Even, Disable Remap (Ext Instr Set, OLED)
wim 33:900a94bc7585 1114
wim 33:900a94bc7585 1115 _writeCommand(0xDC); // Function Select C: 1 1 0 1 1 1 0 0 (Ext Instr Set, OLED)
wim 33:900a94bc7585 1116 // _writeCommand(0x00); // Set internal VSL, GPIO pin HiZ (always read low)
wim 33:900a94bc7585 1117 _writeCommand(0x80); // Set external VSL, GPIO pin HiZ (always read low)
wim 33:900a94bc7585 1118
wim 33:900a94bc7585 1119 _contrast = LCD_US20_CONTRAST;
wim 33:900a94bc7585 1120 _writeCommand(0x81); // Set Contrast Control: 1 0 0 0 0 0 0 1 (Ext Instr Set, OLED)
wim 33:900a94bc7585 1121 _writeCommand((_contrast << 2) | 0x03); // Set Contrast Value: 8 bits, use 6 bits for compatibility
wim 33:900a94bc7585 1122
wim 33:900a94bc7585 1123 _writeCommand(0xD9); // Set Phase Length: 1 1 0 1 1 0 0 1 (Ext Instr Set, OLED)
wim 33:900a94bc7585 1124 _writeCommand(0xF1); // Set Phase Length Value:
wim 33:900a94bc7585 1125
wim 33:900a94bc7585 1126 _writeCommand(0xDB); // Set VCOMH Deselect Lvl: 1 1 0 1 1 0 1 1 (Ext Instr Set, OLED)
wim 33:900a94bc7585 1127 _writeCommand(0x30); // Set VCOMH Deselect Value: 0.83 x VCC
wim 33:900a94bc7585 1128
wim 33:900a94bc7585 1129 wait_ms(10); // Wait 10ms to ensure powered up
wim 33:900a94bc7585 1130
wim 33:900a94bc7585 1131 //Test Fade/Blinking. Hard Blink on/off, No fade in/out ??
wim 33:900a94bc7585 1132 // _writeCommand(0x23); // Set (Ext Instr Set, OLED)
wim 33:900a94bc7585 1133 // _writeCommand(0x3F); // Set interval 128 frames
wim 33:900a94bc7585 1134 //End Test Blinking
wim 33:900a94bc7585 1135
wim 33:900a94bc7585 1136 _writeCommand(0x78); // Function Disable OLED: 0 1 1 1 1 0 0 0 (Ext Instr Set)
wim 33:900a94bc7585 1137
wim 33:900a94bc7585 1138 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 X N DH RE(0) IS=1 Select Instruction Set 1
wim 33:900a94bc7585 1139 // Select Std Instr set, Select IS=1
wim 33:900a94bc7585 1140
wim 33:900a94bc7585 1141 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 1142 // Select Ext Instr Set, IS=1
wim 33:900a94bc7585 1143 _writeCommand(0x10); // Shift/Scroll enable, 0 0 0 1 DS4/HS4 DS3/HS3 DS2/HS2 DS1/HS1 (Ext Instr Set, IS=1)
wim 33:900a94bc7585 1144
wim 33:900a94bc7585 1145 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 1146 // Select Std Instr set, Select IS=0
wim 33:900a94bc7585 1147 break; // case US2066/SSD1311 Controller
wim 33:900a94bc7585 1148
wim 34:e5a0dcb43ecc 1149 //not yet tested on hardware
wim 34:e5a0dcb43ecc 1150 case PT6314 :
wim 34:e5a0dcb43ecc 1151 // Initialise Display configuration
wim 34:e5a0dcb43ecc 1152 switch (_type) {
wim 34:e5a0dcb43ecc 1153 case LCD8x1: //8x1 is a regular 1 line display
wim 34:e5a0dcb43ecc 1154 case LCD8x2B: //8x2B is a special case of 16x1
wim 34:e5a0dcb43ecc 1155 // case LCD12x1:
wim 34:e5a0dcb43ecc 1156 case LCD16x1:
wim 34:e5a0dcb43ecc 1157 case LCD20x1:
wim 34:e5a0dcb43ecc 1158 case LCD24x1:
wim 34:e5a0dcb43ecc 1159 _function = 0x00; // Function set 001 DL N X BR1 BR0
wim 34:e5a0dcb43ecc 1160 // DL=0 (4 bits bus)
wim 34:e5a0dcb43ecc 1161 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 34:e5a0dcb43ecc 1162 // N=0 (1 line)
wim 34:e5a0dcb43ecc 1163 // X
wim 34:e5a0dcb43ecc 1164 // BR1=0 (2 significant bits for brightness
wim 34:e5a0dcb43ecc 1165 // BR0=0
wim 34:e5a0dcb43ecc 1166 // 0x0 = 100%
wim 34:e5a0dcb43ecc 1167 // 0x1 = 75%
wim 34:e5a0dcb43ecc 1168 // 0x2 = 50%
wim 34:e5a0dcb43ecc 1169 // 0x3 = 25%
wim 34:e5a0dcb43ecc 1170
wim 34:e5a0dcb43ecc 1171 break;
wim 34:e5a0dcb43ecc 1172
wim 34:e5a0dcb43ecc 1173 // All other valid LCD types are initialised as 2 Line displays
wim 34:e5a0dcb43ecc 1174 case LCD8x2:
wim 34:e5a0dcb43ecc 1175 case LCD16x2:
wim 34:e5a0dcb43ecc 1176 case LCD20x2:
wim 34:e5a0dcb43ecc 1177 case LCD24x2:
wim 34:e5a0dcb43ecc 1178 _function = 0x08; // Function set 001 DL N X BR1 BR2
wim 34:e5a0dcb43ecc 1179 // DL=0 (4 bits bus)
wim 34:e5a0dcb43ecc 1180 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 34:e5a0dcb43ecc 1181 // N=1 (2 lines)
wim 34:e5a0dcb43ecc 1182 // X
wim 34:e5a0dcb43ecc 1183 // BR1=0 (2 significant bits for brightness
wim 34:e5a0dcb43ecc 1184 // BR0=0
wim 34:e5a0dcb43ecc 1185 break;
wim 34:e5a0dcb43ecc 1186
wim 34:e5a0dcb43ecc 1187 default:
wim 34:e5a0dcb43ecc 1188 error("Error: LCD Controller type does not support this Display type\n\r");
wim 34:e5a0dcb43ecc 1189 break;
wim 34:e5a0dcb43ecc 1190 } // switch type
wim 34:e5a0dcb43ecc 1191
wim 34:e5a0dcb43ecc 1192 _contrast = LCD_PT63_CONTRAST;
wim 34:e5a0dcb43ecc 1193 _writeCommand(0x20 | _function | ((~_contrast) >> 4)); // Invert and shift to use 2 MSBs
wim 34:e5a0dcb43ecc 1194 break; // case PT6314 Controller (VFD)
wim 29:a3663151aa65 1195
wim 19:c747b9e2e7b8 1196 default:
wim 32:59c4b8f648d4 1197 // Devices fully compatible to HD44780 that do not use any DC/DC Voltage converters but external VLCD, no icons etc
wim 10:dd9b3a696acd 1198
wim 29:a3663151aa65 1199 // Initialise Display configuration
wim 29:a3663151aa65 1200 switch (_type) {
wim 29:a3663151aa65 1201 case LCD8x1: //8x1 is a regular 1 line display
wim 29:a3663151aa65 1202 case LCD8x2B: //8x2B is a special case of 16x1
wim 29:a3663151aa65 1203 // case LCD12x1:
wim 29:a3663151aa65 1204 case LCD16x1:
wim 30:033048611c01 1205 // case LCD20x1:
wim 29:a3663151aa65 1206 case LCD24x1:
wim 30:033048611c01 1207 // case LCD40x1:
wim 32:59c4b8f648d4 1208 _function = 0x00; // Function set 001 DL N F - -
wim 29:a3663151aa65 1209 // DL=0 (4 bits bus)
wim 29:a3663151aa65 1210 // N=0 (1 line)
wim 29:a3663151aa65 1211 // F=0 (5x7 dots font)
wim 29:a3663151aa65 1212 break;
wim 29:a3663151aa65 1213
wim 32:59c4b8f648d4 1214 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 1215 case LCD12x3D1: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 1216 case LCD12x4D: // Special mode for KS0078 and PCF21XX:
wim 33:900a94bc7585 1217 case LCD16x3D: // Special mode for KS0078
wim 32:59c4b8f648d4 1218 // case LCD16x3D1: // Special mode for KS0078
wim 30:033048611c01 1219 // case LCD24x3D: // Special mode for KS0078
wim 32:59c4b8f648d4 1220 // case LCD24x3D1: // Special mode for KS0078
wim 30:033048611c01 1221 case LCD24x4D: // Special mode for KS0078
wim 30:033048611c01 1222 error("Error: LCD Controller type does not support this Display type\n\r");
wim 30:033048611c01 1223 break;
wim 30:033048611c01 1224
wim 30:033048611c01 1225 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 29:a3663151aa65 1226 default:
wim 32:59c4b8f648d4 1227 _function = 0x08; // Function set 001 DL N F - -
wim 29:a3663151aa65 1228 // DL=0 (4 bits bus)
wim 29:a3663151aa65 1229 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 29:a3663151aa65 1230 // N=1 (2 lines)
wim 29:a3663151aa65 1231 // F=0 (5x7 dots font, only option for 2 line display)
wim 32:59c4b8f648d4 1232 // - (Don't care)
wim 29:a3663151aa65 1233 break;
wim 29:a3663151aa65 1234 } // switch type
wim 10:dd9b3a696acd 1235
wim 34:e5a0dcb43ecc 1236 _writeCommand(0x20 | _function);
wim 29:a3663151aa65 1237 break; // case default Controller
wim 29:a3663151aa65 1238
wim 34:e5a0dcb43ecc 1239 } // switch Controller specific initialisations
wim 10:dd9b3a696acd 1240
wim 30:033048611c01 1241 // Controller general initialisations
wim 32:59c4b8f648d4 1242 // _writeCommand(0x01); // cls, and set cursor to 0
wim 32:59c4b8f648d4 1243 // wait_ms(10); // The CLS command takes 1.64 ms.
wim 32:59c4b8f648d4 1244 // // Since we are not using the Busy flag, Lets be safe and take 10 ms
wim 28:30fa94f7341c 1245
wim 28:30fa94f7341c 1246 _writeCommand(0x02); // Return Home
wim 28:30fa94f7341c 1247 // Cursor Home, DDRAM Address to Origin
wim 28:30fa94f7341c 1248
wim 28:30fa94f7341c 1249 _writeCommand(0x06); // Entry Mode 0000 0 1 I/D S
wim 13:24506ba22480 1250 // Cursor Direction and Display Shift
wim 28:30fa94f7341c 1251 // I/D=1 (Cur incr)
wim 28:30fa94f7341c 1252 // S=0 (No display shift)
wim 10:dd9b3a696acd 1253
wim 29:a3663151aa65 1254 _writeCommand(0x14); // Cursor or Display shift 0001 S/C R/L x x
wim 29:a3663151aa65 1255 // S/C=0 Cursor moves
wim 29:a3663151aa65 1256 // R/L=1 Right
wim 29:a3663151aa65 1257 //
wim 29:a3663151aa65 1258
wim 13:24506ba22480 1259 // _writeCommand(0x0C); // Display Ctrl 0000 1 D C B
wim 17:652ab113bc2e 1260 // // Display On, Cursor Off, Blink Off
wim 36:9f5f86dfd44a 1261
wim 21:9eb628d9e164 1262 setCursor(CurOff_BlkOff);
wim 21:9eb628d9e164 1263 setMode(DispOn);
simon 1:ac48b187213c 1264 }
simon 1:ac48b187213c 1265
wim 8:03116f75b66e 1266
wim 21:9eb628d9e164 1267 /** Clear the screen, Cursor home.
wim 21:9eb628d9e164 1268 */
wim 21:9eb628d9e164 1269 void TextLCD_Base::cls() {
wim 15:b70ebfffb258 1270
wim 15:b70ebfffb258 1271 // Select and configure second LCD controller when needed
wim 15:b70ebfffb258 1272 if(_type==LCD40x4) {
wim 21:9eb628d9e164 1273 _ctrl_idx=_LCDCtrl_1; // Select 2nd controller
wim 15:b70ebfffb258 1274
wim 15:b70ebfffb258 1275 // Second LCD controller Cursor always Off
wim 21:9eb628d9e164 1276 _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
wim 15:b70ebfffb258 1277
wim 15:b70ebfffb258 1278 // Second LCD controller Clearscreen
wim 27:22d5086f6ba6 1279 _writeCommand(0x01); // cls, and set cursor to 0
wim 29:a3663151aa65 1280 wait_ms(10); // The CLS command takes 1.64 ms.
wim 29:a3663151aa65 1281 // Since we are not using the Busy flag, Lets be safe and take 10 ms
wim 15:b70ebfffb258 1282
wim 21:9eb628d9e164 1283 _ctrl_idx=_LCDCtrl_0; // Select primary controller
wim 15:b70ebfffb258 1284 }
wim 15:b70ebfffb258 1285
wim 15:b70ebfffb258 1286 // Primary LCD controller Clearscreen
wim 27:22d5086f6ba6 1287 _writeCommand(0x01); // cls, and set cursor to 0
wim 29:a3663151aa65 1288 wait_ms(10); // The CLS command takes 1.64 ms.
wim 29:a3663151aa65 1289 // Since we are not using the Busy flag, Lets be safe and take 10 ms
wim 15:b70ebfffb258 1290
wim 15:b70ebfffb258 1291 // Restore cursormode on primary LCD controller when needed
wim 15:b70ebfffb258 1292 if(_type==LCD40x4) {
wim 17:652ab113bc2e 1293 _setCursorAndDisplayMode(_currentMode,_currentCursor);
wim 15:b70ebfffb258 1294 }
wim 15:b70ebfffb258 1295
wim 29:a3663151aa65 1296 setAddress(0, 0); // Reset Cursor location
wim 32:59c4b8f648d4 1297 // Note: This is needed because some displays (eg PCF21XX) don't use line 0 in the '3 Line' mode.
simon 1:ac48b187213c 1298 }
simon 1:ac48b187213c 1299
wim 29:a3663151aa65 1300 /** Locate cursor to a screen column and row
wim 29:a3663151aa65 1301 *
wim 29:a3663151aa65 1302 * @param column The horizontal position from the left, indexed from 0
wim 29:a3663151aa65 1303 * @param row The vertical position from the top, indexed from 0
wim 29:a3663151aa65 1304 */
wim 21:9eb628d9e164 1305 void TextLCD_Base::locate(int column, int row) {
wim 15:b70ebfffb258 1306
wim 15:b70ebfffb258 1307 // setAddress() does all the heavy lifting:
wim 15:b70ebfffb258 1308 // check column and row sanity,
wim 15:b70ebfffb258 1309 // switch controllers for LCD40x4 if needed
wim 15:b70ebfffb258 1310 // switch cursor for LCD40x4 if needed
wim 15:b70ebfffb258 1311 // set the new memory address to show cursor at correct location
wim 32:59c4b8f648d4 1312 setAddress(column, row);
wim 15:b70ebfffb258 1313 }
wim 30:033048611c01 1314
wim 15:b70ebfffb258 1315
wim 21:9eb628d9e164 1316 /** Write a single character (Stream implementation)
wim 21:9eb628d9e164 1317 */
wim 21:9eb628d9e164 1318 int TextLCD_Base::_putc(int value) {
wim 15:b70ebfffb258 1319 int addr;
wim 15:b70ebfffb258 1320
wim 15:b70ebfffb258 1321 if (value == '\n') {
wim 15:b70ebfffb258 1322 //No character to write
wim 15:b70ebfffb258 1323
wim 15:b70ebfffb258 1324 //Update Cursor
wim 15:b70ebfffb258 1325 _column = 0;
wim 15:b70ebfffb258 1326 _row++;
wim 15:b70ebfffb258 1327 if (_row >= rows()) {
wim 15:b70ebfffb258 1328 _row = 0;
wim 15:b70ebfffb258 1329 }
wim 15:b70ebfffb258 1330 }
wim 15:b70ebfffb258 1331 else {
wim 15:b70ebfffb258 1332 //Character to write
wim 15:b70ebfffb258 1333 _writeData(value);
wim 15:b70ebfffb258 1334
wim 15:b70ebfffb258 1335 //Update Cursor
wim 15:b70ebfffb258 1336 _column++;
wim 15:b70ebfffb258 1337 if (_column >= columns()) {
wim 15:b70ebfffb258 1338 _column = 0;
wim 15:b70ebfffb258 1339 _row++;
wim 15:b70ebfffb258 1340 if (_row >= rows()) {
wim 15:b70ebfffb258 1341 _row = 0;
wim 15:b70ebfffb258 1342 }
wim 15:b70ebfffb258 1343 }
wim 15:b70ebfffb258 1344 } //else
wim 15:b70ebfffb258 1345
wim 15:b70ebfffb258 1346 //Set next memoryaddress, make sure cursor blinks at next location
wim 15:b70ebfffb258 1347 addr = getAddress(_column, _row);
wim 15:b70ebfffb258 1348 _writeCommand(0x80 | addr);
wim 15:b70ebfffb258 1349
wim 15:b70ebfffb258 1350 return value;
wim 15:b70ebfffb258 1351 }
wim 15:b70ebfffb258 1352
wim 15:b70ebfffb258 1353
wim 16:c276b75e6585 1354 // get a single character (Stream implementation)
wim 21:9eb628d9e164 1355 int TextLCD_Base::_getc() {
simon 1:ac48b187213c 1356 return -1;
simon 1:ac48b187213c 1357 }
simon 1:ac48b187213c 1358
wim 14:0c32b66b14b8 1359
wim 34:e5a0dcb43ecc 1360 #if(LCD_PRINTF != 1)
wim 34:e5a0dcb43ecc 1361 /** Write a character to the LCD
wim 34:e5a0dcb43ecc 1362 *
wim 34:e5a0dcb43ecc 1363 * @param c The character to write to the display
wim 34:e5a0dcb43ecc 1364 */
wim 34:e5a0dcb43ecc 1365 int TextLCD_Base::putc(int c){
wim 34:e5a0dcb43ecc 1366 return _putc(c);
wim 34:e5a0dcb43ecc 1367 }
wim 34:e5a0dcb43ecc 1368
wim 34:e5a0dcb43ecc 1369
wim 34:e5a0dcb43ecc 1370 /** Write a raw string to the LCD
wim 34:e5a0dcb43ecc 1371 *
wim 34:e5a0dcb43ecc 1372 * @param string text, may be followed by variables to emulate formatting the string.
wim 34:e5a0dcb43ecc 1373 * However, printf formatting is NOT supported and variables will be ignored!
wim 34:e5a0dcb43ecc 1374 */
wim 34:e5a0dcb43ecc 1375 int TextLCD_Base::printf(const char* text, ...) {
wim 34:e5a0dcb43ecc 1376
wim 34:e5a0dcb43ecc 1377 while (*text !=0) {
wim 34:e5a0dcb43ecc 1378 _putc(*text);
wim 34:e5a0dcb43ecc 1379 text++;
wim 34:e5a0dcb43ecc 1380 }
wim 34:e5a0dcb43ecc 1381 return 0;
wim 34:e5a0dcb43ecc 1382 }
wim 34:e5a0dcb43ecc 1383 #endif
wim 34:e5a0dcb43ecc 1384
wim 34:e5a0dcb43ecc 1385
wim 34:e5a0dcb43ecc 1386
wim 17:652ab113bc2e 1387 // Write a nibble using the 4-bit interface
wim 21:9eb628d9e164 1388 void TextLCD_Base::_writeNibble(int value) {
wim 17:652ab113bc2e 1389
wim 17:652ab113bc2e 1390 // Enable is Low
wim 21:9eb628d9e164 1391 this->_setEnable(true);
wim 21:9eb628d9e164 1392 this->_setData(value & 0x0F); // Low nibble
wim 17:652ab113bc2e 1393 wait_us(1); // Data setup time
wim 21:9eb628d9e164 1394 this->_setEnable(false);
wim 17:652ab113bc2e 1395 wait_us(1); // Datahold time
wim 17:652ab113bc2e 1396
wim 17:652ab113bc2e 1397 // Enable is Low
wim 17:652ab113bc2e 1398 }
wim 17:652ab113bc2e 1399
wim 16:c276b75e6585 1400 // Write a byte using the 4-bit interface
wim 21:9eb628d9e164 1401 void TextLCD_Base::_writeByte(int value) {
wim 15:b70ebfffb258 1402
wim 15:b70ebfffb258 1403 // Enable is Low
wim 21:9eb628d9e164 1404 this->_setEnable(true);
wim 21:9eb628d9e164 1405 this->_setData(value >> 4); // High nibble
wim 15:b70ebfffb258 1406 wait_us(1); // Data setup time
wim 21:9eb628d9e164 1407 this->_setEnable(false);
wim 15:b70ebfffb258 1408 wait_us(1); // Data hold time
wim 15:b70ebfffb258 1409
wim 21:9eb628d9e164 1410 this->_setEnable(true);
wim 21:9eb628d9e164 1411 this->_setData(value >> 0); // Low nibble
wim 15:b70ebfffb258 1412 wait_us(1); // Data setup time
wim 21:9eb628d9e164 1413 this->_setEnable(false);
wim 15:b70ebfffb258 1414 wait_us(1); // Datahold time
wim 15:b70ebfffb258 1415
wim 15:b70ebfffb258 1416 // Enable is Low
simon 1:ac48b187213c 1417 }
simon 1:ac48b187213c 1418
wim 21:9eb628d9e164 1419 // Write a command byte to the LCD controller
wim 21:9eb628d9e164 1420 void TextLCD_Base::_writeCommand(int command) {
wim 15:b70ebfffb258 1421
wim 21:9eb628d9e164 1422 this->_setRS(false);
wim 16:c276b75e6585 1423 wait_us(1); // Data setup time for RS
wim 15:b70ebfffb258 1424
wim 21:9eb628d9e164 1425 this->_writeByte(command);
wim 15:b70ebfffb258 1426 wait_us(40); // most instructions take 40us
simon 1:ac48b187213c 1427 }
simon 1:ac48b187213c 1428
wim 21:9eb628d9e164 1429 // Write a data byte to the LCD controller
wim 21:9eb628d9e164 1430 void TextLCD_Base::_writeData(int data) {
wim 15:b70ebfffb258 1431
wim 21:9eb628d9e164 1432 this->_setRS(true);
wim 16:c276b75e6585 1433 wait_us(1); // Data setup time for RS
wim 15:b70ebfffb258 1434
wim 21:9eb628d9e164 1435 this->_writeByte(data);
wim 15:b70ebfffb258 1436 wait_us(40); // data writes take 40us
simon 1:ac48b187213c 1437 }
simon 1:ac48b187213c 1438
wim 8:03116f75b66e 1439
wim 32:59c4b8f648d4 1440 // This replaces the original _address() method.
wim 8:03116f75b66e 1441 // It is confusing since it returns the memoryaddress or-ed with the set memorycommand 0x80.
wim 8:03116f75b66e 1442 // Left it in here for compatibility with older code. New applications should use getAddress() instead.
wim 21:9eb628d9e164 1443 int TextLCD_Base::_address(int column, int row) {
wim 8:03116f75b66e 1444 return 0x80 | getAddress(column, row);
wim 8:03116f75b66e 1445 }
wim 8:03116f75b66e 1446
wim 30:033048611c01 1447
wim 30:033048611c01 1448 // This is new method to return the memory address based on row, column and displaytype.
wim 30:033048611c01 1449 //
wim 30:033048611c01 1450 /** Return the memoryaddress of screen column and row location
wim 30:033048611c01 1451 *
wim 30:033048611c01 1452 * @param column The horizontal position from the left, indexed from 0
wim 30:033048611c01 1453 * @param row The vertical position from the top, indexed from 0
wim 36:9f5f86dfd44a 1454 * @return The memoryaddress of screen column and row location
wim 30:033048611c01 1455 *
wim 30:033048611c01 1456 */
wim 30:033048611c01 1457 int TextLCD_Base::getAddress(int column, int row) {
wim 30:033048611c01 1458
wim 30:033048611c01 1459 switch (_addr_mode) {
wim 30:033048611c01 1460
wim 30:033048611c01 1461 case LCD_T_A:
wim 30:033048611c01 1462 //Default addressing mode for 1, 2 and 4 rows (except 40x4)
wim 30:033048611c01 1463 //The two available rows are split and stacked on top of eachother. Addressing for 3rd and 4th line continues where lines 1 and 2 were split.
wim 30:033048611c01 1464 //Displays top rows when less than four are used.
wim 30:033048611c01 1465 switch (row) {
wim 30:033048611c01 1466 case 0:
wim 30:033048611c01 1467 return 0x00 + column;
wim 30:033048611c01 1468 case 1:
wim 30:033048611c01 1469 return 0x40 + column;
wim 30:033048611c01 1470 case 2:
wim 30:033048611c01 1471 return 0x00 + _nr_cols + column;
wim 30:033048611c01 1472 case 3:
wim 30:033048611c01 1473 return 0x40 + _nr_cols + column;
wim 30:033048611c01 1474 // Should never get here.
wim 30:033048611c01 1475 default:
wim 30:033048611c01 1476 return 0x00;
wim 30:033048611c01 1477 }
wim 30:033048611c01 1478
wim 30:033048611c01 1479 case LCD_T_B:
wim 30:033048611c01 1480 // LCD8x2B is a special layout of LCD16x1
wim 30:033048611c01 1481 if (row==0)
wim 30:033048611c01 1482 return 0x00 + column;
wim 30:033048611c01 1483 else
wim 30:033048611c01 1484 // return _nr_cols + column;
wim 30:033048611c01 1485 return 0x08 + column;
wim 30:033048611c01 1486
wim 30:033048611c01 1487 case LCD_T_C:
wim 30:033048611c01 1488 // LCD16x1C is a special layout of LCD8x2
wim 33:900a94bc7585 1489 // LCD32x1C is a special layout of LCD16x2
wim 33:900a94bc7585 1490 // LCD40x1C is a special layout of LCD20x2
wim 33:900a94bc7585 1491 #if(0)
wim 32:59c4b8f648d4 1492 if (column < 8)
wim 30:033048611c01 1493 return 0x00 + column;
wim 30:033048611c01 1494 else
wim 30:033048611c01 1495 return 0x40 + (column - 8);
wim 32:59c4b8f648d4 1496 #else
wim 32:59c4b8f648d4 1497 if (column < (_nr_cols >> 1))
wim 32:59c4b8f648d4 1498 return 0x00 + column;
wim 32:59c4b8f648d4 1499 else
wim 32:59c4b8f648d4 1500 return 0x40 + (column - (_nr_cols >> 1));
wim 32:59c4b8f648d4 1501 #endif
wim 30:033048611c01 1502
wim 30:033048611c01 1503 // Not sure about this one, seems wrong.
wim 30:033048611c01 1504 // Left in for compatibility with original library
wim 30:033048611c01 1505 // case LCD16x2B:
wim 30:033048611c01 1506 // return 0x00 + (row * 40) + column;
wim 30:033048611c01 1507
wim 30:033048611c01 1508 case LCD_T_D:
wim 36:9f5f86dfd44a 1509 //Alternate addressing mode for 3 and 4 row displays (except 40x4). Used by PCF21XX, KS0073, KS0078, SSD1803
wim 30:033048611c01 1510 //The 4 available rows start at a hardcoded address.
wim 30:033048611c01 1511 //Displays top rows when less than four are used.
wim 30:033048611c01 1512 switch (row) {
wim 30:033048611c01 1513 case 0:
wim 30:033048611c01 1514 return 0x00 + column;
wim 30:033048611c01 1515 case 1:
wim 30:033048611c01 1516 return 0x20 + column;
wim 30:033048611c01 1517 case 2:
wim 30:033048611c01 1518 return 0x40 + column;
wim 30:033048611c01 1519 case 3:
wim 30:033048611c01 1520 return 0x60 + column;
wim 30:033048611c01 1521 // Should never get here.
wim 30:033048611c01 1522 default:
wim 30:033048611c01 1523 return 0x00;
wim 30:033048611c01 1524 }
wim 30:033048611c01 1525
wim 30:033048611c01 1526 case LCD_T_D1:
wim 36:9f5f86dfd44a 1527 //Alternate addressing mode for 3 row displays. Used by PCF21XX, KS0073, KS0078, SSD1803
wim 30:033048611c01 1528 //The 4 available rows start at a hardcoded address.
wim 30:033048611c01 1529 //Skips top row of 4 row display and starts display at row 1
wim 30:033048611c01 1530 switch (row) {
wim 30:033048611c01 1531 case 0:
wim 30:033048611c01 1532 return 0x20 + column;
wim 30:033048611c01 1533 case 1:
wim 30:033048611c01 1534 return 0x40 + column;
wim 30:033048611c01 1535 case 2:
wim 30:033048611c01 1536 return 0x60 + column;
wim 30:033048611c01 1537 // Should never get here.
wim 30:033048611c01 1538 default:
wim 30:033048611c01 1539 return 0x00;
wim 30:033048611c01 1540 }
wim 30:033048611c01 1541
wim 30:033048611c01 1542 case LCD_T_E:
wim 30:033048611c01 1543 // LCD40x4 is a special case since it has 2 controllers.
wim 30:033048611c01 1544 // Each controller is configured as 40x2 (Type A)
wim 30:033048611c01 1545 if (row<2) {
wim 30:033048611c01 1546 // Test to see if we need to switch between controllers
wim 30:033048611c01 1547 if (_ctrl_idx != _LCDCtrl_0) {
wim 30:033048611c01 1548
wim 30:033048611c01 1549 // Second LCD controller Cursor Off
wim 30:033048611c01 1550 _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
wim 30:033048611c01 1551
wim 30:033048611c01 1552 // Select primary controller
wim 30:033048611c01 1553 _ctrl_idx = _LCDCtrl_0;
wim 30:033048611c01 1554
wim 30:033048611c01 1555 // Restore cursormode on primary LCD controller
wim 30:033048611c01 1556 _setCursorAndDisplayMode(_currentMode, _currentCursor);
wim 30:033048611c01 1557 }
wim 30:033048611c01 1558
wim 30:033048611c01 1559 return 0x00 + (row * 0x40) + column;
wim 30:033048611c01 1560 }
wim 30:033048611c01 1561 else {
wim 30:033048611c01 1562
wim 30:033048611c01 1563 // Test to see if we need to switch between controllers
wim 30:033048611c01 1564 if (_ctrl_idx != _LCDCtrl_1) {
wim 30:033048611c01 1565 // Primary LCD controller Cursor Off
wim 30:033048611c01 1566 _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
wim 30:033048611c01 1567
wim 30:033048611c01 1568 // Select secondary controller
wim 30:033048611c01 1569 _ctrl_idx = _LCDCtrl_1;
wim 30:033048611c01 1570
wim 30:033048611c01 1571 // Restore cursormode on secondary LCD controller
wim 30:033048611c01 1572 _setCursorAndDisplayMode(_currentMode, _currentCursor);
wim 30:033048611c01 1573 }
wim 30:033048611c01 1574
wim 30:033048611c01 1575 return 0x00 + ((row-2) * 0x40) + column;
wim 30:033048611c01 1576 }
wim 30:033048611c01 1577
wim 32:59c4b8f648d4 1578 case LCD_T_F:
wim 32:59c4b8f648d4 1579 //Alternate addressing mode for 3 row displays.
wim 32:59c4b8f648d4 1580 //The first half of 3rd row continues from 1st row, the second half continues from 2nd row.
wim 32:59c4b8f648d4 1581 switch (row) {
wim 32:59c4b8f648d4 1582 case 0:
wim 32:59c4b8f648d4 1583 return 0x00 + column;
wim 32:59c4b8f648d4 1584 case 1:
wim 32:59c4b8f648d4 1585 return 0x40 + column;
wim 32:59c4b8f648d4 1586 case 2:
wim 32:59c4b8f648d4 1587 if (column < (_nr_cols >> 1)) // check first or second half of line
wim 32:59c4b8f648d4 1588 return (0x00 + _nr_cols + column);
wim 32:59c4b8f648d4 1589 else
wim 32:59c4b8f648d4 1590 return (0x40 + _nr_cols + (column - (_nr_cols >> 1)));
wim 32:59c4b8f648d4 1591 // Should never get here.
wim 32:59c4b8f648d4 1592 default:
wim 32:59c4b8f648d4 1593 return 0x00;
wim 32:59c4b8f648d4 1594 }
wim 32:59c4b8f648d4 1595
wim 32:59c4b8f648d4 1596 case LCD_T_G:
wim 32:59c4b8f648d4 1597 //Alternate addressing mode for 3 row displays. Used by ST7036
wim 32:59c4b8f648d4 1598 switch (row) {
wim 32:59c4b8f648d4 1599 case 0:
wim 32:59c4b8f648d4 1600 return 0x00 + column;
wim 32:59c4b8f648d4 1601 case 1:
wim 32:59c4b8f648d4 1602 return 0x10 + column;
wim 32:59c4b8f648d4 1603 case 2:
wim 32:59c4b8f648d4 1604 return 0x20 + column;
wim 32:59c4b8f648d4 1605 // Should never get here.
wim 32:59c4b8f648d4 1606 default:
wim 32:59c4b8f648d4 1607 return 0x00;
wim 32:59c4b8f648d4 1608 }
wim 32:59c4b8f648d4 1609
wim 30:033048611c01 1610 // Should never get here.
wim 30:033048611c01 1611 default:
wim 30:033048611c01 1612 return 0x00;
wim 32:59c4b8f648d4 1613
wim 32:59c4b8f648d4 1614 } // switch _addr_mode
wim 30:033048611c01 1615 }
wim 30:033048611c01 1616
wim 30:033048611c01 1617
wim 29:a3663151aa65 1618 /** Set the memoryaddress of screen column and row location
wim 29:a3663151aa65 1619 *
wim 29:a3663151aa65 1620 * @param column The horizontal position from the left, indexed from 0
wim 29:a3663151aa65 1621 * @param row The vertical position from the top, indexed from 0
wim 29:a3663151aa65 1622 */
wim 21:9eb628d9e164 1623 void TextLCD_Base::setAddress(int column, int row) {
wim 15:b70ebfffb258 1624
wim 15:b70ebfffb258 1625 // Sanity Check column
wim 15:b70ebfffb258 1626 if (column < 0) {
wim 15:b70ebfffb258 1627 _column = 0;
wim 15:b70ebfffb258 1628 }
wim 36:9f5f86dfd44a 1629 else if (column >= _nr_cols) {
wim 36:9f5f86dfd44a 1630 _column = _nr_cols - 1;
wim 15:b70ebfffb258 1631 } else _column = column;
wim 8:03116f75b66e 1632
wim 15:b70ebfffb258 1633 // Sanity Check row
wim 15:b70ebfffb258 1634 if (row < 0) {
wim 15:b70ebfffb258 1635 _row = 0;
wim 15:b70ebfffb258 1636 }
wim 36:9f5f86dfd44a 1637 else if (row >= _nr_rows) {
wim 36:9f5f86dfd44a 1638 _row = _nr_rows - 1;
wim 15:b70ebfffb258 1639 } else _row = row;
wim 15:b70ebfffb258 1640
wim 15:b70ebfffb258 1641
wim 15:b70ebfffb258 1642 // Compute the memory address
wim 15:b70ebfffb258 1643 // For LCD40x4: switch controllers if needed
wim 15:b70ebfffb258 1644 // switch cursor if needed
wim 15:b70ebfffb258 1645 int addr = getAddress(_column, _row);
wim 8:03116f75b66e 1646
wim 13:24506ba22480 1647 _writeCommand(0x80 | addr);
wim 8:03116f75b66e 1648 }
simon 1:ac48b187213c 1649
wim 29:a3663151aa65 1650
wim 29:a3663151aa65 1651 /** Return the number of columns
wim 29:a3663151aa65 1652 *
wim 36:9f5f86dfd44a 1653 * @return The number of columns
wim 30:033048611c01 1654 *
wim 30:033048611c01 1655 * Note: some configurations are commented out because they have not yet been tested due to lack of hardware
wim 29:a3663151aa65 1656 */
wim 21:9eb628d9e164 1657 int TextLCD_Base::columns() {
wim 30:033048611c01 1658
wim 30:033048611c01 1659 // Columns encoded in b7..b0
wim 30:033048611c01 1660 //return (_type & 0xFF);
wim 31:ef31cd8a00d1 1661 return _nr_cols;
simon 1:ac48b187213c 1662 }
simon 1:ac48b187213c 1663
wim 29:a3663151aa65 1664 /** Return the number of rows
wim 29:a3663151aa65 1665 *
wim 36:9f5f86dfd44a 1666 * @return The number of rows
wim 30:033048611c01 1667 *
wim 30:033048611c01 1668 * Note: some configurations are commented out because they have not yet been tested due to lack of hardware
wim 29:a3663151aa65 1669 */
wim 21:9eb628d9e164 1670 int TextLCD_Base::rows() {
wim 30:033048611c01 1671
wim 30:033048611c01 1672 // Rows encoded in b15..b8
wim 30:033048611c01 1673 //return ((_type >> 8) & 0xFF);
wim 30:033048611c01 1674 return _nr_rows;
simon 1:ac48b187213c 1675 }
wim 10:dd9b3a696acd 1676
wim 29:a3663151aa65 1677 /** Set the Cursormode
wim 29:a3663151aa65 1678 *
wim 29:a3663151aa65 1679 * @param cursorMode The Cursor mode (CurOff_BlkOff, CurOn_BlkOff, CurOff_BlkOn, CurOn_BlkOn)
wim 29:a3663151aa65 1680 */
wim 21:9eb628d9e164 1681 void TextLCD_Base::setCursor(LCDCursor cursorMode) {
wim 15:b70ebfffb258 1682
wim 17:652ab113bc2e 1683 // Save new cursor mode, needed when 2 controllers are in use or when display is switched off/on
wim 17:652ab113bc2e 1684 _currentCursor = cursorMode;
wim 10:dd9b3a696acd 1685
wim 17:652ab113bc2e 1686 // Configure only current LCD controller
wim 31:ef31cd8a00d1 1687 _setCursorAndDisplayMode(_currentMode, _currentCursor);
wim 15:b70ebfffb258 1688 }
wim 15:b70ebfffb258 1689
wim 29:a3663151aa65 1690 /** Set the Displaymode
wim 29:a3663151aa65 1691 *
wim 29:a3663151aa65 1692 * @param displayMode The Display mode (DispOff, DispOn)
wim 29:a3663151aa65 1693 */
wim 21:9eb628d9e164 1694 void TextLCD_Base::setMode(LCDMode displayMode) {
wim 17:652ab113bc2e 1695
wim 17:652ab113bc2e 1696 // Save new displayMode, needed when 2 controllers are in use or when cursor is changed
wim 17:652ab113bc2e 1697 _currentMode = displayMode;
wim 15:b70ebfffb258 1698
wim 17:652ab113bc2e 1699 // Select and configure second LCD controller when needed
wim 17:652ab113bc2e 1700 if(_type==LCD40x4) {
wim 21:9eb628d9e164 1701 if (_ctrl_idx==_LCDCtrl_0) {
wim 17:652ab113bc2e 1702 // Configure primary LCD controller
wim 17:652ab113bc2e 1703 _setCursorAndDisplayMode(_currentMode, _currentCursor);
wim 11:9ec02df863a1 1704
wim 17:652ab113bc2e 1705 // Select 2nd controller
wim 21:9eb628d9e164 1706 _ctrl_idx=_LCDCtrl_1;
wim 17:652ab113bc2e 1707
wim 17:652ab113bc2e 1708 // Configure secondary LCD controller
wim 21:9eb628d9e164 1709 _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
wim 11:9ec02df863a1 1710
wim 17:652ab113bc2e 1711 // Restore current controller
wim 21:9eb628d9e164 1712 _ctrl_idx=_LCDCtrl_0;
wim 17:652ab113bc2e 1713 }
wim 17:652ab113bc2e 1714 else {
wim 17:652ab113bc2e 1715 // Select primary controller
wim 21:9eb628d9e164 1716 _ctrl_idx=_LCDCtrl_0;
wim 17:652ab113bc2e 1717
wim 17:652ab113bc2e 1718 // Configure primary LCD controller
wim 21:9eb628d9e164 1719 _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
wim 17:652ab113bc2e 1720
wim 17:652ab113bc2e 1721 // Restore current controller
wim 21:9eb628d9e164 1722 _ctrl_idx=_LCDCtrl_1;
wim 11:9ec02df863a1 1723
wim 17:652ab113bc2e 1724 // Configure secondary LCD controller
wim 17:652ab113bc2e 1725 _setCursorAndDisplayMode(_currentMode, _currentCursor);
wim 10:dd9b3a696acd 1726 }
wim 17:652ab113bc2e 1727 }
wim 17:652ab113bc2e 1728 else {
wim 17:652ab113bc2e 1729 // Configure primary LCD controller
wim 17:652ab113bc2e 1730 _setCursorAndDisplayMode(_currentMode, _currentCursor);
wim 30:033048611c01 1731 }
wim 17:652ab113bc2e 1732 }
wim 17:652ab113bc2e 1733
wim 29:a3663151aa65 1734 /** Low level method to restore the cursortype and display mode for current controller
wim 29:a3663151aa65 1735 */
wim 36:9f5f86dfd44a 1736 void TextLCD_Base::_setCursorAndDisplayMode(LCDMode displayMode, LCDCursor cursorType) {
wim 36:9f5f86dfd44a 1737
wim 36:9f5f86dfd44a 1738 // Configure current LCD controller
wim 36:9f5f86dfd44a 1739 switch (_ctrl) {
wim 36:9f5f86dfd44a 1740 case ST7070:
wim 36:9f5f86dfd44a 1741 //ST7070 does not support Cursorblink. The P bit selects the font instead !
wim 36:9f5f86dfd44a 1742 _writeCommand(0x08 | displayMode | (cursorType & 0x02));
wim 36:9f5f86dfd44a 1743 break;
wim 36:9f5f86dfd44a 1744 default:
wim 36:9f5f86dfd44a 1745 _writeCommand(0x08 | displayMode | cursorType);
wim 36:9f5f86dfd44a 1746 break;
wim 36:9f5f86dfd44a 1747 } //switch
wim 10:dd9b3a696acd 1748 }
wim 10:dd9b3a696acd 1749
wim 29:a3663151aa65 1750 /** Set the Backlight mode
wim 29:a3663151aa65 1751 *
wim 29:a3663151aa65 1752 * @param backlightMode The Backlight mode (LightOff, LightOn)
wim 29:a3663151aa65 1753 */
wim 21:9eb628d9e164 1754 void TextLCD_Base::setBacklight(LCDBacklight backlightMode) {
wim 20:e0da005a777f 1755
wim 35:311be6444a39 1756 #if (BACKLIGHT_INV==0)
wim 35:311be6444a39 1757 // Positive Backlight control pin logic
wim 20:e0da005a777f 1758 if (backlightMode == LightOn) {
wim 35:311be6444a39 1759 this->_setBL(true);
wim 20:e0da005a777f 1760 }
wim 20:e0da005a777f 1761 else {
wim 21:9eb628d9e164 1762 this->_setBL(false);
wim 20:e0da005a777f 1763 }
wim 35:311be6444a39 1764 #else
wim 35:311be6444a39 1765 // Inverted Backlight control pin logic
wim 35:311be6444a39 1766 if (backlightMode == LightOn) {
wim 35:311be6444a39 1767 this->_setBL(false);
wim 35:311be6444a39 1768 }
wim 35:311be6444a39 1769 else {
wim 35:311be6444a39 1770 this->_setBL(true);
wim 35:311be6444a39 1771 }
wim 35:311be6444a39 1772 #endif
wim 20:e0da005a777f 1773 }
wim 20:e0da005a777f 1774
wim 29:a3663151aa65 1775 /** Set User Defined Characters
wim 29:a3663151aa65 1776 *
wim 34:e5a0dcb43ecc 1777 * @param unsigned char c The Index of the UDC (0..7) for HD44780 or clones and (0..15) for some more advanced controllers
wim 34:e5a0dcb43ecc 1778 * @param char *udc_data The bitpatterns for the UDC (8 bytes of 5 significant bits for bitpattern and 3 bits for blinkmode (advanced types))
wim 29:a3663151aa65 1779 */
wim 21:9eb628d9e164 1780 void TextLCD_Base::setUDC(unsigned char c, char *udc_data) {
wim 15:b70ebfffb258 1781
wim 15:b70ebfffb258 1782 // Select and configure second LCD controller when needed
wim 15:b70ebfffb258 1783 if(_type==LCD40x4) {
wim 19:c747b9e2e7b8 1784 _LCDCtrl_Idx current_ctrl_idx = _ctrl_idx; // Temp save current controller
wim 15:b70ebfffb258 1785
wim 15:b70ebfffb258 1786 // Select primary controller
wim 21:9eb628d9e164 1787 _ctrl_idx=_LCDCtrl_0;
wim 15:b70ebfffb258 1788
wim 15:b70ebfffb258 1789 // Configure primary LCD controller
wim 15:b70ebfffb258 1790 _setUDC(c, udc_data);
wim 15:b70ebfffb258 1791
wim 15:b70ebfffb258 1792 // Select 2nd controller
wim 21:9eb628d9e164 1793 _ctrl_idx=_LCDCtrl_1;
wim 15:b70ebfffb258 1794
wim 15:b70ebfffb258 1795 // Configure secondary LCD controller
wim 15:b70ebfffb258 1796 _setUDC(c, udc_data);
wim 11:9ec02df863a1 1797
wim 15:b70ebfffb258 1798 // Restore current controller
wim 19:c747b9e2e7b8 1799 _ctrl_idx=current_ctrl_idx;
wim 15:b70ebfffb258 1800 }
wim 15:b70ebfffb258 1801 else {
wim 15:b70ebfffb258 1802 // Configure primary LCD controller
wim 15:b70ebfffb258 1803 _setUDC(c, udc_data);
wim 34:e5a0dcb43ecc 1804 }
wim 15:b70ebfffb258 1805 }
wim 15:b70ebfffb258 1806
wim 34:e5a0dcb43ecc 1807 /** Low level method to store user defined characters for current controller
wim 34:e5a0dcb43ecc 1808 *
wim 34:e5a0dcb43ecc 1809 * @param unsigned char c The Index of the UDC (0..7) for HD44780 clones and (0..15) for some more advanced controllers
wim 34:e5a0dcb43ecc 1810 * @param char *udc_data The bitpatterns for the UDC (8 bytes of 5 significant bits for bitpattern and 3 bits for blinkmode (advanced types))
wim 34:e5a0dcb43ecc 1811 */
wim 34:e5a0dcb43ecc 1812 void TextLCD_Base::_setUDC(unsigned char c, char *udc_data) {
wim 34:e5a0dcb43ecc 1813
wim 34:e5a0dcb43ecc 1814 switch (_ctrl) {
wim 34:e5a0dcb43ecc 1815 case PCF2103_3V3 : // Some UDCs may be used for Icons
wim 34:e5a0dcb43ecc 1816 case PCF2113_3V3 : // Some UDCs may be used for Icons
wim 34:e5a0dcb43ecc 1817 case PCF2116_3V3 :
wim 34:e5a0dcb43ecc 1818 case PCF2116_5V :
wim 34:e5a0dcb43ecc 1819 case PCF2119_3V3 : // Some UDCs may be used for Icons
wim 34:e5a0dcb43ecc 1820 c = c & 0x0F; // mask down to valid range
wim 34:e5a0dcb43ecc 1821 break;
wim 34:e5a0dcb43ecc 1822
wim 34:e5a0dcb43ecc 1823 default:
wim 34:e5a0dcb43ecc 1824 c = c & 0x07; // mask down to valid range
wim 34:e5a0dcb43ecc 1825 break;
wim 34:e5a0dcb43ecc 1826 } //switch _ctrl
wim 34:e5a0dcb43ecc 1827
wim 34:e5a0dcb43ecc 1828 // Select DD RAM for current LCD controller
wim 34:e5a0dcb43ecc 1829 // This is needed to correctly set Bit 6 of the addresspointer for controllers that support 16 UDCs
wim 34:e5a0dcb43ecc 1830 _writeCommand(0x80 | ((c << 3) & 0x40)) ;
wim 34:e5a0dcb43ecc 1831
wim 34:e5a0dcb43ecc 1832 // Select CG RAM for current LCD controller
wim 34:e5a0dcb43ecc 1833 _writeCommand(0x40 | ((c << 3) & 0x3F)); //Set CG-RAM address, (note that Bit 6 is retained and can not be set by this command !)
wim 34:e5a0dcb43ecc 1834 //8 sequential locations needed per UDC
wim 34:e5a0dcb43ecc 1835 // Store UDC pattern
wim 34:e5a0dcb43ecc 1836 for (int i=0; i<8; i++) {
wim 34:e5a0dcb43ecc 1837 _writeData(*udc_data++);
wim 34:e5a0dcb43ecc 1838 }
wim 34:e5a0dcb43ecc 1839
wim 34:e5a0dcb43ecc 1840 //Select DD RAM again for current LCD controller and restore the addresspointer
wim 34:e5a0dcb43ecc 1841 int addr = getAddress(_column, _row);
wim 34:e5a0dcb43ecc 1842 _writeCommand(0x80 | addr);
wim 34:e5a0dcb43ecc 1843 }
wim 32:59c4b8f648d4 1844
wim 36:9f5f86dfd44a 1845 /** Set UDC Blink and Icon blink
wim 33:900a94bc7585 1846 * setUDCBlink method is supported by some compatible devices (eg SSD1803)
wim 33:900a94bc7585 1847 *
wim 33:900a94bc7585 1848 * @param blinkMode The Blink mode (BlinkOff, BlinkOn)
wim 33:900a94bc7585 1849 */
wim 33:900a94bc7585 1850 void TextLCD_Base::setUDCBlink(LCDBlink blinkMode){
wim 36:9f5f86dfd44a 1851 // Blinking UDCs (and icons) are enabled when a specific controlbit (BE) is set.
wim 36:9f5f86dfd44a 1852 // The blinking pixels in the UDC and icons can be controlled by setting additional bits in the UDC or icon bitpattern.
wim 36:9f5f86dfd44a 1853 // UDCs are defined by an 8 byte bitpattern. The P0..P4 form the character pattern.
wim 33:900a94bc7585 1854 // P7 P6 P5 P4 P3 P2 P1 P0
wim 33:900a94bc7585 1855 // 0 B1 B0 x 0 1 1 1 0
wim 33:900a94bc7585 1856 // 1 B1 B0 x 1 0 0 0 1
wim 33:900a94bc7585 1857 // .............
wim 33:900a94bc7585 1858 // 7 B1 B0 x 1 0 0 0 1
wim 33:900a94bc7585 1859 //
wim 33:900a94bc7585 1860 // Bit 6 and Bit 7 in the pattern will control the blinking mode when Blink is enabled through BE.
wim 33:900a94bc7585 1861 // B1 B0 Mode
wim 33:900a94bc7585 1862 // 0 0 No Blinking in this row of the UDC
wim 33:900a94bc7585 1863 // 0 1 Enabled pixels in P4 will blink
wim 33:900a94bc7585 1864 // 1 x Enabled pixels in P0..P4 will blink
wim 36:9f5f86dfd44a 1865 //
wim 36:9f5f86dfd44a 1866 // Note: the PCF2103 and PCF2113 use UDCs to set Icons
wim 36:9f5f86dfd44a 1867 // 3 x 8 rows x 5 bits = 120 bits Icons for Normal pattern (UDC 0..2) and
wim 36:9f5f86dfd44a 1868 // 3 x 8 rows x 5 bits = 120 bits Icons for Blink pattern (UDC 4..6)
wim 36:9f5f86dfd44a 1869 // Note: the PCF2119 uses UDCs to set Icons
wim 36:9f5f86dfd44a 1870 // 4 x 8 rows x 5 bits = 160 bits Icons for Normal pattern (UDC 0..3) and
wim 36:9f5f86dfd44a 1871 // 4 x 8 rows x 5 bits = 160 bits Icons for Blink pattern (UDC 4..7)
wim 33:900a94bc7585 1872 switch (blinkMode) {
wim 33:900a94bc7585 1873 case BlinkOn:
wim 36:9f5f86dfd44a 1874 // Controllers that support UDC/Icon Blink
wim 33:900a94bc7585 1875 switch (_ctrl) {
wim 36:9f5f86dfd44a 1876 case KS0073 :
wim 33:900a94bc7585 1877 case KS0078 :
wim 36:9f5f86dfd44a 1878 _function_1 |= 0x02; // Enable UDC/Icon Blink
wim 36:9f5f86dfd44a 1879 _writeCommand(0x20 | _function_1); // Function set 0 0 1 DL N RE(1) BE 0/LP (Ext Regs)
wim 33:900a94bc7585 1880
wim 33:900a94bc7585 1881 _writeCommand(0x20 | _function); // Function set 0 0 1 DL N RE(0) DH REV (Std Regs)
wim 36:9f5f86dfd44a 1882 break; // case KS0073, KS0078 Controller
wim 33:900a94bc7585 1883
wim 33:900a94bc7585 1884 case US2066_3V3 :
wim 33:900a94bc7585 1885 case SSD1803_3V3 :
wim 36:9f5f86dfd44a 1886 _function_1 |= 0x04; // Enable UDC/Icon Blink
wim 33:900a94bc7585 1887 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N BE RE(1) REV
wim 33:900a94bc7585 1888 // Select Ext Instr Set
wim 33:900a94bc7585 1889
wim 33:900a94bc7585 1890 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 33:900a94bc7585 1891 // Select Std Instr set, Select IS=0
wim 33:900a94bc7585 1892 break; // case SSD1803, US2066
wim 36:9f5f86dfd44a 1893
wim 36:9f5f86dfd44a 1894 case PCF2103_3V3 :
wim 36:9f5f86dfd44a 1895 case PCF2113_3V3 :
wim 36:9f5f86dfd44a 1896 case PCF2119_3V3 :
wim 36:9f5f86dfd44a 1897 // Enable Icon Blink
wim 36:9f5f86dfd44a 1898 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 36:9f5f86dfd44a 1899 _writeCommand(0x08 | 0x02); // ICON Conf 0000 1, IM=0 (Char mode), IB=1 (Icon blink), 0 (Instr. Set 1)
wim 36:9f5f86dfd44a 1900 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 36:9f5f86dfd44a 1901
wim 36:9f5f86dfd44a 1902 break;
wim 33:900a94bc7585 1903
wim 33:900a94bc7585 1904 default:
wim 33:900a94bc7585 1905 //Unsupported feature for other controllers
wim 33:900a94bc7585 1906 break;
wim 33:900a94bc7585 1907 } //switch _ctrl
wim 33:900a94bc7585 1908
wim 36:9f5f86dfd44a 1909 break; // BlinkOn
wim 33:900a94bc7585 1910
wim 33:900a94bc7585 1911 case BlinkOff:
wim 33:900a94bc7585 1912 // Controllers that support UDC Blink
wim 33:900a94bc7585 1913 switch (_ctrl) {
wim 36:9f5f86dfd44a 1914 case KS0073 :
wim 33:900a94bc7585 1915 case KS0078 :
wim 36:9f5f86dfd44a 1916 _function_1 &= ~0x02; // Disable UDC/Icon Blink
wim 36:9f5f86dfd44a 1917 _writeCommand(0x20 | _function_1); // Function set 0 0 1 DL N RE(1) BE 0/LP (Ext Regs)
wim 33:900a94bc7585 1918
wim 33:900a94bc7585 1919 _writeCommand(0x20 | _function); // Function set 0 0 1 DL N RE(0) DH REV (Std Regs)
wim 36:9f5f86dfd44a 1920 break; // case KS0073, KS0078 Controller
wim 33:900a94bc7585 1921
wim 33:900a94bc7585 1922 case US2066_3V3 :
wim 33:900a94bc7585 1923 case SSD1803_3V3 :
wim 36:9f5f86dfd44a 1924 _function_1 &= ~0x04; // Disable UDC/Icon Blink
wim 33:900a94bc7585 1925 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N BE RE(1) REV
wim 33:900a94bc7585 1926 // Select Ext Instr Set
wim 33:900a94bc7585 1927
wim 33:900a94bc7585 1928 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 33:900a94bc7585 1929 // Select Std Instr set, Select IS=0
wim 33:900a94bc7585 1930 break; // case SSD1803, US2066
wim 36:9f5f86dfd44a 1931
wim 36:9f5f86dfd44a 1932 case PCF2103_3V3 :
wim 36:9f5f86dfd44a 1933 case PCF2113_3V3 :
wim 36:9f5f86dfd44a 1934 case PCF2119_3V3 :
wim 36:9f5f86dfd44a 1935 // Disable Icon Blink
wim 36:9f5f86dfd44a 1936 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 36:9f5f86dfd44a 1937 _writeCommand(0x08); // ICON Conf 0000 1, IM=0 (Char mode), IB=1 (Icon blink), 0 (Instr. Set 1)
wim 36:9f5f86dfd44a 1938 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 36:9f5f86dfd44a 1939
wim 36:9f5f86dfd44a 1940 break;
wim 33:900a94bc7585 1941
wim 33:900a94bc7585 1942 default:
wim 33:900a94bc7585 1943 //Unsupported feature for other controllers
wim 33:900a94bc7585 1944 break;
wim 33:900a94bc7585 1945 } //switch _ctrl
wim 33:900a94bc7585 1946
wim 36:9f5f86dfd44a 1947 break; //BlinkOff
wim 33:900a94bc7585 1948
wim 33:900a94bc7585 1949 default:
wim 33:900a94bc7585 1950 break;
wim 33:900a94bc7585 1951 } // blinkMode
wim 33:900a94bc7585 1952
wim 33:900a94bc7585 1953 } // setUDCBlink()
wim 33:900a94bc7585 1954
wim 33:900a94bc7585 1955
wim 32:59c4b8f648d4 1956 /** Set Contrast
wim 32:59c4b8f648d4 1957 * setContrast method is supported by some compatible devices (eg ST7032i) that have onboard LCD voltage generation
wim 32:59c4b8f648d4 1958 * Initial code for ST70XX imported from fork by JH1PJL
wim 32:59c4b8f648d4 1959 *
wim 32:59c4b8f648d4 1960 * @param unsigned char c contrast data (6 significant bits, valid range 0..63, Value 0 will disable the Vgen)
wim 32:59c4b8f648d4 1961 * @return none
wim 32:59c4b8f648d4 1962 */
wim 32:59c4b8f648d4 1963 //@TODO Add support for 40x4 dual controller
wim 32:59c4b8f648d4 1964 void TextLCD_Base::setContrast(unsigned char c) {
wim 32:59c4b8f648d4 1965
wim 32:59c4b8f648d4 1966 // Function set mode stored during Init. Make sure we dont accidentally switch between 1-line and 2-line mode!
wim 32:59c4b8f648d4 1967 // Icon/Booster mode stored during Init. Make sure we dont accidentally change this!
wim 32:59c4b8f648d4 1968
wim 32:59c4b8f648d4 1969 _contrast = c & 0x3F; // Sanity check
wim 32:59c4b8f648d4 1970
wim 33:900a94bc7585 1971 switch (_ctrl) {
wim 32:59c4b8f648d4 1972 case PCF2113_3V3 :
wim 32:59c4b8f648d4 1973 case PCF2119_3V3 :
wim 32:59c4b8f648d4 1974 if (_contrast < 5) _contrast = 0; // See datasheet. Sanity check for PCF2113/PCF2119
wim 32:59c4b8f648d4 1975 if (_contrast > 55) _contrast = 55;
wim 32:59c4b8f648d4 1976
wim 32:59c4b8f648d4 1977 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instruction Set = 1
wim 32:59c4b8f648d4 1978 _writeCommand(0x80 | 0x00 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=0, VA=contrast
wim 32:59c4b8f648d4 1979 _writeCommand(0x80 | 0x40 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=1, VB=contrast
wim 32:59c4b8f648d4 1980 _writeCommand(0x20 | _function); // Select Instruction Set = 0
wim 32:59c4b8f648d4 1981 break;
wim 32:59c4b8f648d4 1982
wim 32:59c4b8f648d4 1983 case ST7032_3V3 :
wim 32:59c4b8f648d4 1984 case ST7032_5V :
wim 32:59c4b8f648d4 1985 case ST7036_3V3 :
wim 32:59c4b8f648d4 1986 // case ST7036_5V :
wim 32:59c4b8f648d4 1987 case SSD1803_3V3 :
wim 32:59c4b8f648d4 1988 _writeCommand(0x20 | _function | 0x01); // Select Instruction Set = 1
wim 32:59c4b8f648d4 1989 _writeCommand(0x70 | (_contrast & 0x0F)); // Contrast Low bits
wim 32:59c4b8f648d4 1990 _writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Contrast High bits
wim 32:59c4b8f648d4 1991 _writeCommand(0x20 | _function); // Select Instruction Set = 0
wim 32:59c4b8f648d4 1992 break;
wim 32:59c4b8f648d4 1993
wim 33:900a94bc7585 1994 case US2066_3V3 :
wim 33:900a94bc7585 1995 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N BE RE(1) REV
wim 33:900a94bc7585 1996 // Select Extended Instruction Set
wim 33:900a94bc7585 1997
wim 33:900a94bc7585 1998 _writeCommand(0x79); // Function Select OLED: 0 1 1 1 1 0 0 1 (Ext Instr Set)
wim 33:900a94bc7585 1999
wim 33:900a94bc7585 2000 _writeCommand(0x81); // Set Contrast Control: 1 0 0 0 0 0 0 1 (Ext Instr Set, OLED)
wim 33:900a94bc7585 2001 _writeCommand((_contrast << 2) | 0x03); // Set Contrast Value: 8 bits. Use 6 bits for compatibility
wim 33:900a94bc7585 2002
wim 33:900a94bc7585 2003 _writeCommand(0x78); // Function Disable OLED: 0 1 1 1 1 0 0 0 (Ext Instr Set)
wim 33:900a94bc7585 2004
wim 33:900a94bc7585 2005 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 33:900a94bc7585 2006 // Select Std Instr set, Select IS=0
wim 33:900a94bc7585 2007 break;
wim 33:900a94bc7585 2008
wim 34:e5a0dcb43ecc 2009 //not yet tested on hardware
wim 32:59c4b8f648d4 2010 case PT6314 :
wim 32:59c4b8f648d4 2011 // Only 2 significant bits
wim 32:59c4b8f648d4 2012 // 0x00 = 100%
wim 32:59c4b8f648d4 2013 // 0x01 = 75%
wim 32:59c4b8f648d4 2014 // 0x02 = 50%
wim 32:59c4b8f648d4 2015 // 0x03 = 25%
wim 32:59c4b8f648d4 2016 _writeCommand(0x20 | _function | ((~_contrast) >> 4)); // Invert and shift to use 2 MSBs
wim 32:59c4b8f648d4 2017 break;
wim 32:59c4b8f648d4 2018
wim 32:59c4b8f648d4 2019 default:
wim 32:59c4b8f648d4 2020 //Unsupported feature for other controllers
wim 33:900a94bc7585 2021 break;
wim 33:900a94bc7585 2022 } // end switch
wim 33:900a94bc7585 2023 } // end setContrast()
wim 32:59c4b8f648d4 2024
wim 32:59c4b8f648d4 2025
wim 32:59c4b8f648d4 2026 /** Set Power
wim 32:59c4b8f648d4 2027 * setPower method is supported by some compatible devices (eg SSD1803) that have power down modes
wim 32:59c4b8f648d4 2028 *
wim 32:59c4b8f648d4 2029 * @param bool powerOn Power on/off
wim 32:59c4b8f648d4 2030 * @return none
wim 32:59c4b8f648d4 2031 */
wim 32:59c4b8f648d4 2032 //@TODO Add support for 40x4 dual controller
wim 32:59c4b8f648d4 2033 void TextLCD_Base::setPower(bool powerOn) {
wim 32:59c4b8f648d4 2034
wim 32:59c4b8f648d4 2035 if (powerOn) {
wim 32:59c4b8f648d4 2036 // Switch on
wim 32:59c4b8f648d4 2037 setMode(DispOn);
wim 32:59c4b8f648d4 2038
wim 32:59c4b8f648d4 2039 // Controllers that supports specific Power Down mode
wim 32:59c4b8f648d4 2040 switch (_ctrl) {
wim 32:59c4b8f648d4 2041
wim 32:59c4b8f648d4 2042 // case PCF2113_3V3 :
wim 32:59c4b8f648d4 2043 // case PCF2119_3V3 :
wim 32:59c4b8f648d4 2044 // case ST7032_3V3 :
wim 32:59c4b8f648d4 2045 //@todo
wim 33:900a94bc7585 2046 // enable Booster Bon
wim 33:900a94bc7585 2047
wim 33:900a94bc7585 2048 case WS0010:
wim 33:900a94bc7585 2049 _writeCommand(0x17); // Char mode, DC/DC on
wim 33:900a94bc7585 2050 wait_ms(10); // Wait 10ms to ensure powered up
wim 33:900a94bc7585 2051 break;
wim 33:900a94bc7585 2052
wim 36:9f5f86dfd44a 2053 case KS0073:
wim 33:900a94bc7585 2054 case KS0078:
wim 32:59c4b8f648d4 2055 case SSD1803_3V3 :
wim 32:59c4b8f648d4 2056 // case SSD1803_5V :
wim 33:900a94bc7585 2057 _writeCommand(0x20 | _function_1); // Select Ext Instr Set
wim 33:900a94bc7585 2058 _writeCommand(0x02); // Power On
wim 32:59c4b8f648d4 2059 _writeCommand(0x20 | _function); // Select Std Instr Set
wim 32:59c4b8f648d4 2060 break;
wim 32:59c4b8f648d4 2061
wim 32:59c4b8f648d4 2062 default:
wim 32:59c4b8f648d4 2063 //Unsupported feature for other controllers
wim 32:59c4b8f648d4 2064 break;
wim 32:59c4b8f648d4 2065 } // end switch
wim 32:59c4b8f648d4 2066 }
wim 32:59c4b8f648d4 2067 else {
wim 32:59c4b8f648d4 2068 // Switch off
wim 32:59c4b8f648d4 2069 setMode(DispOff);
wim 32:59c4b8f648d4 2070
wim 32:59c4b8f648d4 2071 // Controllers that support specific Power Down mode
wim 32:59c4b8f648d4 2072 switch (_ctrl) {
wim 32:59c4b8f648d4 2073
wim 32:59c4b8f648d4 2074 // case PCF2113_3V3 :
wim 32:59c4b8f648d4 2075 // case PCF2119_3V3 :
wim 32:59c4b8f648d4 2076 // case ST7032_3V3 :
wim 32:59c4b8f648d4 2077 //@todo
wim 33:900a94bc7585 2078 // disable Booster Bon
wim 33:900a94bc7585 2079
wim 33:900a94bc7585 2080 case WS0010:
wim 33:900a94bc7585 2081 _writeCommand(0x13); // Char mode, DC/DC off
wim 33:900a94bc7585 2082 break;
wim 33:900a94bc7585 2083
wim 36:9f5f86dfd44a 2084 case KS0073:
wim 33:900a94bc7585 2085 case KS0078:
wim 32:59c4b8f648d4 2086 case SSD1803_3V3 :
wim 32:59c4b8f648d4 2087 // case SSD1803_5V :
wim 33:900a94bc7585 2088 _writeCommand(0x20 | _function_1); // Select Ext Instr Set
wim 33:900a94bc7585 2089 _writeCommand(0x03); // Power Down
wim 32:59c4b8f648d4 2090 _writeCommand(0x20 | _function); // Select Std Instr Set
wim 32:59c4b8f648d4 2091 break;
wim 32:59c4b8f648d4 2092
wim 32:59c4b8f648d4 2093 default:
wim 32:59c4b8f648d4 2094 //Unsupported feature for other controllers
wim 32:59c4b8f648d4 2095 break;
wim 32:59c4b8f648d4 2096 } // end switch
wim 32:59c4b8f648d4 2097 }
wim 33:900a94bc7585 2098 } // end setPower()
wim 33:900a94bc7585 2099
wim 33:900a94bc7585 2100
wim 33:900a94bc7585 2101 /** Set Orient
wim 33:900a94bc7585 2102 * setOrient method is supported by some compatible devices (eg SSD1803, US2066) that have top/bottom view modes
wim 33:900a94bc7585 2103 *
wim 33:900a94bc7585 2104 * @param LCDOrient orient Orientation
wim 33:900a94bc7585 2105 * @return none
wim 33:900a94bc7585 2106 */
wim 33:900a94bc7585 2107 void TextLCD_Base::setOrient(LCDOrient orient){
wim 33:900a94bc7585 2108
wim 33:900a94bc7585 2109 switch (orient) {
wim 33:900a94bc7585 2110
wim 33:900a94bc7585 2111 case Top:
wim 33:900a94bc7585 2112 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2113 case PCF2103_3V3:
wim 34:e5a0dcb43ecc 2114 case PCF2116_3V3:
wim 34:e5a0dcb43ecc 2115 case PCF2116_5V:
wim 34:e5a0dcb43ecc 2116 case PCF2119_3V3:
wim 34:e5a0dcb43ecc 2117 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 34:e5a0dcb43ecc 2118 _writeCommand(0x05); // Display Conf Set 0000 0, 1, P=0, Q=1 (Instr. Set 1)
wim 34:e5a0dcb43ecc 2119 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 34:e5a0dcb43ecc 2120 break;
wim 34:e5a0dcb43ecc 2121
wim 33:900a94bc7585 2122 case SSD1803_3V3 :
wim 33:900a94bc7585 2123 // case SSD1803_5V :
wim 33:900a94bc7585 2124 case US2066_3V3 :
wim 33:900a94bc7585 2125 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 2126 // Select Extended Instruction Set
wim 33:900a94bc7585 2127 // _writeCommand(0x06); // Set ext entry mode, 0 0 0 0 0 1 BDC=1 COM1-32, BDS=0 SEG100-1 "Bottom View" (Ext Instr Set)
wim 33:900a94bc7585 2128 _writeCommand(0x05); // Set ext entry mode, 0 0 0 0 0 1 BDC=0 COM32-1, BDS=1 SEG1-100 "Top View" (Ext Instr Set)
wim 33:900a94bc7585 2129
wim 33:900a94bc7585 2130 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 33:900a94bc7585 2131 // Select Std Instr set, Select IS=0
wim 33:900a94bc7585 2132 break;
wim 36:9f5f86dfd44a 2133
wim 36:9f5f86dfd44a 2134 case ST7070:
wim 36:9f5f86dfd44a 2135 _writeCommand(0x20 | _function | 0x04); // Set function, 0 0 1 DL, N, EXT=1, x, x (Select Instr Set = 1)
wim 36:9f5f86dfd44a 2136
wim 36:9f5f86dfd44a 2137 _writeCommand(0x40 | 0x00); // COM/SEG directions 0 1 0 0 C1, C2, S1, S2 (Instr Set 1)
wim 36:9f5f86dfd44a 2138 // C1=1: Com1-8 -> Com8-1; C2=1: Com9-16 -> Com16-9
wim 36:9f5f86dfd44a 2139 // S1=1: Seg1-40 -> Seg40-1; S2=1: Seg41-80 -> Seg80-41
wim 36:9f5f86dfd44a 2140 wait_ms(5); // Wait to ensure completion or ST7070 fails to set Top/Bottom after reset..
wim 36:9f5f86dfd44a 2141
wim 36:9f5f86dfd44a 2142 _writeCommand(0x20 | _function); // Set function, EXT=0 (Select Instr Set = 0)
wim 36:9f5f86dfd44a 2143
wim 36:9f5f86dfd44a 2144 break; // case ST7070 Controller
wim 33:900a94bc7585 2145
wim 33:900a94bc7585 2146 default:
wim 33:900a94bc7585 2147 //Unsupported feature for other controllers
wim 33:900a94bc7585 2148 break;
wim 33:900a94bc7585 2149
wim 33:900a94bc7585 2150 } // end switch _ctrl
wim 33:900a94bc7585 2151 break; // end Top
wim 33:900a94bc7585 2152
wim 33:900a94bc7585 2153 case Bottom:
wim 33:900a94bc7585 2154 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2155 case PCF2103_3V3:
wim 34:e5a0dcb43ecc 2156 case PCF2116_3V3:
wim 34:e5a0dcb43ecc 2157 case PCF2116_5V:
wim 34:e5a0dcb43ecc 2158 case PCF2119_3V3:
wim 34:e5a0dcb43ecc 2159 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 34:e5a0dcb43ecc 2160 _writeCommand(0x06); // Display Conf Set 0000 0, 1, P=1, Q=0 (Instr. Set 1)
wim 34:e5a0dcb43ecc 2161 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 34:e5a0dcb43ecc 2162 break;
wim 34:e5a0dcb43ecc 2163
wim 33:900a94bc7585 2164 case SSD1803_3V3 :
wim 33:900a94bc7585 2165 // case SSD1803_5V :
wim 33:900a94bc7585 2166 case US2066_3V3 :
wim 33:900a94bc7585 2167 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 2168 // Select Extended Instruction Set
wim 33:900a94bc7585 2169 _writeCommand(0x06); // Set ext entry mode, 0 0 0 0 0 1 BDC=1 COM1-32, BDS=0 SEG100-1 "Bottom View" (Ext Instr Set)
wim 33:900a94bc7585 2170 // _writeCommand(0x05); // Set ext entry mode, 0 0 0 0 0 1 BDC=0 COM32-1, BDS=1 SEG1-100 "Top View" (Ext Instr Set)
wim 33:900a94bc7585 2171
wim 33:900a94bc7585 2172 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 33:900a94bc7585 2173 // Select Std Instr set, Select IS=0
wim 33:900a94bc7585 2174 break;
wim 36:9f5f86dfd44a 2175
wim 36:9f5f86dfd44a 2176 case ST7070:
wim 36:9f5f86dfd44a 2177 //Note: this does not result in correct top/bottom view.
wim 36:9f5f86dfd44a 2178 //The left and right half of each row are reversed and the addressing of both rows is also incorrect:
wim 36:9f5f86dfd44a 2179 //Top/bottomline when orientation is flipped:
wim 36:9f5f86dfd44a 2180 // 0x48...0x4F 0x40...0x47
wim 36:9f5f86dfd44a 2181 // 0x08...0x0F 0x00...0x07
wim 36:9f5f86dfd44a 2182 _writeCommand(0x20 | _function | 0x04); // Set function, 0 0 1 DL N EXT=1 x x (Select Instr Set = 1)
wim 36:9f5f86dfd44a 2183
wim 36:9f5f86dfd44a 2184 _writeCommand(0x40 | 0x0F); // COM/SEG directions 0 1 0 0 C1, C2, S1, S2 (Instr Set 1)
wim 36:9f5f86dfd44a 2185 // C1=1: Com1-8 -> Com8-1; C2=1: Com9-16 -> Com16-9
wim 36:9f5f86dfd44a 2186 // S1=1: Seg1-40 -> Seg40-1; S2=1: Seg41-80 -> Seg80-41
wim 36:9f5f86dfd44a 2187 wait_ms(5); // Wait to ensure completion or ST7070 fails to set Top/Bottom after reset..
wim 36:9f5f86dfd44a 2188
wim 36:9f5f86dfd44a 2189 _writeCommand(0x20 | _function); // Set function, EXT=0 (Select Instr Set = 0)
wim 36:9f5f86dfd44a 2190
wim 36:9f5f86dfd44a 2191 break; // case ST7070 Controller
wim 33:900a94bc7585 2192
wim 33:900a94bc7585 2193 default:
wim 33:900a94bc7585 2194 //Unsupported feature for other controllers
wim 33:900a94bc7585 2195 break;
wim 33:900a94bc7585 2196
wim 33:900a94bc7585 2197 } // end switch _ctrl
wim 33:900a94bc7585 2198
wim 33:900a94bc7585 2199 break; // end Bottom
wim 33:900a94bc7585 2200 } // end switch orient
wim 33:900a94bc7585 2201 } // end setOrient()
wim 33:900a94bc7585 2202
wim 34:e5a0dcb43ecc 2203 /** Set Big Font
wim 34:e5a0dcb43ecc 2204 * setBigFont method is supported by some compatible devices (eg SSD1803, US2066)
wim 34:e5a0dcb43ecc 2205 *
wim 34:e5a0dcb43ecc 2206 * @param lines The selected Big Font lines (None, TopLine, CenterLine, BottomLine, TopBottomLine)
wim 34:e5a0dcb43ecc 2207 * Double height characters can be shown on lines 1+2, 2+3, 3+4 or 1+2 and 3+4
wim 34:e5a0dcb43ecc 2208 * Valid double height lines depend on the LCDs number of rows.
wim 34:e5a0dcb43ecc 2209 */
wim 34:e5a0dcb43ecc 2210 void TextLCD_Base::setBigFont(LCDBigFont lines) {
wim 34:e5a0dcb43ecc 2211
wim 34:e5a0dcb43ecc 2212 switch (lines) {
wim 34:e5a0dcb43ecc 2213 case None:
wim 34:e5a0dcb43ecc 2214 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2215 case SSD1803_3V3 :
wim 34:e5a0dcb43ecc 2216 case US2066_3V3 :
wim 34:e5a0dcb43ecc 2217 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 34:e5a0dcb43ecc 2218 // Select Extended Instruction Set
wim 34:e5a0dcb43ecc 2219 _writeCommand(0x1C); // Double Height, 0 0 0 1 UD2=1, UD1=1, X, DH'=0 (Ext Instr Set)
wim 34:e5a0dcb43ecc 2220 // Default
wim 34:e5a0dcb43ecc 2221 _function = _function & ~0x04; // Set function, 0 0 1 DL N DH=0 RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2222 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2223 // Select Std Instr set, Select IS=0
wim 34:e5a0dcb43ecc 2224 break; // end US2066
wim 34:e5a0dcb43ecc 2225
wim 34:e5a0dcb43ecc 2226 default:
wim 34:e5a0dcb43ecc 2227 break; // end default
wim 34:e5a0dcb43ecc 2228 } // end switch _ctrl
wim 34:e5a0dcb43ecc 2229 break; // end None
wim 34:e5a0dcb43ecc 2230
wim 34:e5a0dcb43ecc 2231 case TopLine:
wim 34:e5a0dcb43ecc 2232 if (_nr_rows < 2) return; //Sanity check
wim 34:e5a0dcb43ecc 2233
wim 34:e5a0dcb43ecc 2234 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2235 case SSD1803_3V3 :
wim 34:e5a0dcb43ecc 2236 case US2066_3V3 :
wim 34:e5a0dcb43ecc 2237 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 34:e5a0dcb43ecc 2238 // Select Extended Instruction Set
wim 34:e5a0dcb43ecc 2239 _writeCommand(0x1C); // Double Height, 0 0 0 1 UD2=1, UD1=1, X, DH'=0 (Ext Instr Set)
wim 34:e5a0dcb43ecc 2240 // Default
wim 34:e5a0dcb43ecc 2241 _function = _function | 0x04; // Set function, 0 0 1 DL N DH=1 RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2242 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2243 // Select Std Instr set, Select IS=0
wim 34:e5a0dcb43ecc 2244 break; // end US2066, SSD1803
wim 34:e5a0dcb43ecc 2245
wim 34:e5a0dcb43ecc 2246 default:
wim 34:e5a0dcb43ecc 2247 break; // end default
wim 34:e5a0dcb43ecc 2248 } // end switch _ctrl
wim 34:e5a0dcb43ecc 2249 break; // end TopLine
wim 34:e5a0dcb43ecc 2250
wim 34:e5a0dcb43ecc 2251 case CenterLine:
wim 34:e5a0dcb43ecc 2252 if (_nr_rows != 4) return; //Sanity check
wim 34:e5a0dcb43ecc 2253
wim 34:e5a0dcb43ecc 2254 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2255 case SSD1803_3V3 :
wim 34:e5a0dcb43ecc 2256 case US2066_3V3 :
wim 34:e5a0dcb43ecc 2257 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 34:e5a0dcb43ecc 2258 // Select Extended Instruction Set
wim 34:e5a0dcb43ecc 2259 _writeCommand(0x14); // Double Height, 0 0 0 1 UD2=0, UD1=1, X, DH'=0 (Ext Instr Set)
wim 34:e5a0dcb43ecc 2260 // Default
wim 34:e5a0dcb43ecc 2261 _function = _function | 0x04; // Set function, 0 0 1 DL N DH=1 RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2262 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2263 // Select Std Instr set, Select IS=0
wim 34:e5a0dcb43ecc 2264 break; // end US2066, SSD1803
wim 34:e5a0dcb43ecc 2265
wim 34:e5a0dcb43ecc 2266 default:
wim 34:e5a0dcb43ecc 2267 break; // end default
wim 34:e5a0dcb43ecc 2268 } // end switch _ctrl
wim 34:e5a0dcb43ecc 2269 break; // end CenterLine
wim 34:e5a0dcb43ecc 2270
wim 34:e5a0dcb43ecc 2271 case BottomLine:
wim 34:e5a0dcb43ecc 2272 if (_nr_rows < 3) return; //Sanity check
wim 34:e5a0dcb43ecc 2273
wim 34:e5a0dcb43ecc 2274 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2275 case SSD1803_3V3 :
wim 34:e5a0dcb43ecc 2276 case US2066_3V3 :
wim 34:e5a0dcb43ecc 2277 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 34:e5a0dcb43ecc 2278 // Select Extended Instruction Set
wim 34:e5a0dcb43ecc 2279 if (_nr_rows == 3) {
wim 34:e5a0dcb43ecc 2280 _writeCommand(0x14); // Double Height, 0 0 0 1 UD2=0, UD1=1, X, DH'=0 (Ext Instr Set)
wim 34:e5a0dcb43ecc 2281 }
wim 34:e5a0dcb43ecc 2282 else {
wim 34:e5a0dcb43ecc 2283 _writeCommand(0x10); // Double Height, 0 0 0 1 UD2=0, UD1=0, X, DH'=0 (Ext Instr Set)
wim 34:e5a0dcb43ecc 2284 }
wim 34:e5a0dcb43ecc 2285 _function = _function | 0x04; // Set function, 0 0 1 DL N DH=1 RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2286 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2287 // Select Std Instr set, Select IS=0
wim 34:e5a0dcb43ecc 2288 break; // end US2066, SSD1803
wim 34:e5a0dcb43ecc 2289
wim 34:e5a0dcb43ecc 2290 default:
wim 34:e5a0dcb43ecc 2291 break; // end default
wim 34:e5a0dcb43ecc 2292 } // end switch _ctrl
wim 34:e5a0dcb43ecc 2293 break; // end BottomLine
wim 34:e5a0dcb43ecc 2294
wim 34:e5a0dcb43ecc 2295 case TopBottomLine:
wim 34:e5a0dcb43ecc 2296 if (_nr_rows != 4) return; //Sanity check
wim 34:e5a0dcb43ecc 2297
wim 34:e5a0dcb43ecc 2298 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2299 case SSD1803_3V3 :
wim 34:e5a0dcb43ecc 2300 case US2066_3V3 :
wim 34:e5a0dcb43ecc 2301 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 34:e5a0dcb43ecc 2302 // Select Extended Instruction Set
wim 34:e5a0dcb43ecc 2303 _writeCommand(0x18); // Double Height, 0 0 0 1 UD2=1, UD1=0, X, DH'=0 (Ext Instr Set)
wim 34:e5a0dcb43ecc 2304 // Default
wim 34:e5a0dcb43ecc 2305 _function = _function | 0x04; // Set function, 0 0 1 DL N DH=1 RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2306 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2307 // Select Std Instr set, Select IS=0
wim 34:e5a0dcb43ecc 2308 break; // end US2066, SSD1803
wim 34:e5a0dcb43ecc 2309
wim 34:e5a0dcb43ecc 2310 default:
wim 34:e5a0dcb43ecc 2311 break; // end default
wim 34:e5a0dcb43ecc 2312 } // end switch _ctrl
wim 34:e5a0dcb43ecc 2313 break; // end TopBottomLine
wim 34:e5a0dcb43ecc 2314
wim 34:e5a0dcb43ecc 2315 } // end switch lines
wim 34:e5a0dcb43ecc 2316
wim 34:e5a0dcb43ecc 2317 } // end setBigFont()
wim 32:59c4b8f648d4 2318
wim 36:9f5f86dfd44a 2319
wim 36:9f5f86dfd44a 2320 /** Set Icons
wim 36:9f5f86dfd44a 2321 *
wim 36:9f5f86dfd44a 2322 * @param unsigned char idx The Index of the icon pattern (0..15) for KS0073 and similar controllers
wim 36:9f5f86dfd44a 2323 * and Index (0..31) for PCF2103 and similar controllers
wim 36:9f5f86dfd44a 2324 * @param unsigned char data The bitpattern for the icons (6 lsb for KS0073 bitpattern (5 lsb for KS0078) and 2 msb for blinkmode)
wim 36:9f5f86dfd44a 2325 * The bitpattern for the PCF2103 icons is 5 lsb (UDC 0..2) and 5 lsb for blinkmode (UDC 4..6)
wim 36:9f5f86dfd44a 2326 */
wim 36:9f5f86dfd44a 2327 void TextLCD_Base::setIcon(unsigned char idx, unsigned char data) {
wim 36:9f5f86dfd44a 2328 // Blinking icons are enabled when a specific controlbit (BE) is set.
wim 36:9f5f86dfd44a 2329 // The blinking pixels in the icons can be controlled by setting additional bits in the icon bitpattern.
wim 36:9f5f86dfd44a 2330 // Icons are defined by a byte bitpattern. The P0..P5 form the Icon pattern for KS0073, and P0..P4 for KS0078
wim 36:9f5f86dfd44a 2331 // P7 P6 P5 P4 P3 P2 P1 P0
wim 36:9f5f86dfd44a 2332 // 0 B1 B0 0 0 1 1 1 0
wim 36:9f5f86dfd44a 2333 // 1 B1 B0 1 1 0 0 0 1
wim 36:9f5f86dfd44a 2334 // .............
wim 36:9f5f86dfd44a 2335 // 15 B1 B0 1 1 0 0 0 1
wim 36:9f5f86dfd44a 2336 //
wim 36:9f5f86dfd44a 2337 // Bit 6 and Bit 7 in the pattern will control the blinking mode when Blink is enabled through BE.
wim 36:9f5f86dfd44a 2338 // B1 B0 Mode
wim 36:9f5f86dfd44a 2339 // 0 0 No Blinking for this icon row
wim 36:9f5f86dfd44a 2340 // 0 1 Enabled pixels in P5 will blink
wim 36:9f5f86dfd44a 2341 // 1 x Enabled pixels in P0..P5 will blink
wim 36:9f5f86dfd44a 2342 //
wim 36:9f5f86dfd44a 2343 // Note: the PCF2103 and PCF2113 use UDCs to set Icons
wim 36:9f5f86dfd44a 2344 // 3 x 8 rows x 5 bits = 120 bits Icons for Normal pattern (UDC 0..2) and
wim 36:9f5f86dfd44a 2345 // 3 x 8 rows x 5 bits = 120 bits Icons for Blink pattern (UDC 4..6)
wim 36:9f5f86dfd44a 2346 // Note: the PCF2119 uses UDCs to set Icons
wim 36:9f5f86dfd44a 2347 // 4 x 8 rows x 5 bits = 160 bits Icons for Normal pattern (UDC 0..3) and
wim 36:9f5f86dfd44a 2348 // 4 x 8 rows x 5 bits = 160 bits Icons for Blink pattern (UDC 4..7)
wim 36:9f5f86dfd44a 2349
wim 36:9f5f86dfd44a 2350 switch (_ctrl) {
wim 36:9f5f86dfd44a 2351 case KS0073:
wim 36:9f5f86dfd44a 2352 case KS0078:
wim 36:9f5f86dfd44a 2353 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N RE(1) BE LP
wim 36:9f5f86dfd44a 2354 // Select Extended Instruction Set
wim 36:9f5f86dfd44a 2355 _writeCommand(0x40 | (idx & 0x0F)); // Set Icon Address, mask Address to valid range (Ext Instr Set)
wim 36:9f5f86dfd44a 2356
wim 36:9f5f86dfd44a 2357 _writeData(data); // Set Icon pattern (Ext Instr Set)
wim 36:9f5f86dfd44a 2358
wim 36:9f5f86dfd44a 2359 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N RE(0) DH REV Select Instruction Set 0
wim 36:9f5f86dfd44a 2360 // Select Std Instr set, Select IS=0
wim 36:9f5f86dfd44a 2361 break; // end KS0073, KS0078
wim 36:9f5f86dfd44a 2362
wim 36:9f5f86dfd44a 2363 case ST7032_3V3:
wim 36:9f5f86dfd44a 2364 case ST7032_5V:
wim 36:9f5f86dfd44a 2365 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N F 0 IS=1 Select Instr Set = 1
wim 36:9f5f86dfd44a 2366 _writeCommand(0x40 | (idx & 0x0F)); // Set Icon Address, mask Address to valid range (Instr Set 1)
wim 36:9f5f86dfd44a 2367
wim 36:9f5f86dfd44a 2368 _writeData(data & 0x1F); // Set Icon pattern, no blink support (Instr Set 1)
wim 36:9f5f86dfd44a 2369
wim 36:9f5f86dfd44a 2370 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N RE(0) DH REV Select Instruction Set 0
wim 36:9f5f86dfd44a 2371 // Select Std Instr set, Select IS=0
wim 36:9f5f86dfd44a 2372 break; // end ST7032
wim 36:9f5f86dfd44a 2373
wim 36:9f5f86dfd44a 2374 case ST7036_3V3:
wim 36:9f5f86dfd44a 2375 case ST7036_5V:
wim 36:9f5f86dfd44a 2376 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N DH IS2,IS1 = 01 (Select Instr Set = 1)
wim 36:9f5f86dfd44a 2377 _writeCommand(0x40 | (idx & 0x0F)); // Set Icon Address, mask Address to valid range (Instr Set 1)
wim 36:9f5f86dfd44a 2378
wim 36:9f5f86dfd44a 2379 _writeData(data & 0x1F); // Set Icon pattern, no blink support (Instr Set 1)
wim 36:9f5f86dfd44a 2380
wim 36:9f5f86dfd44a 2381 _writeCommand(0x20 | _function); // Set function, IS2,IS1 = 00 (Select Instr Set = 0)
wim 36:9f5f86dfd44a 2382 // Select Std Instr set, Select IS=0
wim 36:9f5f86dfd44a 2383 break; // end ST7036
wim 36:9f5f86dfd44a 2384
wim 36:9f5f86dfd44a 2385 case SSD1803_3V3:
wim 36:9f5f86dfd44a 2386 // case SSD1803_5V:
wim 36:9f5f86dfd44a 2387 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N DH RE(0) IS
wim 36:9f5f86dfd44a 2388 // Select Instruction Set 1
wim 36:9f5f86dfd44a 2389 _writeCommand(0x40 | (idx & 0x0F)); // Set Icon Address, mask Address to valid range (Instr Set = 1)
wim 36:9f5f86dfd44a 2390 _writeData(data); // Set Icon pattern (Instr Set = 1)
wim 36:9f5f86dfd44a 2391
wim 36:9f5f86dfd44a 2392 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS
wim 36:9f5f86dfd44a 2393 // Select IS=0
wim 36:9f5f86dfd44a 2394 break; // end SSD1803
wim 36:9f5f86dfd44a 2395
wim 36:9f5f86dfd44a 2396 case PCF2103_3V3:
wim 36:9f5f86dfd44a 2397 case PCF2113_3V3:
wim 36:9f5f86dfd44a 2398 case PCF2119_3V3:
wim 36:9f5f86dfd44a 2399 // Store UDC/Icon pattern for PCF2103 and PCF2113:
wim 36:9f5f86dfd44a 2400 // 3 x 8 rows x 5 bits = 120 bits for Normal pattern (UDC 0..2) and
wim 36:9f5f86dfd44a 2401 // 3 x 8 rows x 5 bits = 120 bits for Blink pattern (UDC 4..6)
wim 36:9f5f86dfd44a 2402 // Store UDC/Icon pattern for PCF2119:
wim 36:9f5f86dfd44a 2403 // 4 x 8 rows x 5 bits = 160 bits for Normal pattern (UDC 0..3) and
wim 36:9f5f86dfd44a 2404 // 4 x 8 rows x 5 bits = 160 bits for Blink pattern (UDC 4..7)
wim 36:9f5f86dfd44a 2405 _writeCommand(0x40 | (idx & 0x3F)); //Set CG-RAM address, 8 sequential locations needed per UDC
wim 36:9f5f86dfd44a 2406 _writeData(data); // Set Icon pattern (Instr Set = 1)
wim 36:9f5f86dfd44a 2407 break; // case PCF2103_3V3 Controller
wim 36:9f5f86dfd44a 2408
wim 36:9f5f86dfd44a 2409 default:
wim 36:9f5f86dfd44a 2410 break; // end default
wim 36:9f5f86dfd44a 2411 } // end switch _ctrl
wim 36:9f5f86dfd44a 2412
wim 36:9f5f86dfd44a 2413 //Select DD RAM again for current LCD controller and restore the addresspointer
wim 36:9f5f86dfd44a 2414 int addr = getAddress(_column, _row);
wim 36:9f5f86dfd44a 2415 _writeCommand(0x80 | addr);
wim 36:9f5f86dfd44a 2416
wim 36:9f5f86dfd44a 2417 } // end setIcon()
wim 36:9f5f86dfd44a 2418
wim 36:9f5f86dfd44a 2419 /** Clear Icons
wim 36:9f5f86dfd44a 2420 *
wim 36:9f5f86dfd44a 2421 * @param none
wim 36:9f5f86dfd44a 2422 * @return none
wim 36:9f5f86dfd44a 2423 */
wim 36:9f5f86dfd44a 2424 //@TODO Add support for 40x4 dual controller
wim 36:9f5f86dfd44a 2425 void TextLCD_Base::clrIcon() {
wim 36:9f5f86dfd44a 2426 // Icons are defined by a byte bitpattern. The P0..P5 form the Icon pattern for KS0073, and P0..P4 for KS0078
wim 36:9f5f86dfd44a 2427 // P7 P6 P5 P4 P3 P2 P1 P0
wim 36:9f5f86dfd44a 2428 // 0 B1 B0 0 0 0 0 0 0
wim 36:9f5f86dfd44a 2429 // 1 B1 B0 0 0 0 0 0 0
wim 36:9f5f86dfd44a 2430 // .............
wim 36:9f5f86dfd44a 2431 // 15 B1 B0 0 0 0 0 0 0
wim 36:9f5f86dfd44a 2432 //
wim 36:9f5f86dfd44a 2433 // Bit 6 and Bit 7 in the pattern will control the blinking mode when Blink is enabled through BE.
wim 36:9f5f86dfd44a 2434 // B1 B0 Mode
wim 36:9f5f86dfd44a 2435 // 0 0 No Blinking for this icon row
wim 36:9f5f86dfd44a 2436 // 0 1 Enabled pixels in P5 will blink
wim 36:9f5f86dfd44a 2437 // 1 x Enabled pixels in P0..P5 will blink
wim 36:9f5f86dfd44a 2438 //
wim 36:9f5f86dfd44a 2439 // Note: the PCF2103 and PCF2113 use UDCs to set Icons
wim 36:9f5f86dfd44a 2440 // 3 x 8 rows x 5 bits = 120 bits Icons for Normal pattern (UDC 0..2) and
wim 36:9f5f86dfd44a 2441 // 3 x 8 rows x 5 bits = 120 bits Icons for Blink pattern (UDC 4..6)
wim 36:9f5f86dfd44a 2442 // Note: the PCF2119 uses UDCs to set Icons
wim 36:9f5f86dfd44a 2443 // 4 x 8 rows x 5 bits = 160 bits Icons for Normal pattern (UDC 0..3) and
wim 36:9f5f86dfd44a 2444 // 4 x 8 rows x 5 bits = 160 bits Icons for Blink pattern (UDC 4..7)
wim 36:9f5f86dfd44a 2445 int idx;
wim 36:9f5f86dfd44a 2446
wim 36:9f5f86dfd44a 2447 switch (_ctrl) {
wim 36:9f5f86dfd44a 2448 case KS0073:
wim 36:9f5f86dfd44a 2449 case KS0078:
wim 36:9f5f86dfd44a 2450 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N RE(1) BE LP
wim 36:9f5f86dfd44a 2451 // Select Extended Instruction Set
wim 36:9f5f86dfd44a 2452 for (idx=0; idx<16; idx++) {
wim 36:9f5f86dfd44a 2453 _writeCommand(0x40 | idx); // Set Icon Address, mask Address to valid range (Ext Instr Set)
wim 36:9f5f86dfd44a 2454 _writeData(0x00); // Clear Icon pattern (Ext Instr Set)
wim 36:9f5f86dfd44a 2455 }
wim 36:9f5f86dfd44a 2456 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N RE(0) DH REV Select Std Instruction Set
wim 36:9f5f86dfd44a 2457 // Select Std Instr set
wim 36:9f5f86dfd44a 2458 break; // end KS0073, KS0078
wim 36:9f5f86dfd44a 2459
wim 36:9f5f86dfd44a 2460 case ST7032_3V3:
wim 36:9f5f86dfd44a 2461 case ST7032_5V:
wim 36:9f5f86dfd44a 2462 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N F 0 IS=1 Select Instr Set = 1
wim 36:9f5f86dfd44a 2463
wim 36:9f5f86dfd44a 2464 for (idx=0; idx<16; idx++) {
wim 36:9f5f86dfd44a 2465 _writeCommand(0x40 | idx); // Set Icon Address, mask Address to valid range (Instr Set 1)
wim 36:9f5f86dfd44a 2466 _writeData(0x00); // Clear Icon pattern (Instr Set 1)
wim 36:9f5f86dfd44a 2467 }
wim 36:9f5f86dfd44a 2468
wim 36:9f5f86dfd44a 2469 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N RE(0) DH REV Select Instruction Set 0
wim 36:9f5f86dfd44a 2470 // Select Std Instr set, Select IS=0
wim 36:9f5f86dfd44a 2471 break; // end ST7032
wim 36:9f5f86dfd44a 2472
wim 36:9f5f86dfd44a 2473 case ST7036_3V3:
wim 36:9f5f86dfd44a 2474 case ST7036_5V:
wim 36:9f5f86dfd44a 2475 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N DH IS2,IS1 = 01 (Select Instr Set = 1)
wim 36:9f5f86dfd44a 2476
wim 36:9f5f86dfd44a 2477 for (idx=0; idx<16; idx++) {
wim 36:9f5f86dfd44a 2478 _writeCommand(0x40 | idx); // Set Icon Address, mask Address to valid range (Instr Set 1)
wim 36:9f5f86dfd44a 2479 _writeData(0x00); // Clear Icon pattern (Instr Set 1)
wim 36:9f5f86dfd44a 2480 }
wim 36:9f5f86dfd44a 2481
wim 36:9f5f86dfd44a 2482 _writeCommand(0x20 | _function); // Set function, IS2,IS1 = 00 (Select Instr Set = 0)
wim 36:9f5f86dfd44a 2483 // Select Std Instr set, Select IS=0
wim 36:9f5f86dfd44a 2484 break; // end ST7036
wim 36:9f5f86dfd44a 2485
wim 36:9f5f86dfd44a 2486 case SSD1803_3V3:
wim 36:9f5f86dfd44a 2487 // case SSD1803_5V:
wim 36:9f5f86dfd44a 2488 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N DH RE(0) IS
wim 36:9f5f86dfd44a 2489 // Select Instruction Set 1
wim 36:9f5f86dfd44a 2490 for (idx=0; idx<16; idx++) {
wim 36:9f5f86dfd44a 2491 _writeCommand(0x40 | idx); // Set Icon Address, mask Address to valid range (Ext Instr Set)
wim 36:9f5f86dfd44a 2492 _writeData(0x00); // Clear Icon pattern (Ext Instr Set)
wim 36:9f5f86dfd44a 2493 }
wim 36:9f5f86dfd44a 2494 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS
wim 36:9f5f86dfd44a 2495 // Select IS=0
wim 36:9f5f86dfd44a 2496 break; // end SSD1803
wim 36:9f5f86dfd44a 2497
wim 36:9f5f86dfd44a 2498 case PCF2103_3V3:
wim 36:9f5f86dfd44a 2499 case PCF2113_3V3:
wim 36:9f5f86dfd44a 2500 // PCF2103 and PCF2113 use part of the UDC RAM to control Icons
wim 36:9f5f86dfd44a 2501 // Select CG RAM
wim 36:9f5f86dfd44a 2502
wim 36:9f5f86dfd44a 2503 _writeCommand(0x40 | (0 * 8)); //Set CG-RAM address, 8 sequential locations needed per UDC
wim 36:9f5f86dfd44a 2504 // Store UDC/Icon pattern:
wim 36:9f5f86dfd44a 2505 // 3 x 8 rows x 5 bits = 120 bits for Normal pattern (UDC 0..2) and
wim 36:9f5f86dfd44a 2506 for (int i=0; i<(3 * 8); i++) {
wim 36:9f5f86dfd44a 2507 // _writeData(0x1F); // All On
wim 36:9f5f86dfd44a 2508 _writeData(0x00); // All Off
wim 36:9f5f86dfd44a 2509 }
wim 36:9f5f86dfd44a 2510
wim 36:9f5f86dfd44a 2511 _writeCommand(0x40 | (4 * 8)); //Set CG-RAM address, 8 sequential locations needed per UDC
wim 36:9f5f86dfd44a 2512 // 3 x 8 rows x 5 bits = 120 bits for Blink pattern (UDC 4..6)
wim 36:9f5f86dfd44a 2513 for (int i=0; i<(3 * 8); i++) {
wim 36:9f5f86dfd44a 2514 // _writeData(0x1F); // All On
wim 36:9f5f86dfd44a 2515 _writeData(0x00); // All Off
wim 36:9f5f86dfd44a 2516 }
wim 36:9f5f86dfd44a 2517 break; // case PCF2103_3V3 Controller
wim 36:9f5f86dfd44a 2518
wim 36:9f5f86dfd44a 2519 case PCF2119_3V3:
wim 36:9f5f86dfd44a 2520 // PCF2119 uses part of the UDC RAM to control Icons
wim 36:9f5f86dfd44a 2521 // Select CG RAM
wim 36:9f5f86dfd44a 2522
wim 36:9f5f86dfd44a 2523 _writeCommand(0x40 | (0 * 8)); //Set CG-RAM address, 8 sequential locations needed per UDC
wim 36:9f5f86dfd44a 2524 // Store UDC/Icon pattern:
wim 36:9f5f86dfd44a 2525 // 4 x 8 rows x 5 bits = 160 bits for Normal pattern (UDC 0..3) and
wim 36:9f5f86dfd44a 2526 for (int i=0; i<(4 * 8); i++) {
wim 36:9f5f86dfd44a 2527 // _writeData(0x1F); // All On
wim 36:9f5f86dfd44a 2528 _writeData(0x00); // All Off
wim 36:9f5f86dfd44a 2529 }
wim 36:9f5f86dfd44a 2530
wim 36:9f5f86dfd44a 2531 _writeCommand(0x40 | (4 * 8)); //Set CG-RAM address, 8 sequential locations needed per UDC
wim 36:9f5f86dfd44a 2532 // 4 x 8 rows x 5 bits = 160 bits for Blink pattern (UDC 4..7)
wim 36:9f5f86dfd44a 2533 for (int i=0; i<(4 * 8); i++) {
wim 36:9f5f86dfd44a 2534 // _writeData(0x1F); // All On
wim 36:9f5f86dfd44a 2535 _writeData(0x00); // All Off
wim 36:9f5f86dfd44a 2536 }
wim 36:9f5f86dfd44a 2537 break; // case PCF2119_3V3 Controller
wim 36:9f5f86dfd44a 2538
wim 36:9f5f86dfd44a 2539 default:
wim 36:9f5f86dfd44a 2540 break; // end default
wim 36:9f5f86dfd44a 2541 } // end switch _ctrl
wim 36:9f5f86dfd44a 2542
wim 36:9f5f86dfd44a 2543 //Select DD RAM again for current LCD controller and restore the addresspointer
wim 36:9f5f86dfd44a 2544 int addr = getAddress(_column, _row);
wim 36:9f5f86dfd44a 2545 _writeCommand(0x80 | addr);
wim 36:9f5f86dfd44a 2546 } //end clrIcon()
wim 36:9f5f86dfd44a 2547
wim 36:9f5f86dfd44a 2548
wim 36:9f5f86dfd44a 2549 /** Set Invert
wim 36:9f5f86dfd44a 2550 * setInvert method is supported by some compatible devices (eg KS0073) to swap between black and white
wim 36:9f5f86dfd44a 2551 *
wim 36:9f5f86dfd44a 2552 * @param bool invertOn Invert on/off
wim 36:9f5f86dfd44a 2553 * @return none
wim 36:9f5f86dfd44a 2554 */
wim 36:9f5f86dfd44a 2555 //@TODO Add support for 40x4 dual controller
wim 36:9f5f86dfd44a 2556 void TextLCD_Base::setInvert(bool invertOn) {
wim 36:9f5f86dfd44a 2557
wim 36:9f5f86dfd44a 2558 if (invertOn) {
wim 36:9f5f86dfd44a 2559 // Controllers that support Invert
wim 36:9f5f86dfd44a 2560 switch (_ctrl) {
wim 36:9f5f86dfd44a 2561 case KS0073:
wim 36:9f5f86dfd44a 2562 case KS0078:
wim 36:9f5f86dfd44a 2563 _function = _function | 0x01; // Enable Invert
wim 36:9f5f86dfd44a 2564 _writeCommand(0x20 | _function); // Activate Invert (Std Instr Set)
wim 36:9f5f86dfd44a 2565 break;
wim 36:9f5f86dfd44a 2566 case SSD1803_3V3 :
wim 36:9f5f86dfd44a 2567 // case SSD1803_5V :
wim 36:9f5f86dfd44a 2568 case US2066_3V3:
wim 36:9f5f86dfd44a 2569 // case USS2066_5V:
wim 36:9f5f86dfd44a 2570 _function_1 = _function_1 | 0x01; // Enable Invert
wim 36:9f5f86dfd44a 2571 // Set function, 0 0 1 DL N BE RE(1) REV (SSD1803)
wim 36:9f5f86dfd44a 2572 // Set function, 0 0 1 X N BE RE(1) REV (US2066)
wim 36:9f5f86dfd44a 2573 _writeCommand(0x20 | _function_1); // Activate Invert (Ext Instr Set)
wim 36:9f5f86dfd44a 2574 _writeCommand(0x20 | _function); // Return to Std Instr Set
wim 36:9f5f86dfd44a 2575 break;
wim 36:9f5f86dfd44a 2576 default:
wim 36:9f5f86dfd44a 2577 //Unsupported feature for other controllers
wim 36:9f5f86dfd44a 2578 break;
wim 36:9f5f86dfd44a 2579 } // end switch
wim 36:9f5f86dfd44a 2580 }
wim 36:9f5f86dfd44a 2581 else {
wim 36:9f5f86dfd44a 2582 // Controllers that support Invert
wim 36:9f5f86dfd44a 2583 switch (_ctrl) {
wim 36:9f5f86dfd44a 2584 case KS0073:
wim 36:9f5f86dfd44a 2585 case KS0078:
wim 36:9f5f86dfd44a 2586 _function = _function & ~0x01; // Disable Invert
wim 36:9f5f86dfd44a 2587 _writeCommand(0x20 | _function); // Disable Invert (Std Instr Set)
wim 36:9f5f86dfd44a 2588 break;
wim 36:9f5f86dfd44a 2589 case SSD1803_3V3 :
wim 36:9f5f86dfd44a 2590 // case SSD1803_5V :
wim 36:9f5f86dfd44a 2591 case US2066_3V3:
wim 36:9f5f86dfd44a 2592 // case USS2066_5V:
wim 36:9f5f86dfd44a 2593 _function_1 = _function_1 & ~0x01; // Disable Invert
wim 36:9f5f86dfd44a 2594 // Set function, 0 0 1 DL N BE RE(1) REV (SSD1803)
wim 36:9f5f86dfd44a 2595 // Set function, 0 0 1 X N BE RE(1) REV (US2066)
wim 36:9f5f86dfd44a 2596 _writeCommand(0x20 | _function_1); // Activate Invert (Ext Instr Set)
wim 36:9f5f86dfd44a 2597 _writeCommand(0x20 | _function); // Return to Std Instr Set
wim 36:9f5f86dfd44a 2598 break;
wim 36:9f5f86dfd44a 2599
wim 36:9f5f86dfd44a 2600 default:
wim 36:9f5f86dfd44a 2601 //Unsupported feature for other controllers
wim 36:9f5f86dfd44a 2602 break;
wim 36:9f5f86dfd44a 2603 } // end switch
wim 36:9f5f86dfd44a 2604 }
wim 36:9f5f86dfd44a 2605 } // end setInvert()
wim 36:9f5f86dfd44a 2606
wim 23:d47f226efb24 2607 //--------- End TextLCD_Base -----------
wim 21:9eb628d9e164 2608
wim 22:35742ec80c24 2609
wim 23:d47f226efb24 2610 //--------- Start TextLCD Bus -----------
wim 21:9eb628d9e164 2611
wim 21:9eb628d9e164 2612 /* Create a TextLCD interface for using regular mbed pins
wim 21:9eb628d9e164 2613 *
wim 21:9eb628d9e164 2614 * @param rs Instruction/data control line
wim 21:9eb628d9e164 2615 * @param e Enable line (clock)
wim 21:9eb628d9e164 2616 * @param d4-d7 Data lines for using as a 4-bit interface
wim 21:9eb628d9e164 2617 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 21:9eb628d9e164 2618 * @param bl Backlight control line (optional, default = NC)
wim 21:9eb628d9e164 2619 * @param e2 Enable2 line (clock for second controller, LCD40x4 only)
wim 21:9eb628d9e164 2620 * @param ctrl LCD controller (default = HD44780)
wim 21:9eb628d9e164 2621 */
wim 21:9eb628d9e164 2622 TextLCD::TextLCD(PinName rs, PinName e,
wim 21:9eb628d9e164 2623 PinName d4, PinName d5, PinName d6, PinName d7,
wim 21:9eb628d9e164 2624 LCDType type, PinName bl, PinName e2, LCDCtrl ctrl) :
wim 21:9eb628d9e164 2625 TextLCD_Base(type, ctrl),
wim 22:35742ec80c24 2626 _rs(rs), _e(e), _d(d4, d5, d6, d7) {
wim 22:35742ec80c24 2627
wim 22:35742ec80c24 2628 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 22:35742ec80c24 2629 if (bl != NC) {
wim 22:35742ec80c24 2630 _bl = new DigitalOut(bl); //Construct new pin
wim 22:35742ec80c24 2631 _bl->write(0); //Deactivate
wim 22:35742ec80c24 2632 }
wim 22:35742ec80c24 2633 else {
wim 22:35742ec80c24 2634 // No Hardware Backlight pin
wim 22:35742ec80c24 2635 _bl = NULL; //Construct dummy pin
wim 22:35742ec80c24 2636 }
wim 22:35742ec80c24 2637
wim 22:35742ec80c24 2638 // The hardware Enable2 pin is only needed for LCD40x4. Test and make sure whether it exists or not to prevent illegal access.
wim 22:35742ec80c24 2639 if (e2 != NC) {
wim 22:35742ec80c24 2640 _e2 = new DigitalOut(e2); //Construct new pin
wim 22:35742ec80c24 2641 _e2->write(0); //Deactivate
wim 22:35742ec80c24 2642 }
wim 22:35742ec80c24 2643 else {
wim 22:35742ec80c24 2644 // No Hardware Enable pin
wim 22:35742ec80c24 2645 _e2 = NULL; //Construct dummy pin
wim 22:35742ec80c24 2646 }
wim 21:9eb628d9e164 2647
wim 21:9eb628d9e164 2648 _init();
wim 21:9eb628d9e164 2649 }
wim 21:9eb628d9e164 2650
wim 29:a3663151aa65 2651 /** Destruct a TextLCD interface for using regular mbed pins
wim 29:a3663151aa65 2652 *
wim 29:a3663151aa65 2653 * @param none
wim 29:a3663151aa65 2654 * @return none
wim 29:a3663151aa65 2655 */
wim 29:a3663151aa65 2656 TextLCD::~TextLCD() {
wim 29:a3663151aa65 2657 if (_bl != NULL) {delete _bl;} // BL pin
wim 29:a3663151aa65 2658 if (_e2 != NULL) {delete _e2;} // E2 pin
wim 29:a3663151aa65 2659 }
wim 29:a3663151aa65 2660
wim 22:35742ec80c24 2661 /** Set E pin (or E2 pin)
wim 22:35742ec80c24 2662 * Used for mbed pins, I2C bus expander or SPI shiftregister
wim 22:35742ec80c24 2663 * Default PinName value for E2 is NC, must be used as pointer to avoid issues with mbed lib and DigitalOut pins
wim 22:35742ec80c24 2664 * @param value true or false
wim 22:35742ec80c24 2665 * @return none
wim 22:35742ec80c24 2666 */
wim 21:9eb628d9e164 2667 void TextLCD::_setEnable(bool value) {
wim 21:9eb628d9e164 2668
wim 22:35742ec80c24 2669 if(_ctrl_idx==_LCDCtrl_0) {
wim 22:35742ec80c24 2670 if (value) {
wim 22:35742ec80c24 2671 _e = 1; // Set E bit
wim 22:35742ec80c24 2672 }
wim 22:35742ec80c24 2673 else {
wim 22:35742ec80c24 2674 _e = 0; // Reset E bit
wim 22:35742ec80c24 2675 }
wim 22:35742ec80c24 2676 }
wim 22:35742ec80c24 2677 else {
wim 22:35742ec80c24 2678 if (value) {
wim 22:35742ec80c24 2679 if (_e2 != NULL) {_e2->write(1);} //Set E2 bit
wim 22:35742ec80c24 2680 }
wim 22:35742ec80c24 2681 else {
wim 22:35742ec80c24 2682 if (_e2 != NULL) {_e2->write(0);} //Reset E2 bit
wim 22:35742ec80c24 2683 }
wim 22:35742ec80c24 2684 }
wim 21:9eb628d9e164 2685 }
wim 21:9eb628d9e164 2686
wim 21:9eb628d9e164 2687 // Set RS pin
wim 21:9eb628d9e164 2688 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 21:9eb628d9e164 2689 void TextLCD::_setRS(bool value) {
wim 21:9eb628d9e164 2690
wim 22:35742ec80c24 2691 if (value) {
wim 21:9eb628d9e164 2692 _rs = 1; // Set RS bit
wim 22:35742ec80c24 2693 }
wim 22:35742ec80c24 2694 else {
wim 21:9eb628d9e164 2695 _rs = 0; // Reset RS bit
wim 22:35742ec80c24 2696 }
wim 21:9eb628d9e164 2697 }
wim 21:9eb628d9e164 2698
wim 22:35742ec80c24 2699 /** Set BL pin
wim 22:35742ec80c24 2700 * Used for mbed pins, I2C bus expander or SPI shiftregister
wim 22:35742ec80c24 2701 * Default PinName value is NC, must be used as pointer to avoid issues with mbed lib and DigitalOut pins
wim 22:35742ec80c24 2702 * @param value true or false
wim 22:35742ec80c24 2703 * @return none
wim 22:35742ec80c24 2704 */
wim 21:9eb628d9e164 2705 void TextLCD::_setBL(bool value) {
wim 21:9eb628d9e164 2706
wim 22:35742ec80c24 2707 if (value) {
wim 22:35742ec80c24 2708 if (_bl != NULL) {_bl->write(1);} //Set BL bit
wim 22:35742ec80c24 2709 }
wim 22:35742ec80c24 2710 else {
wim 22:35742ec80c24 2711 if (_bl != NULL) {_bl->write(0);} //Reset BL bit
wim 22:35742ec80c24 2712 }
wim 21:9eb628d9e164 2713 }
wim 21:9eb628d9e164 2714
wim 21:9eb628d9e164 2715 // Place the 4bit data on the databus
wim 21:9eb628d9e164 2716 // Used for mbed pins, I2C bus expander or SPI shifregister
wim 21:9eb628d9e164 2717 void TextLCD::_setData(int value) {
wim 21:9eb628d9e164 2718 _d = value & 0x0F; // Write Databits
wim 21:9eb628d9e164 2719 }
wim 34:e5a0dcb43ecc 2720
wim 23:d47f226efb24 2721 //----------- End TextLCD ---------------
wim 21:9eb628d9e164 2722
wim 21:9eb628d9e164 2723
wim 23:d47f226efb24 2724 //--------- Start TextLCD_I2C -----------
wim 34:e5a0dcb43ecc 2725 #if(LCD_I2C == 1) /* I2C Expander PCF8574/MCP23008 */
wim 26:bd897a001012 2726 /** Create a TextLCD interface using an I2C PC8574 (or PCF8574A) or MCP23008 portexpander
wim 22:35742ec80c24 2727 *
wim 22:35742ec80c24 2728 * @param i2c I2C Bus
wim 26:bd897a001012 2729 * @param deviceAddress I2C slave address (PCF8574, PCF8574A or MCP23008, default = 0x40)
wim 22:35742ec80c24 2730 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 22:35742ec80c24 2731 * @param ctrl LCD controller (default = HD44780)
wim 22:35742ec80c24 2732 */
wim 21:9eb628d9e164 2733 TextLCD_I2C::TextLCD_I2C(I2C *i2c, char deviceAddress, LCDType type, LCDCtrl ctrl) :
wim 21:9eb628d9e164 2734 TextLCD_Base(type, ctrl),
wim 21:9eb628d9e164 2735 _i2c(i2c){
wim 21:9eb628d9e164 2736
wim 22:35742ec80c24 2737 _slaveAddress = deviceAddress & 0xFE;
wim 28:30fa94f7341c 2738
wim 28:30fa94f7341c 2739 // Setup the I2C bus
wim 28:30fa94f7341c 2740 // The max bitrate for PCF8574 is 100kbit, the max bitrate for MCP23008 is 400kbit,
wim 32:59c4b8f648d4 2741 _i2c->frequency(100000);
wim 21:9eb628d9e164 2742
wim 26:bd897a001012 2743 #if (MCP23008==1)
wim 26:bd897a001012 2744 // MCP23008 portexpander Init
wim 27:22d5086f6ba6 2745 _write_register(IODIR, 0x00); // All outputs
wim 27:22d5086f6ba6 2746 _write_register(IPOL, 0x00); // No reverse polarity
wim 27:22d5086f6ba6 2747 _write_register(GPINTEN, 0x00); // No interrupt
wim 27:22d5086f6ba6 2748 _write_register(DEFVAL, 0x00); // Default value to compare against for interrupts
wim 27:22d5086f6ba6 2749 _write_register(INTCON, 0x00); // No interrupt on changes
wim 27:22d5086f6ba6 2750 _write_register(IOCON, 0x00); // Interrupt polarity
wim 27:22d5086f6ba6 2751 _write_register(GPPU, 0x00); // No Pullup
wim 27:22d5086f6ba6 2752 _write_register(INTF, 0x00); //
wim 27:22d5086f6ba6 2753 _write_register(INTCAP, 0x00); //
wim 27:22d5086f6ba6 2754 _write_register(GPIO, 0x00); // Output/Input pins
wim 27:22d5086f6ba6 2755 _write_register(OLAT, 0x00); // Output Latch
wim 26:bd897a001012 2756
wim 21:9eb628d9e164 2757 // Init the portexpander bus
wim 21:9eb628d9e164 2758 _lcd_bus = D_LCD_BUS_DEF;
wim 21:9eb628d9e164 2759
wim 21:9eb628d9e164 2760 // write the new data to the portexpander
wim 26:bd897a001012 2761 _write_register(GPIO, _lcd_bus);
wim 26:bd897a001012 2762 #else
wim 26:bd897a001012 2763 // PCF8574 of PCF8574A portexpander
wim 26:bd897a001012 2764
wim 26:bd897a001012 2765 // Init the portexpander bus
wim 26:bd897a001012 2766 _lcd_bus = D_LCD_BUS_DEF;
wim 26:bd897a001012 2767
wim 26:bd897a001012 2768 // write the new data to the portexpander
wim 21:9eb628d9e164 2769 _i2c->write(_slaveAddress, &_lcd_bus, 1);
wim 26:bd897a001012 2770 #endif
wim 21:9eb628d9e164 2771
wim 30:033048611c01 2772 _init();
wim 21:9eb628d9e164 2773 }
wim 21:9eb628d9e164 2774
wim 21:9eb628d9e164 2775 // Set E pin (or E2 pin)
wim 21:9eb628d9e164 2776 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 21:9eb628d9e164 2777 void TextLCD_I2C::_setEnable(bool value) {
wim 21:9eb628d9e164 2778
wim 22:35742ec80c24 2779 if(_ctrl_idx==_LCDCtrl_0) {
wim 26:bd897a001012 2780 if (value) {
wim 22:35742ec80c24 2781 _lcd_bus |= D_LCD_E; // Set E bit
wim 26:bd897a001012 2782 }
wim 26:bd897a001012 2783 else {
wim 22:35742ec80c24 2784 _lcd_bus &= ~D_LCD_E; // Reset E bit
wim 26:bd897a001012 2785 }
wim 22:35742ec80c24 2786 }
wim 22:35742ec80c24 2787 else {
wim 26:bd897a001012 2788 if (value) {
wim 22:35742ec80c24 2789 _lcd_bus |= D_LCD_E2; // Set E2 bit
wim 26:bd897a001012 2790 }
wim 26:bd897a001012 2791 else {
wim 22:35742ec80c24 2792 _lcd_bus &= ~D_LCD_E2; // Reset E2bit
wim 26:bd897a001012 2793 }
wim 26:bd897a001012 2794 }
wim 26:bd897a001012 2795
wim 26:bd897a001012 2796 #if (MCP23008==1)
wim 26:bd897a001012 2797 // MCP23008 portexpander
wim 26:bd897a001012 2798
wim 26:bd897a001012 2799 // write the new data to the portexpander
wim 26:bd897a001012 2800 _write_register(GPIO, _lcd_bus);
wim 26:bd897a001012 2801 #else
wim 26:bd897a001012 2802 // PCF8574 of PCF8574A portexpander
wim 21:9eb628d9e164 2803
wim 22:35742ec80c24 2804 // write the new data to the I2C portexpander
wim 22:35742ec80c24 2805 _i2c->write(_slaveAddress, &_lcd_bus, 1);
wim 26:bd897a001012 2806 #endif
wim 21:9eb628d9e164 2807 }
wim 21:9eb628d9e164 2808
wim 21:9eb628d9e164 2809 // Set RS pin
wim 21:9eb628d9e164 2810 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 21:9eb628d9e164 2811 void TextLCD_I2C::_setRS(bool value) {
wim 21:9eb628d9e164 2812
wim 26:bd897a001012 2813 if (value) {
wim 22:35742ec80c24 2814 _lcd_bus |= D_LCD_RS; // Set RS bit
wim 26:bd897a001012 2815 }
wim 26:bd897a001012 2816 else {
wim 22:35742ec80c24 2817 _lcd_bus &= ~D_LCD_RS; // Reset RS bit
wim 26:bd897a001012 2818 }
wim 26:bd897a001012 2819
wim 26:bd897a001012 2820 #if (MCP23008==1)
wim 26:bd897a001012 2821 // MCP23008 portexpander
wim 26:bd897a001012 2822
wim 26:bd897a001012 2823 // write the new data to the portexpander
wim 26:bd897a001012 2824 _write_register(GPIO, _lcd_bus);
wim 26:bd897a001012 2825 #else
wim 26:bd897a001012 2826 // PCF8574 of PCF8574A portexpander
wim 21:9eb628d9e164 2827
wim 22:35742ec80c24 2828 // write the new data to the I2C portexpander
wim 22:35742ec80c24 2829 _i2c->write(_slaveAddress, &_lcd_bus, 1);
wim 30:033048611c01 2830 #endif
wim 21:9eb628d9e164 2831 }
wim 21:9eb628d9e164 2832
wim 21:9eb628d9e164 2833 // Set BL pin
wim 21:9eb628d9e164 2834 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 21:9eb628d9e164 2835 void TextLCD_I2C::_setBL(bool value) {
wim 21:9eb628d9e164 2836
wim 26:bd897a001012 2837 if (value) {
wim 21:9eb628d9e164 2838 _lcd_bus |= D_LCD_BL; // Set BL bit
wim 26:bd897a001012 2839 }
wim 26:bd897a001012 2840 else {
wim 21:9eb628d9e164 2841 _lcd_bus &= ~D_LCD_BL; // Reset BL bit
wim 26:bd897a001012 2842 }
wim 26:bd897a001012 2843
wim 26:bd897a001012 2844 #if (MCP23008==1)
wim 26:bd897a001012 2845 // MCP23008 portexpander
wim 26:bd897a001012 2846
wim 26:bd897a001012 2847 // write the new data to the portexpander
wim 26:bd897a001012 2848 _write_register(GPIO, _lcd_bus);
wim 26:bd897a001012 2849 #else
wim 26:bd897a001012 2850 // PCF8574 of PCF8574A portexpander
wim 21:9eb628d9e164 2851
wim 21:9eb628d9e164 2852 // write the new data to the I2C portexpander
wim 21:9eb628d9e164 2853 _i2c->write(_slaveAddress, &_lcd_bus, 1);
wim 30:033048611c01 2854 #endif
wim 21:9eb628d9e164 2855 }
wim 21:9eb628d9e164 2856
wim 21:9eb628d9e164 2857
wim 21:9eb628d9e164 2858 // Place the 4bit data on the databus
wim 21:9eb628d9e164 2859 // Used for mbed pins, I2C bus expander or SPI shifregister
wim 21:9eb628d9e164 2860 void TextLCD_I2C::_setData(int value) {
wim 21:9eb628d9e164 2861 int data;
wim 22:35742ec80c24 2862
wim 22:35742ec80c24 2863 // Set bit by bit to support any mapping of expander portpins to LCD pins
wim 21:9eb628d9e164 2864
wim 22:35742ec80c24 2865 data = value & 0x0F;
wim 26:bd897a001012 2866 if (data & 0x01){
wim 22:35742ec80c24 2867 _lcd_bus |= D_LCD_D4; // Set Databit
wim 26:bd897a001012 2868 }
wim 26:bd897a001012 2869 else {
wim 26:bd897a001012 2870 _lcd_bus &= ~D_LCD_D4; // Reset Databit
wim 26:bd897a001012 2871 }
wim 21:9eb628d9e164 2872
wim 26:bd897a001012 2873 if (data & 0x02){
wim 22:35742ec80c24 2874 _lcd_bus |= D_LCD_D5; // Set Databit
wim 26:bd897a001012 2875 }
wim 26:bd897a001012 2876 else {
wim 26:bd897a001012 2877 _lcd_bus &= ~D_LCD_D5; // Reset Databit
wim 26:bd897a001012 2878 }
wim 21:9eb628d9e164 2879
wim 26:bd897a001012 2880 if (data & 0x04) {
wim 22:35742ec80c24 2881 _lcd_bus |= D_LCD_D6; // Set Databit
wim 26:bd897a001012 2882 }
wim 26:bd897a001012 2883 else {
wim 26:bd897a001012 2884 _lcd_bus &= ~D_LCD_D6; // Reset Databit
wim 26:bd897a001012 2885 }
wim 21:9eb628d9e164 2886
wim 26:bd897a001012 2887 if (data & 0x08) {
wim 22:35742ec80c24 2888 _lcd_bus |= D_LCD_D7; // Set Databit
wim 26:bd897a001012 2889 }
wim 26:bd897a001012 2890 else {
wim 26:bd897a001012 2891 _lcd_bus &= ~D_LCD_D7; // Reset Databit
wim 26:bd897a001012 2892 }
wim 21:9eb628d9e164 2893
wim 26:bd897a001012 2894 #if (MCP23008==1)
wim 26:bd897a001012 2895 // MCP23008 portexpander
wim 26:bd897a001012 2896
wim 26:bd897a001012 2897 // write the new data to the portexpander
wim 26:bd897a001012 2898 _write_register(GPIO, _lcd_bus);
wim 26:bd897a001012 2899 #else
wim 26:bd897a001012 2900 // PCF8574 of PCF8574A portexpander
wim 26:bd897a001012 2901
wim 22:35742ec80c24 2902 // write the new data to the I2C portexpander
wim 26:bd897a001012 2903 _i2c->write(_slaveAddress, &_lcd_bus, 1);
wim 26:bd897a001012 2904 #endif
wim 22:35742ec80c24 2905
wim 22:35742ec80c24 2906 }
wim 21:9eb628d9e164 2907
wim 26:bd897a001012 2908 // Write data to MCP23008 I2C portexpander
wim 26:bd897a001012 2909 void TextLCD_I2C::_write_register (int reg, int value) {
wim 26:bd897a001012 2910 char data[] = {reg, value};
wim 26:bd897a001012 2911
wim 30:033048611c01 2912 _i2c->write(_slaveAddress, data, 2);
wim 26:bd897a001012 2913 }
wim 34:e5a0dcb43ecc 2914 #endif /* I2C Expander PCF8574/MCP23008 */
wim 23:d47f226efb24 2915 //---------- End TextLCD_I2C ------------
wim 21:9eb628d9e164 2916
wim 21:9eb628d9e164 2917
wim 28:30fa94f7341c 2918 //--------- Start TextLCD_I2C_N ---------
wim 34:e5a0dcb43ecc 2919 #if(LCD_I2C_N == 1) /* Native I2C */
wim 28:30fa94f7341c 2920
wim 28:30fa94f7341c 2921 /** Create a TextLCD interface using a controller with native I2C interface
wim 28:30fa94f7341c 2922 *
wim 28:30fa94f7341c 2923 * @param i2c I2C Bus
wim 28:30fa94f7341c 2924 * @param deviceAddress I2C slave address (default = 0x7C)
wim 28:30fa94f7341c 2925 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 28:30fa94f7341c 2926 * @param bl Backlight control line (optional, default = NC)
wim 28:30fa94f7341c 2927 * @param ctrl LCD controller (default = ST7032_3V3)
wim 28:30fa94f7341c 2928 */
wim 28:30fa94f7341c 2929 TextLCD_I2C_N::TextLCD_I2C_N(I2C *i2c, char deviceAddress, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 28:30fa94f7341c 2930 TextLCD_Base(type, ctrl),
wim 32:59c4b8f648d4 2931
wim 33:900a94bc7585 2932 _i2c(i2c){
wim 30:033048611c01 2933
wim 28:30fa94f7341c 2934 _slaveAddress = deviceAddress & 0xFE;
wim 28:30fa94f7341c 2935
wim 28:30fa94f7341c 2936 // Setup the I2C bus
wim 29:a3663151aa65 2937 // The max bitrate for ST7032i is 400kbit, lets stick to default here
wim 29:a3663151aa65 2938 _i2c->frequency(100000);
wim 32:59c4b8f648d4 2939
wim 30:033048611c01 2940
wim 28:30fa94f7341c 2941 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 28:30fa94f7341c 2942 if (bl != NC) {
wim 28:30fa94f7341c 2943 _bl = new DigitalOut(bl); //Construct new pin
wim 28:30fa94f7341c 2944 _bl->write(0); //Deactivate
wim 28:30fa94f7341c 2945 }
wim 28:30fa94f7341c 2946 else {
wim 28:30fa94f7341c 2947 // No Hardware Backlight pin
wim 28:30fa94f7341c 2948 _bl = NULL; //Construct dummy pin
wim 28:30fa94f7341c 2949 }
wim 28:30fa94f7341c 2950
wim 30:033048611c01 2951 //Sanity check
wim 30:033048611c01 2952 if (_ctrl & LCD_C_I2C) {
wim 36:9f5f86dfd44a 2953 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 30:033048611c01 2954 }
wim 30:033048611c01 2955 else {
wim 30:033048611c01 2956 error("Error: LCD Controller type does not support native I2C interface\n\r");
wim 30:033048611c01 2957 }
wim 28:30fa94f7341c 2958 }
wim 28:30fa94f7341c 2959
wim 28:30fa94f7341c 2960 TextLCD_I2C_N::~TextLCD_I2C_N() {
wim 28:30fa94f7341c 2961 if (_bl != NULL) {delete _bl;} // BL pin
wim 28:30fa94f7341c 2962 }
wim 28:30fa94f7341c 2963
wim 28:30fa94f7341c 2964 // Not used in this mode
wim 28:30fa94f7341c 2965 void TextLCD_I2C_N::_setEnable(bool value) {
wim 28:30fa94f7341c 2966 }
wim 28:30fa94f7341c 2967
wim 28:30fa94f7341c 2968 // Set RS pin
wim 28:30fa94f7341c 2969 // Used for mbed pins, I2C bus expander or SPI shiftregister and native I2C or SPI
wim 28:30fa94f7341c 2970 void TextLCD_I2C_N::_setRS(bool value) {
wim 30:033048611c01 2971 // The controlbyte defines the meaning of the next byte. This next byte can either be data or command.
wim 30:033048611c01 2972 // Start Slaveaddress+RW b7 b6 b5 b4 b3 b2 b1 b0 b7...........b0 Stop
wim 30:033048611c01 2973 // Co RS RW 0 0 0 0 0 command or data
wim 30:033048611c01 2974 //
wim 30:033048611c01 2975 // C0=1 indicates that another controlbyte will follow after the next data or command byte
wim 30:033048611c01 2976 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 30:033048611c01 2977 // RW=0 means write to controller. RW=1 means that controller will be read from after the next command.
wim 30:033048611c01 2978 // Many native I2C controllers dont support this option and it is not used by this lib.
wim 30:033048611c01 2979 //
wim 30:033048611c01 2980
wim 28:30fa94f7341c 2981 if (value) {
wim 28:30fa94f7341c 2982 _controlbyte = 0x40; // Next byte is data, No more control bytes will follow
wim 28:30fa94f7341c 2983 }
wim 28:30fa94f7341c 2984 else {
wim 28:30fa94f7341c 2985 _controlbyte = 0x00; // Next byte is command, No more control bytes will follow
wim 28:30fa94f7341c 2986 }
wim 28:30fa94f7341c 2987 }
wim 28:30fa94f7341c 2988
wim 28:30fa94f7341c 2989 // Set BL pin
wim 28:30fa94f7341c 2990 void TextLCD_I2C_N::_setBL(bool value) {
wim 28:30fa94f7341c 2991 if (_bl) {
wim 28:30fa94f7341c 2992 _bl->write(value);
wim 28:30fa94f7341c 2993 }
wim 28:30fa94f7341c 2994 }
wim 29:a3663151aa65 2995
wim 29:a3663151aa65 2996 // Not used in this mode
wim 29:a3663151aa65 2997 void TextLCD_I2C_N::_setData(int value) {
wim 29:a3663151aa65 2998 }
wim 29:a3663151aa65 2999
wim 28:30fa94f7341c 3000 // Write a byte using I2C
wim 28:30fa94f7341c 3001 void TextLCD_I2C_N::_writeByte(int value) {
wim 30:033048611c01 3002 // The controlbyte defines the meaning of the next byte. This next byte can either be data or command.
wim 30:033048611c01 3003 // Start Slaveaddress+RW b7 b6 b5 b4 b3 b2 b1 b0 b7...........b0 Stop
wim 30:033048611c01 3004 // Co RS RW 0 0 0 0 0 command or data
wim 30:033048611c01 3005 //
wim 30:033048611c01 3006 // C0=1 indicates that another controlbyte will follow after the next data or command byte
wim 30:033048611c01 3007 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 30:033048611c01 3008 // RW=0 means write to controller. RW=1 means that controller will be read from after the next command.
wim 30:033048611c01 3009 // Many native I2C controllers dont support this option and it is not used by this lib.
wim 30:033048611c01 3010 //
wim 28:30fa94f7341c 3011 char data[] = {_controlbyte, value};
wim 28:30fa94f7341c 3012
wim 32:59c4b8f648d4 3013 #if(LCD_I2C_ACK==1)
wim 32:59c4b8f648d4 3014 //Controllers that support ACK
wim 30:033048611c01 3015 _i2c->write(_slaveAddress, data, 2);
wim 32:59c4b8f648d4 3016 #else
wim 32:59c4b8f648d4 3017 //Controllers that dont support ACK
wim 32:59c4b8f648d4 3018 _i2c->start();
wim 32:59c4b8f648d4 3019 _i2c->write(_slaveAddress);
wim 32:59c4b8f648d4 3020 _i2c->write(data[0]);
wim 32:59c4b8f648d4 3021 _i2c->write(data[1]);
wim 32:59c4b8f648d4 3022 _i2c->stop();
wim 32:59c4b8f648d4 3023 #endif
wim 28:30fa94f7341c 3024 }
wim 34:e5a0dcb43ecc 3025 #endif /* Native I2C */
wim 28:30fa94f7341c 3026 //-------- End TextLCD_I2C_N ------------
wim 28:30fa94f7341c 3027
wim 28:30fa94f7341c 3028
wim 23:d47f226efb24 3029 //--------- Start TextLCD_SPI -----------
wim 34:e5a0dcb43ecc 3030 #if(LCD_SPI == 1) /* SPI Expander SN74595 */
wim 21:9eb628d9e164 3031
wim 22:35742ec80c24 3032 /** Create a TextLCD interface using an SPI 74595 portexpander
wim 22:35742ec80c24 3033 *
wim 22:35742ec80c24 3034 * @param spi SPI Bus
wim 22:35742ec80c24 3035 * @param cs chip select pin (active low)
wim 22:35742ec80c24 3036 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 22:35742ec80c24 3037 * @param ctrl LCD controller (default = HD44780)
wim 22:35742ec80c24 3038 */
wim 21:9eb628d9e164 3039 TextLCD_SPI::TextLCD_SPI(SPI *spi, PinName cs, LCDType type, LCDCtrl ctrl) :
wim 21:9eb628d9e164 3040 TextLCD_Base(type, ctrl),
wim 21:9eb628d9e164 3041 _spi(spi),
wim 21:9eb628d9e164 3042 _cs(cs) {
wim 21:9eb628d9e164 3043
wim 32:59c4b8f648d4 3044 // Init cs
wim 32:59c4b8f648d4 3045 _setCS(true);
wim 32:59c4b8f648d4 3046
wim 21:9eb628d9e164 3047 // Setup the spi for 8 bit data, low steady state clock,
wim 21:9eb628d9e164 3048 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 21:9eb628d9e164 3049 _spi->format(8,0);
wim 21:9eb628d9e164 3050 _spi->frequency(500000);
wim 21:9eb628d9e164 3051 //_spi.frequency(1000000);
wim 21:9eb628d9e164 3052
wim 21:9eb628d9e164 3053 // Init the portexpander bus
wim 21:9eb628d9e164 3054 _lcd_bus = D_LCD_BUS_DEF;
wim 21:9eb628d9e164 3055
wim 21:9eb628d9e164 3056 // write the new data to the portexpander
wim 21:9eb628d9e164 3057 _setCS(false);
wim 21:9eb628d9e164 3058 _spi->write(_lcd_bus);
wim 21:9eb628d9e164 3059 _setCS(true);
wim 30:033048611c01 3060
wim 30:033048611c01 3061 _init();
wim 21:9eb628d9e164 3062 }
wim 21:9eb628d9e164 3063
wim 21:9eb628d9e164 3064 // Set E pin (or E2 pin)
wim 21:9eb628d9e164 3065 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 21:9eb628d9e164 3066 void TextLCD_SPI::_setEnable(bool value) {
wim 21:9eb628d9e164 3067
wim 22:35742ec80c24 3068 if(_ctrl_idx==_LCDCtrl_0) {
wim 26:bd897a001012 3069 if (value) {
wim 22:35742ec80c24 3070 _lcd_bus |= D_LCD_E; // Set E bit
wim 26:bd897a001012 3071 }
wim 26:bd897a001012 3072 else {
wim 22:35742ec80c24 3073 _lcd_bus &= ~D_LCD_E; // Reset E bit
wim 26:bd897a001012 3074 }
wim 22:35742ec80c24 3075 }
wim 22:35742ec80c24 3076 else {
wim 26:bd897a001012 3077 if (value) {
wim 22:35742ec80c24 3078 _lcd_bus |= D_LCD_E2; // Set E2 bit
wim 26:bd897a001012 3079 }
wim 26:bd897a001012 3080 else {
wim 22:35742ec80c24 3081 _lcd_bus &= ~D_LCD_E2; // Reset E2 bit
wim 26:bd897a001012 3082 }
wim 22:35742ec80c24 3083 }
wim 21:9eb628d9e164 3084
wim 22:35742ec80c24 3085 // write the new data to the SPI portexpander
wim 22:35742ec80c24 3086 _setCS(false);
wim 22:35742ec80c24 3087 _spi->write(_lcd_bus);
wim 30:033048611c01 3088 _setCS(true);
wim 21:9eb628d9e164 3089 }
wim 21:9eb628d9e164 3090
wim 21:9eb628d9e164 3091 // Set RS pin
wim 36:9f5f86dfd44a 3092 // Used for mbed pins, I2C bus expander or SPI shiftregister and SPI_N
wim 21:9eb628d9e164 3093 void TextLCD_SPI::_setRS(bool value) {
wim 21:9eb628d9e164 3094
wim 22:35742ec80c24 3095 if (value) {
wim 21:9eb628d9e164 3096 _lcd_bus |= D_LCD_RS; // Set RS bit
wim 22:35742ec80c24 3097 }
wim 22:35742ec80c24 3098 else {
wim 21:9eb628d9e164 3099 _lcd_bus &= ~D_LCD_RS; // Reset RS bit
wim 22:35742ec80c24 3100 }
wim 21:9eb628d9e164 3101
wim 21:9eb628d9e164 3102 // write the new data to the SPI portexpander
wim 21:9eb628d9e164 3103 _setCS(false);
wim 21:9eb628d9e164 3104 _spi->write(_lcd_bus);
wim 21:9eb628d9e164 3105 _setCS(true);
wim 21:9eb628d9e164 3106 }
wim 21:9eb628d9e164 3107
wim 21:9eb628d9e164 3108 // Set BL pin
wim 21:9eb628d9e164 3109 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 21:9eb628d9e164 3110 void TextLCD_SPI::_setBL(bool value) {
wim 21:9eb628d9e164 3111
wim 22:35742ec80c24 3112 if (value) {
wim 21:9eb628d9e164 3113 _lcd_bus |= D_LCD_BL; // Set BL bit
wim 22:35742ec80c24 3114 }
wim 22:35742ec80c24 3115 else {
wim 21:9eb628d9e164 3116 _lcd_bus &= ~D_LCD_BL; // Reset BL bit
wim 22:35742ec80c24 3117 }
wim 21:9eb628d9e164 3118
wim 21:9eb628d9e164 3119 // write the new data to the SPI portexpander
wim 21:9eb628d9e164 3120 _setCS(false);
wim 21:9eb628d9e164 3121 _spi->write(_lcd_bus);
wim 30:033048611c01 3122 _setCS(true);
wim 21:9eb628d9e164 3123 }
wim 21:9eb628d9e164 3124
wim 21:9eb628d9e164 3125 // Place the 4bit data on the databus
wim 21:9eb628d9e164 3126 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 21:9eb628d9e164 3127 void TextLCD_SPI::_setData(int value) {
wim 21:9eb628d9e164 3128 int data;
wim 21:9eb628d9e164 3129
wim 22:35742ec80c24 3130 // Set bit by bit to support any mapping of expander portpins to LCD pins
wim 22:35742ec80c24 3131
wim 22:35742ec80c24 3132 data = value & 0x0F;
wim 26:bd897a001012 3133 if (data & 0x01) {
wim 22:35742ec80c24 3134 _lcd_bus |= D_LCD_D4; // Set Databit
wim 26:bd897a001012 3135 }
wim 26:bd897a001012 3136 else {
wim 22:35742ec80c24 3137 _lcd_bus &= ~D_LCD_D4; // Reset Databit
wim 26:bd897a001012 3138 }
wim 26:bd897a001012 3139
wim 26:bd897a001012 3140 if (data & 0x02) {
wim 22:35742ec80c24 3141 _lcd_bus |= D_LCD_D5; // Set Databit
wim 26:bd897a001012 3142 }
wim 26:bd897a001012 3143 else {
wim 22:35742ec80c24 3144 _lcd_bus &= ~D_LCD_D5; // Reset Databit
wim 26:bd897a001012 3145 }
wim 26:bd897a001012 3146
wim 26:bd897a001012 3147 if (data & 0x04) {
wim 22:35742ec80c24 3148 _lcd_bus |= D_LCD_D6; // Set Databit
wim 26:bd897a001012 3149 }
wim 26:bd897a001012 3150 else {
wim 22:35742ec80c24 3151 _lcd_bus &= ~D_LCD_D6; // Reset Databit
wim 26:bd897a001012 3152 }
wim 26:bd897a001012 3153
wim 26:bd897a001012 3154 if (data & 0x08) {
wim 22:35742ec80c24 3155 _lcd_bus |= D_LCD_D7; // Set Databit
wim 26:bd897a001012 3156 }
wim 26:bd897a001012 3157 else {
wim 26:bd897a001012 3158 _lcd_bus &= ~D_LCD_D7; // Reset Databit
wim 26:bd897a001012 3159 }
wim 21:9eb628d9e164 3160
wim 22:35742ec80c24 3161 // write the new data to the SPI portexpander
wim 22:35742ec80c24 3162 _setCS(false);
wim 22:35742ec80c24 3163 _spi->write(_lcd_bus);
wim 30:033048611c01 3164 _setCS(true);
wim 21:9eb628d9e164 3165 }
wim 21:9eb628d9e164 3166
wim 21:9eb628d9e164 3167 // Set CS line.
wim 21:9eb628d9e164 3168 // Only used for SPI bus
wim 21:9eb628d9e164 3169 void TextLCD_SPI::_setCS(bool value) {
wim 21:9eb628d9e164 3170
wim 21:9eb628d9e164 3171 if (value) {
wim 21:9eb628d9e164 3172 _cs = 1; // Set CS pin
wim 21:9eb628d9e164 3173 }
wim 22:35742ec80c24 3174 else {
wim 21:9eb628d9e164 3175 _cs = 0; // Reset CS pin
wim 22:35742ec80c24 3176 }
wim 21:9eb628d9e164 3177 }
wim 34:e5a0dcb43ecc 3178 #endif /* SPI Expander SN74595 */
wim 23:d47f226efb24 3179 //---------- End TextLCD_SPI ------------
wim 22:35742ec80c24 3180
wim 22:35742ec80c24 3181
wim 25:6162b31128c9 3182 //--------- Start TextLCD_SPI_N ---------
wim 34:e5a0dcb43ecc 3183 #if(LCD_SPI_N == 1) /* Native SPI bus */
wim 30:033048611c01 3184 /** Create a TextLCD interface using a controller with a native SPI4 interface
Sissors 24:fb3399713710 3185 *
Sissors 24:fb3399713710 3186 * @param spi SPI Bus
Sissors 24:fb3399713710 3187 * @param cs chip select pin (active low)
wim 25:6162b31128c9 3188 * @param rs Instruction/data control line
Sissors 24:fb3399713710 3189 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 25:6162b31128c9 3190 * @param bl Backlight control line (optional, default = NC)
wim 26:bd897a001012 3191 * @param ctrl LCD controller (default = ST7032_3V3)
wim 25:6162b31128c9 3192 */
wim 25:6162b31128c9 3193 TextLCD_SPI_N::TextLCD_SPI_N(SPI *spi, PinName cs, PinName rs, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 25:6162b31128c9 3194 TextLCD_Base(type, ctrl),
wim 25:6162b31128c9 3195 _spi(spi),
wim 25:6162b31128c9 3196 _cs(cs),
wim 25:6162b31128c9 3197 _rs(rs) {
Sissors 24:fb3399713710 3198
wim 32:59c4b8f648d4 3199 // Init CS
wim 32:59c4b8f648d4 3200 _cs = 1;
wim 32:59c4b8f648d4 3201
wim 36:9f5f86dfd44a 3202 // Setup the spi for 8 bit data, high steady state clock,
wim 36:9f5f86dfd44a 3203 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 36:9f5f86dfd44a 3204 // _spi->format(8,3);
wim 36:9f5f86dfd44a 3205 // _spi->frequency(1000000);
wim 36:9f5f86dfd44a 3206
Sissors 24:fb3399713710 3207 // Setup the spi for 8 bit data, low steady state clock,
Sissors 24:fb3399713710 3208 // rising edge capture, with a 500KHz or 1MHz clock rate
Sissors 24:fb3399713710 3209 _spi->format(8,0);
wim 36:9f5f86dfd44a 3210 // _spi->frequency(300000);
wim 36:9f5f86dfd44a 3211 // _spi->frequency(500000);
Sissors 24:fb3399713710 3212 _spi->frequency(1000000);
wim 36:9f5f86dfd44a 3213
Sissors 24:fb3399713710 3214 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
Sissors 24:fb3399713710 3215 if (bl != NC) {
Sissors 24:fb3399713710 3216 _bl = new DigitalOut(bl); //Construct new pin
Sissors 24:fb3399713710 3217 _bl->write(0); //Deactivate
Sissors 24:fb3399713710 3218 }
Sissors 24:fb3399713710 3219 else {
Sissors 24:fb3399713710 3220 // No Hardware Backlight pin
Sissors 24:fb3399713710 3221 _bl = NULL; //Construct dummy pin
Sissors 24:fb3399713710 3222 }
wim 30:033048611c01 3223
wim 30:033048611c01 3224 //Sanity check
wim 30:033048611c01 3225 if (_ctrl & LCD_C_SPI4) {
wim 36:9f5f86dfd44a 3226 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 36:9f5f86dfd44a 3227 // ST7070 must set datalength to 8 bits!
wim 30:033048611c01 3228 }
wim 30:033048611c01 3229 else {
wim 30:033048611c01 3230 error("Error: LCD Controller type does not support native SPI4 interface\n\r");
wim 30:033048611c01 3231 }
Sissors 24:fb3399713710 3232 }
Sissors 24:fb3399713710 3233
wim 25:6162b31128c9 3234 TextLCD_SPI_N::~TextLCD_SPI_N() {
Sissors 24:fb3399713710 3235 if (_bl != NULL) {delete _bl;} // BL pin
Sissors 24:fb3399713710 3236 }
Sissors 24:fb3399713710 3237
Sissors 24:fb3399713710 3238 // Not used in this mode
wim 25:6162b31128c9 3239 void TextLCD_SPI_N::_setEnable(bool value) {
Sissors 24:fb3399713710 3240 }
Sissors 24:fb3399713710 3241
Sissors 24:fb3399713710 3242 // Set RS pin
wim 36:9f5f86dfd44a 3243 // Used for mbed pins, I2C bus expander or SPI shiftregister, SPI_N
wim 25:6162b31128c9 3244 void TextLCD_SPI_N::_setRS(bool value) {
Sissors 24:fb3399713710 3245 _rs = value;
Sissors 24:fb3399713710 3246 }
Sissors 24:fb3399713710 3247
Sissors 24:fb3399713710 3248 // Set BL pin
wim 25:6162b31128c9 3249 void TextLCD_SPI_N::_setBL(bool value) {
wim 26:bd897a001012 3250 if (_bl) {
Sissors 24:fb3399713710 3251 _bl->write(value);
wim 26:bd897a001012 3252 }
Sissors 24:fb3399713710 3253 }
Sissors 24:fb3399713710 3254
wim 29:a3663151aa65 3255 // Not used in this mode
wim 29:a3663151aa65 3256 void TextLCD_SPI_N::_setData(int value) {
wim 29:a3663151aa65 3257 }
wim 29:a3663151aa65 3258
Sissors 24:fb3399713710 3259 // Write a byte using SPI
wim 25:6162b31128c9 3260 void TextLCD_SPI_N::_writeByte(int value) {
Sissors 24:fb3399713710 3261 _cs = 0;
Sissors 24:fb3399713710 3262 wait_us(1);
Sissors 24:fb3399713710 3263 _spi->write(value);
Sissors 24:fb3399713710 3264 wait_us(1);
Sissors 24:fb3399713710 3265 _cs = 1;
Sissors 24:fb3399713710 3266 }
wim 34:e5a0dcb43ecc 3267 #endif /* Native SPI bus */
wim 25:6162b31128c9 3268 //-------- End TextLCD_SPI_N ------------
wim 21:9eb628d9e164 3269
wim 21:9eb628d9e164 3270
wim 36:9f5f86dfd44a 3271 //-------- Start TextLCD_SPI_N_3_8 --------
wim 36:9f5f86dfd44a 3272 #if(LCD_SPI_N_3_8 == 1) /* Native SPI bus */
wim 36:9f5f86dfd44a 3273
wim 36:9f5f86dfd44a 3274 /** Create a TextLCD interface using a controller with a native SPI3 8 bits interface
wim 36:9f5f86dfd44a 3275 * This mode is supported by ST7070. Note that implementation in TexTLCD is not very efficient due to
wim 36:9f5f86dfd44a 3276 * structure of the TextLCD library: each databyte is written separately and requires a separate 'count command' set to 1 byte.
wim 36:9f5f86dfd44a 3277 *
wim 36:9f5f86dfd44a 3278 * @param spi SPI Bus
wim 36:9f5f86dfd44a 3279 * @param cs chip select pin (active low)
wim 36:9f5f86dfd44a 3280 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 36:9f5f86dfd44a 3281 * @param bl Backlight control line (optional, default = NC)
wim 36:9f5f86dfd44a 3282 * @param ctrl LCD controller (default = ST7070)
wim 36:9f5f86dfd44a 3283 */
wim 36:9f5f86dfd44a 3284 TextLCD_SPI_N_3_8::TextLCD_SPI_N_3_8(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 36:9f5f86dfd44a 3285 TextLCD_Base(type, ctrl),
wim 36:9f5f86dfd44a 3286 _spi(spi),
wim 36:9f5f86dfd44a 3287 _cs(cs) {
wim 36:9f5f86dfd44a 3288
wim 36:9f5f86dfd44a 3289 // Init CS
wim 36:9f5f86dfd44a 3290 _cs = 1;
wim 36:9f5f86dfd44a 3291
wim 36:9f5f86dfd44a 3292 // Setup the spi for 8 bit data, high steady state clock,
wim 36:9f5f86dfd44a 3293 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 36:9f5f86dfd44a 3294 // _spi->format(8,3);
wim 36:9f5f86dfd44a 3295 // _spi->frequency(300000);
wim 36:9f5f86dfd44a 3296 // _spi->frequency(1000000);
wim 36:9f5f86dfd44a 3297
wim 36:9f5f86dfd44a 3298 // Setup the spi for 8 bit data, low steady state clock,
wim 36:9f5f86dfd44a 3299 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 36:9f5f86dfd44a 3300 _spi->format(8,0);
wim 36:9f5f86dfd44a 3301 // _spi->frequency(300000);
wim 36:9f5f86dfd44a 3302 // _spi->frequency(500000);
wim 36:9f5f86dfd44a 3303 _spi->frequency(1000000);
wim 36:9f5f86dfd44a 3304
wim 36:9f5f86dfd44a 3305
wim 36:9f5f86dfd44a 3306 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 36:9f5f86dfd44a 3307 if (bl != NC) {
wim 36:9f5f86dfd44a 3308 _bl = new DigitalOut(bl); //Construct new pin
wim 36:9f5f86dfd44a 3309 _bl->write(0); //Deactivate
wim 36:9f5f86dfd44a 3310 }
wim 36:9f5f86dfd44a 3311 else {
wim 36:9f5f86dfd44a 3312 // No Hardware Backlight pin
wim 36:9f5f86dfd44a 3313 _bl = NULL; //Construct dummy pin
wim 36:9f5f86dfd44a 3314 }
wim 36:9f5f86dfd44a 3315
wim 36:9f5f86dfd44a 3316 //Sanity check
wim 36:9f5f86dfd44a 3317 if (_ctrl & LCD_C_SPI3_8) {
wim 36:9f5f86dfd44a 3318 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 36:9f5f86dfd44a 3319 }
wim 36:9f5f86dfd44a 3320 else {
wim 36:9f5f86dfd44a 3321 error("Error: LCD Controller type does not support native SPI3 8 bits interface\n\r");
wim 36:9f5f86dfd44a 3322 }
wim 36:9f5f86dfd44a 3323 }
wim 36:9f5f86dfd44a 3324
wim 36:9f5f86dfd44a 3325 TextLCD_SPI_N_3_8::~TextLCD_SPI_N_3_8() {
wim 36:9f5f86dfd44a 3326 if (_bl != NULL) {delete _bl;} // BL pin
wim 36:9f5f86dfd44a 3327 }
wim 36:9f5f86dfd44a 3328
wim 36:9f5f86dfd44a 3329 // Not used in this mode
wim 36:9f5f86dfd44a 3330 void TextLCD_SPI_N_3_8::_setEnable(bool value) {
wim 36:9f5f86dfd44a 3331 }
wim 36:9f5f86dfd44a 3332
wim 36:9f5f86dfd44a 3333 // Used for mbed pins, I2C bus expander or SPI shiftregister, SPI_N
wim 36:9f5f86dfd44a 3334 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 36:9f5f86dfd44a 3335 void TextLCD_SPI_N_3_8::_setRS(bool value) {
wim 36:9f5f86dfd44a 3336
wim 36:9f5f86dfd44a 3337 if (value) {
wim 36:9f5f86dfd44a 3338 _controlbyte = 0x01; // Next byte is data, No more control bytes will follow
wim 36:9f5f86dfd44a 3339 }
wim 36:9f5f86dfd44a 3340 else {
wim 36:9f5f86dfd44a 3341 _controlbyte = 0x00; // Next byte is command, No more control bytes will follow
wim 36:9f5f86dfd44a 3342 }
wim 36:9f5f86dfd44a 3343 }
wim 36:9f5f86dfd44a 3344
wim 36:9f5f86dfd44a 3345 // Set BL pin
wim 36:9f5f86dfd44a 3346 void TextLCD_SPI_N_3_8::_setBL(bool value) {
wim 36:9f5f86dfd44a 3347 if (_bl) {
wim 36:9f5f86dfd44a 3348 _bl->write(value);
wim 36:9f5f86dfd44a 3349 }
wim 36:9f5f86dfd44a 3350 }
wim 36:9f5f86dfd44a 3351
wim 36:9f5f86dfd44a 3352 // Not used in this mode
wim 36:9f5f86dfd44a 3353 void TextLCD_SPI_N_3_8::_setData(int value) {
wim 36:9f5f86dfd44a 3354 }
wim 36:9f5f86dfd44a 3355
wim 36:9f5f86dfd44a 3356 // Write a byte using SPI3 8 bits mode (ST7070)
wim 36:9f5f86dfd44a 3357 void TextLCD_SPI_N_3_8::_writeByte(int value) {
wim 36:9f5f86dfd44a 3358
wim 36:9f5f86dfd44a 3359 if (_controlbyte == 0x00) { // Byte is command
wim 36:9f5f86dfd44a 3360 _cs = 0;
wim 36:9f5f86dfd44a 3361 wait_us(1);
wim 36:9f5f86dfd44a 3362 _spi->write(value);
wim 36:9f5f86dfd44a 3363 wait_us(1);
wim 36:9f5f86dfd44a 3364 _cs = 1;
wim 36:9f5f86dfd44a 3365 }
wim 36:9f5f86dfd44a 3366 else { // Byte is data
wim 36:9f5f86dfd44a 3367 // Select Extended Instr Set
wim 36:9f5f86dfd44a 3368 _cs = 0;
wim 36:9f5f86dfd44a 3369 wait_us(1);
wim 36:9f5f86dfd44a 3370 _spi->write(0x20 | _function | 0x04); // Set function, 0 0 1 DL N EXT=1 x x (Select Instr Set = 1));
wim 36:9f5f86dfd44a 3371 wait_us(1);
wim 36:9f5f86dfd44a 3372 _cs = 1;
wim 36:9f5f86dfd44a 3373
wim 36:9f5f86dfd44a 3374 wait_us(40); // Wait until command has finished...
wim 36:9f5f86dfd44a 3375
wim 36:9f5f86dfd44a 3376 // Set Count to 1 databyte
wim 36:9f5f86dfd44a 3377 _cs = 0;
wim 36:9f5f86dfd44a 3378 wait_us(1);
wim 36:9f5f86dfd44a 3379 _spi->write(0x80); // Set display data length, 1 L6 L5 L4 L3 L2 L1 L0 (Instr Set = 1)
wim 36:9f5f86dfd44a 3380 wait_us(1);
wim 36:9f5f86dfd44a 3381 _cs = 1;
wim 36:9f5f86dfd44a 3382
wim 36:9f5f86dfd44a 3383 wait_us(40);
wim 36:9f5f86dfd44a 3384
wim 36:9f5f86dfd44a 3385 // Write 1 databyte
wim 36:9f5f86dfd44a 3386 _cs = 0;
wim 36:9f5f86dfd44a 3387 wait_us(1);
wim 36:9f5f86dfd44a 3388 _spi->write(value); // Write data (Instr Set = 1)
wim 36:9f5f86dfd44a 3389 wait_us(1);
wim 36:9f5f86dfd44a 3390 _cs = 1;
wim 36:9f5f86dfd44a 3391
wim 36:9f5f86dfd44a 3392 wait_us(40);
wim 36:9f5f86dfd44a 3393
wim 36:9f5f86dfd44a 3394 // Select Standard Instr Set
wim 36:9f5f86dfd44a 3395 _cs = 0;
wim 36:9f5f86dfd44a 3396 wait_us(1);
wim 36:9f5f86dfd44a 3397 _spi->write(0x20 | _function); // Set function, 0 0 1 DL N EXT=0 x x (Select Instr Set = 0));
wim 36:9f5f86dfd44a 3398 wait_us(1);
wim 36:9f5f86dfd44a 3399 _cs = 1;
wim 36:9f5f86dfd44a 3400 }
wim 36:9f5f86dfd44a 3401 }
wim 36:9f5f86dfd44a 3402 #endif /* Native SPI bus */
wim 36:9f5f86dfd44a 3403 //------- End TextLCD_SPI_N_3_8 -----------
wim 36:9f5f86dfd44a 3404
wim 36:9f5f86dfd44a 3405
wim 30:033048611c01 3406 //-------- Start TextLCD_SPI_N_3_9 --------
wim 34:e5a0dcb43ecc 3407 #if(LCD_SPI_N_3_9 == 1) /* Native SPI bus */
wim 34:e5a0dcb43ecc 3408 //Code checked out on logic analyser. Not yet tested on hardware..
wim 30:033048611c01 3409
wim 30:033048611c01 3410 /** Create a TextLCD interface using a controller with a native SPI3 9 bits interface
wim 30:033048611c01 3411 *
wim 30:033048611c01 3412 * @param spi SPI Bus
wim 30:033048611c01 3413 * @param cs chip select pin (active low)
wim 30:033048611c01 3414 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 30:033048611c01 3415 * @param bl Backlight control line (optional, default = NC)
wim 30:033048611c01 3416 * @param ctrl LCD controller (default = AIP31068)
wim 30:033048611c01 3417 */
wim 30:033048611c01 3418 TextLCD_SPI_N_3_9::TextLCD_SPI_N_3_9(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 30:033048611c01 3419 TextLCD_Base(type, ctrl),
wim 30:033048611c01 3420 _spi(spi),
wim 33:900a94bc7585 3421 _cs(cs) {
wim 32:59c4b8f648d4 3422
wim 32:59c4b8f648d4 3423 // Init CS
wim 32:59c4b8f648d4 3424 _cs = 1;
wim 32:59c4b8f648d4 3425
wim 34:e5a0dcb43ecc 3426 // Setup the spi for 9 bit data, high steady state clock,
wim 30:033048611c01 3427 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 32:59c4b8f648d4 3428 _spi->format(9,3);
wim 30:033048611c01 3429 _spi->frequency(1000000);
wim 30:033048611c01 3430
wim 30:033048611c01 3431 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 30:033048611c01 3432 if (bl != NC) {
wim 30:033048611c01 3433 _bl = new DigitalOut(bl); //Construct new pin
wim 30:033048611c01 3434 _bl->write(0); //Deactivate
wim 30:033048611c01 3435 }
wim 30:033048611c01 3436 else {
wim 30:033048611c01 3437 // No Hardware Backlight pin
wim 30:033048611c01 3438 _bl = NULL; //Construct dummy pin
wim 30:033048611c01 3439 }
wim 30:033048611c01 3440
wim 30:033048611c01 3441 //Sanity check
wim 36:9f5f86dfd44a 3442 if (_ctrl & LCD_C_SPI3_9) {
wim 36:9f5f86dfd44a 3443 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 30:033048611c01 3444 }
wim 30:033048611c01 3445 else {
wim 30:033048611c01 3446 error("Error: LCD Controller type does not support native SPI3 9 bits interface\n\r");
wim 30:033048611c01 3447 }
wim 30:033048611c01 3448 }
wim 30:033048611c01 3449
wim 30:033048611c01 3450 TextLCD_SPI_N_3_9::~TextLCD_SPI_N_3_9() {
wim 30:033048611c01 3451 if (_bl != NULL) {delete _bl;} // BL pin
wim 30:033048611c01 3452 }
wim 30:033048611c01 3453
wim 30:033048611c01 3454 // Not used in this mode
wim 30:033048611c01 3455 void TextLCD_SPI_N_3_9::_setEnable(bool value) {
wim 30:033048611c01 3456 }
wim 30:033048611c01 3457
wim 30:033048611c01 3458 // Set RS pin
wim 30:033048611c01 3459 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 30:033048611c01 3460 void TextLCD_SPI_N_3_9::_setRS(bool value) {
wim 30:033048611c01 3461 // The controlbits define the meaning of the next byte. This next byte can either be data or command.
wim 30:033048611c01 3462 // b8 b7...........b0
wim 30:033048611c01 3463 // RS command or data
wim 30:033048611c01 3464 //
wim 30:033048611c01 3465 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 30:033048611c01 3466 //
wim 30:033048611c01 3467
wim 30:033048611c01 3468 if (value) {
wim 30:033048611c01 3469 _controlbyte = 0x01; // Next byte is data
wim 30:033048611c01 3470 }
wim 30:033048611c01 3471 else {
wim 30:033048611c01 3472 _controlbyte = 0x00; // Next byte is command
wim 34:e5a0dcb43ecc 3473 }
wim 30:033048611c01 3474 }
wim 30:033048611c01 3475
wim 30:033048611c01 3476 // Set BL pin
wim 30:033048611c01 3477 void TextLCD_SPI_N_3_9::_setBL(bool value) {
wim 30:033048611c01 3478 if (_bl) {
wim 30:033048611c01 3479 _bl->write(value);
wim 30:033048611c01 3480 }
wim 30:033048611c01 3481 }
wim 30:033048611c01 3482
wim 30:033048611c01 3483 // Not used in this mode
wim 30:033048611c01 3484 void TextLCD_SPI_N_3_9::_setData(int value) {
wim 30:033048611c01 3485 }
wim 30:033048611c01 3486
wim 30:033048611c01 3487 // Write a byte using SPI3 9 bits mode
wim 30:033048611c01 3488 void TextLCD_SPI_N_3_9::_writeByte(int value) {
wim 30:033048611c01 3489 _cs = 0;
wim 30:033048611c01 3490 wait_us(1);
wim 30:033048611c01 3491 _spi->write( (_controlbyte << 8) | (value & 0xFF));
wim 30:033048611c01 3492 wait_us(1);
wim 30:033048611c01 3493 _cs = 1;
wim 30:033048611c01 3494 }
wim 34:e5a0dcb43ecc 3495 #endif /* Native SPI bus */
wim 30:033048611c01 3496 //------- End TextLCD_SPI_N_3_9 -----------
wim 34:e5a0dcb43ecc 3497
wim 34:e5a0dcb43ecc 3498
wim 30:033048611c01 3499 //------- Start TextLCD_SPI_N_3_10 --------
wim 34:e5a0dcb43ecc 3500 #if(LCD_SPI_N_3_10 == 1) /* Native SPI bus */
wim 30:033048611c01 3501
wim 30:033048611c01 3502 /** Create a TextLCD interface using a controller with a native SPI3 10 bits interface
wim 30:033048611c01 3503 *
wim 30:033048611c01 3504 * @param spi SPI Bus
wim 30:033048611c01 3505 * @param cs chip select pin (active low)
wim 30:033048611c01 3506 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 30:033048611c01 3507 * @param bl Backlight control line (optional, default = NC)
wim 30:033048611c01 3508 * @param ctrl LCD controller (default = AIP31068)
wim 30:033048611c01 3509 */
wim 30:033048611c01 3510 TextLCD_SPI_N_3_10::TextLCD_SPI_N_3_10(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 30:033048611c01 3511 TextLCD_Base(type, ctrl),
wim 30:033048611c01 3512 _spi(spi),
wim 30:033048611c01 3513 _cs(cs) {
wim 30:033048611c01 3514
wim 32:59c4b8f648d4 3515 // Init CS
wim 32:59c4b8f648d4 3516 _cs = 1;
wim 32:59c4b8f648d4 3517
wim 30:033048611c01 3518 // Setup the spi for 10 bit data, low steady state clock,
wim 30:033048611c01 3519 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 30:033048611c01 3520 _spi->format(10,0);
wim 30:033048611c01 3521 _spi->frequency(1000000);
wim 30:033048611c01 3522
wim 30:033048611c01 3523 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 30:033048611c01 3524 if (bl != NC) {
wim 30:033048611c01 3525 _bl = new DigitalOut(bl); //Construct new pin
wim 30:033048611c01 3526 _bl->write(0); //Deactivate
wim 30:033048611c01 3527 }
wim 30:033048611c01 3528 else {
wim 30:033048611c01 3529 // No Hardware Backlight pin
wim 30:033048611c01 3530 _bl = NULL; //Construct dummy pin
wim 30:033048611c01 3531 }
wim 30:033048611c01 3532
wim 30:033048611c01 3533 //Sanity check
wim 30:033048611c01 3534 if (_ctrl & LCD_C_SPI3_10) {
wim 36:9f5f86dfd44a 3535 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 30:033048611c01 3536 }
wim 30:033048611c01 3537 else {
wim 30:033048611c01 3538 error("Error: LCD Controller type does not support native SPI3 10 bits interface\n\r");
wim 30:033048611c01 3539 }
wim 30:033048611c01 3540 }
wim 30:033048611c01 3541
wim 30:033048611c01 3542 TextLCD_SPI_N_3_10::~TextLCD_SPI_N_3_10() {
wim 30:033048611c01 3543 if (_bl != NULL) {delete _bl;} // BL pin
wim 30:033048611c01 3544 }
wim 30:033048611c01 3545
wim 30:033048611c01 3546 // Not used in this mode
wim 30:033048611c01 3547 void TextLCD_SPI_N_3_10::_setEnable(bool value) {
wim 30:033048611c01 3548 }
wim 30:033048611c01 3549
wim 30:033048611c01 3550 // Set RS pin
wim 30:033048611c01 3551 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 30:033048611c01 3552 void TextLCD_SPI_N_3_10::_setRS(bool value) {
wim 30:033048611c01 3553 // The controlbits define the meaning of the next byte. This next byte can either be data or command.
wim 30:033048611c01 3554 // b9 b8 b7...........b0
wim 30:033048611c01 3555 // RS RW command or data
wim 30:033048611c01 3556 //
wim 30:033048611c01 3557 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 30:033048611c01 3558 // RW=0 means that next byte is writen, RW=1 means that next byte is read (not used in this lib)
wim 30:033048611c01 3559 //
wim 30:033048611c01 3560
wim 30:033048611c01 3561 if (value) {
wim 30:033048611c01 3562 _controlbyte = 0x02; // Next byte is data
wim 30:033048611c01 3563 }
wim 30:033048611c01 3564 else {
wim 30:033048611c01 3565 _controlbyte = 0x00; // Next byte is command
wim 34:e5a0dcb43ecc 3566 }
wim 30:033048611c01 3567 }
wim 30:033048611c01 3568
wim 30:033048611c01 3569 // Set BL pin
wim 30:033048611c01 3570 void TextLCD_SPI_N_3_10::_setBL(bool value) {
wim 30:033048611c01 3571 if (_bl) {
wim 30:033048611c01 3572 _bl->write(value);
wim 30:033048611c01 3573 }
wim 30:033048611c01 3574 }
wim 30:033048611c01 3575
wim 30:033048611c01 3576 // Not used in this mode
wim 30:033048611c01 3577 void TextLCD_SPI_N_3_10::_setData(int value) {
wim 30:033048611c01 3578 }
wim 30:033048611c01 3579
wim 30:033048611c01 3580 // Write a byte using SPI3 10 bits mode
wim 30:033048611c01 3581 void TextLCD_SPI_N_3_10::_writeByte(int value) {
wim 30:033048611c01 3582 _cs = 0;
wim 30:033048611c01 3583 wait_us(1);
wim 30:033048611c01 3584 _spi->write( (_controlbyte << 8) | (value & 0xFF));
wim 30:033048611c01 3585 wait_us(1);
wim 30:033048611c01 3586 _cs = 1;
wim 30:033048611c01 3587 }
wim 34:e5a0dcb43ecc 3588 #endif /* Native SPI bus */
wim 30:033048611c01 3589 //------- End TextLCD_SPI_N_3_10 ----------
wim 34:e5a0dcb43ecc 3590
wim 32:59c4b8f648d4 3591
wim 32:59c4b8f648d4 3592 //------- Start TextLCD_SPI_N_3_16 --------
wim 34:e5a0dcb43ecc 3593 #if(LCD_SPI_N_3_16 == 1) /* Native SPI bus */
wim 32:59c4b8f648d4 3594
wim 32:59c4b8f648d4 3595 /** Create a TextLCD interface using a controller with a native SPI3 16 bits interface
wim 32:59c4b8f648d4 3596 *
wim 32:59c4b8f648d4 3597 * @param spi SPI Bus
wim 32:59c4b8f648d4 3598 * @param cs chip select pin (active low)
wim 32:59c4b8f648d4 3599 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 32:59c4b8f648d4 3600 * @param bl Backlight control line (optional, default = NC)
wim 32:59c4b8f648d4 3601 * @param ctrl LCD controller (default = PT6314)
wim 32:59c4b8f648d4 3602 */
wim 32:59c4b8f648d4 3603 TextLCD_SPI_N_3_16::TextLCD_SPI_N_3_16(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 32:59c4b8f648d4 3604 TextLCD_Base(type, ctrl),
wim 32:59c4b8f648d4 3605 _spi(spi),
wim 32:59c4b8f648d4 3606 _cs(cs) {
wim 32:59c4b8f648d4 3607
wim 32:59c4b8f648d4 3608 // Init CS
wim 32:59c4b8f648d4 3609 _cs = 1;
wim 32:59c4b8f648d4 3610
wim 32:59c4b8f648d4 3611 // Setup the spi for 8 bit data, low steady state clock,
wim 32:59c4b8f648d4 3612 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 32:59c4b8f648d4 3613 _spi->format(8,0);
wim 32:59c4b8f648d4 3614 _spi->frequency(1000000);
wim 32:59c4b8f648d4 3615
wim 32:59c4b8f648d4 3616 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 32:59c4b8f648d4 3617 if (bl != NC) {
wim 32:59c4b8f648d4 3618 _bl = new DigitalOut(bl); //Construct new pin
wim 32:59c4b8f648d4 3619 _bl->write(0); //Deactivate
wim 32:59c4b8f648d4 3620 }
wim 32:59c4b8f648d4 3621 else {
wim 32:59c4b8f648d4 3622 // No Hardware Backlight pin
wim 32:59c4b8f648d4 3623 _bl = NULL; //Construct dummy pin
wim 32:59c4b8f648d4 3624 }
wim 32:59c4b8f648d4 3625
wim 32:59c4b8f648d4 3626 //Sanity check
wim 32:59c4b8f648d4 3627 if (_ctrl & LCD_C_SPI3_16) {
wim 36:9f5f86dfd44a 3628 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 32:59c4b8f648d4 3629 }
wim 32:59c4b8f648d4 3630 else {
wim 32:59c4b8f648d4 3631 error("Error: LCD Controller type does not support native SPI3 16 bits interface\n\r");
wim 32:59c4b8f648d4 3632 }
wim 32:59c4b8f648d4 3633 }
wim 32:59c4b8f648d4 3634
wim 32:59c4b8f648d4 3635 TextLCD_SPI_N_3_16::~TextLCD_SPI_N_3_16() {
wim 32:59c4b8f648d4 3636 if (_bl != NULL) {delete _bl;} // BL pin
wim 32:59c4b8f648d4 3637 }
wim 32:59c4b8f648d4 3638
wim 32:59c4b8f648d4 3639 // Not used in this mode
wim 32:59c4b8f648d4 3640 void TextLCD_SPI_N_3_16::_setEnable(bool value) {
wim 32:59c4b8f648d4 3641 }
wim 32:59c4b8f648d4 3642
wim 32:59c4b8f648d4 3643 // Set RS pin
wim 32:59c4b8f648d4 3644 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 32:59c4b8f648d4 3645 void TextLCD_SPI_N_3_16::_setRS(bool value) {
wim 32:59c4b8f648d4 3646 // The 16bit mode is split in 2 bytes. The first byte is for synchronisation and controlbits. The controlbits define the meaning of the next byte.
wim 32:59c4b8f648d4 3647 // The 8 actual bits represent either a data or a command byte.
wim 32:59c4b8f648d4 3648 // b15 b14 b13 b12 b11 b10 b9 b8 - b7 b6 b5 b4 b3 b2 b1 b0
wim 32:59c4b8f648d4 3649 // 1 1 1 1 1 RW RS 0 d7 d6 d5 d4 d3 d2 d1 d0
wim 32:59c4b8f648d4 3650 //
wim 32:59c4b8f648d4 3651 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 32:59c4b8f648d4 3652 // RW=0 means that next byte is writen, RW=1 means that next byte is read (not used in this lib)
wim 32:59c4b8f648d4 3653 //
wim 32:59c4b8f648d4 3654
wim 32:59c4b8f648d4 3655 if (value) {
wim 32:59c4b8f648d4 3656 _controlbyte = 0xFA; // Next byte is data
wim 32:59c4b8f648d4 3657 }
wim 32:59c4b8f648d4 3658 else {
wim 32:59c4b8f648d4 3659 _controlbyte = 0xF8; // Next byte is command
wim 32:59c4b8f648d4 3660 }
wim 32:59c4b8f648d4 3661 }
wim 32:59c4b8f648d4 3662
wim 32:59c4b8f648d4 3663 // Set BL pin
wim 32:59c4b8f648d4 3664 void TextLCD_SPI_N_3_16::_setBL(bool value) {
wim 32:59c4b8f648d4 3665 if (_bl) {
wim 32:59c4b8f648d4 3666 _bl->write(value);
wim 32:59c4b8f648d4 3667 }
wim 32:59c4b8f648d4 3668 }
wim 32:59c4b8f648d4 3669
wim 32:59c4b8f648d4 3670 // Not used in this mode
wim 32:59c4b8f648d4 3671 void TextLCD_SPI_N_3_16::_setData(int value) {
wim 32:59c4b8f648d4 3672 }
wim 34:e5a0dcb43ecc 3673
wim 32:59c4b8f648d4 3674 // Write a byte using SPI3 16 bits mode
wim 32:59c4b8f648d4 3675 void TextLCD_SPI_N_3_16::_writeByte(int value) {
wim 32:59c4b8f648d4 3676 _cs = 0;
wim 32:59c4b8f648d4 3677 wait_us(1);
wim 32:59c4b8f648d4 3678
wim 32:59c4b8f648d4 3679 _spi->write(_controlbyte);
wim 32:59c4b8f648d4 3680
wim 32:59c4b8f648d4 3681 _spi->write(value);
wim 32:59c4b8f648d4 3682
wim 32:59c4b8f648d4 3683 wait_us(1);
wim 32:59c4b8f648d4 3684 _cs = 1;
wim 32:59c4b8f648d4 3685 }
wim 34:e5a0dcb43ecc 3686 #endif /* Native SPI bus */
wim 32:59c4b8f648d4 3687 //------- End TextLCD_SPI_N_3_16 ----------
wim 34:e5a0dcb43ecc 3688
wim 34:e5a0dcb43ecc 3689
wim 32:59c4b8f648d4 3690 //------- Start TextLCD_SPI_N_3_24 --------
wim 34:e5a0dcb43ecc 3691 #if(LCD_SPI_N_3_24 == 1) /* Native SPI bus */
wim 32:59c4b8f648d4 3692
wim 32:59c4b8f648d4 3693 /** Create a TextLCD interface using a controller with a native SPI3 24 bits interface
wim 32:59c4b8f648d4 3694 *
wim 32:59c4b8f648d4 3695 * @param spi SPI Bus
wim 32:59c4b8f648d4 3696 * @param cs chip select pin (active low)
wim 32:59c4b8f648d4 3697 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 32:59c4b8f648d4 3698 * @param bl Backlight control line (optional, default = NC)
wim 32:59c4b8f648d4 3699 * @param ctrl LCD controller (default = SSD1803)
wim 32:59c4b8f648d4 3700 */
wim 32:59c4b8f648d4 3701 TextLCD_SPI_N_3_24::TextLCD_SPI_N_3_24(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 32:59c4b8f648d4 3702 TextLCD_Base(type, ctrl),
wim 32:59c4b8f648d4 3703 _spi(spi),
wim 32:59c4b8f648d4 3704 _cs(cs) {
wim 32:59c4b8f648d4 3705
wim 32:59c4b8f648d4 3706 // Init CS
wim 32:59c4b8f648d4 3707 _cs = 1;
wim 32:59c4b8f648d4 3708
wim 34:e5a0dcb43ecc 3709 // Setup the spi for 8 bit data, high steady state clock,
wim 32:59c4b8f648d4 3710 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 34:e5a0dcb43ecc 3711 _spi->format(8,3);
wim 32:59c4b8f648d4 3712 _spi->frequency(1000000);
wim 32:59c4b8f648d4 3713
wim 32:59c4b8f648d4 3714 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 32:59c4b8f648d4 3715 if (bl != NC) {
wim 32:59c4b8f648d4 3716 _bl = new DigitalOut(bl); //Construct new pin
wim 32:59c4b8f648d4 3717 _bl->write(0); //Deactivate
wim 32:59c4b8f648d4 3718 }
wim 32:59c4b8f648d4 3719 else {
wim 32:59c4b8f648d4 3720 // No Hardware Backlight pin
wim 32:59c4b8f648d4 3721 _bl = NULL; //Construct dummy pin
wim 32:59c4b8f648d4 3722 }
wim 32:59c4b8f648d4 3723
wim 32:59c4b8f648d4 3724 //Sanity check
wim 32:59c4b8f648d4 3725 if (_ctrl & LCD_C_SPI3_24) {
wim 36:9f5f86dfd44a 3726 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 32:59c4b8f648d4 3727 }
wim 32:59c4b8f648d4 3728 else {
wim 32:59c4b8f648d4 3729 error("Error: LCD Controller type does not support native SPI3 24 bits interface\n\r");
wim 32:59c4b8f648d4 3730 }
wim 32:59c4b8f648d4 3731 }
wim 32:59c4b8f648d4 3732
wim 32:59c4b8f648d4 3733 TextLCD_SPI_N_3_24::~TextLCD_SPI_N_3_24() {
wim 32:59c4b8f648d4 3734 if (_bl != NULL) {delete _bl;} // BL pin
wim 32:59c4b8f648d4 3735 }
wim 32:59c4b8f648d4 3736
wim 32:59c4b8f648d4 3737 // Not used in this mode
wim 32:59c4b8f648d4 3738 void TextLCD_SPI_N_3_24::_setEnable(bool value) {
wim 32:59c4b8f648d4 3739 }
wim 32:59c4b8f648d4 3740
wim 32:59c4b8f648d4 3741 // Set RS pin
wim 32:59c4b8f648d4 3742 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 32:59c4b8f648d4 3743 void TextLCD_SPI_N_3_24::_setRS(bool value) {
wim 32:59c4b8f648d4 3744 // The 24bit mode is split in 3 bytes. The first byte is for synchronisation and controlbits. The controlbits define the meaning of the next two bytes.
wim 32:59c4b8f648d4 3745 // Each byte encodes 4 actual bits. The 8 actual bits represent either a data or a command byte.
wim 32:59c4b8f648d4 3746 // b23 b22 b21 b20 b19 b18 b17 b16 - b15 b14 b13 b12 b11 b10 b9 b8 - b7 b6 b5 b4 b3 b2 b1 b0
wim 32:59c4b8f648d4 3747 // 1 1 1 1 1 RW RS 0 d0 d1 d2 d3 0 0 0 0 d4 d5 d6 d7 0 0 0 0
wim 32:59c4b8f648d4 3748 //
wim 32:59c4b8f648d4 3749 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 32:59c4b8f648d4 3750 // RW=0 means that next byte is writen, RW=1 means that next byte is read (not used in this lib)
wim 32:59c4b8f648d4 3751 //
wim 32:59c4b8f648d4 3752 // Note: SPI3_24 expects LSB first. This is inconsistent with regular SPI convention (and hardware) that sends MSB first.
wim 32:59c4b8f648d4 3753
wim 32:59c4b8f648d4 3754 if (value) {
wim 32:59c4b8f648d4 3755 _controlbyte = 0xFA; // Next byte is data
wim 32:59c4b8f648d4 3756 }
wim 32:59c4b8f648d4 3757 else {
wim 32:59c4b8f648d4 3758 _controlbyte = 0xF8; // Next byte is command
wim 34:e5a0dcb43ecc 3759 }
wim 32:59c4b8f648d4 3760 }
wim 32:59c4b8f648d4 3761
wim 32:59c4b8f648d4 3762 // Set BL pin
wim 32:59c4b8f648d4 3763 void TextLCD_SPI_N_3_24::_setBL(bool value) {
wim 32:59c4b8f648d4 3764 if (_bl) {
wim 32:59c4b8f648d4 3765 _bl->write(value);
wim 32:59c4b8f648d4 3766 }
wim 32:59c4b8f648d4 3767 }
wim 32:59c4b8f648d4 3768
wim 32:59c4b8f648d4 3769 // Not used in this mode
wim 32:59c4b8f648d4 3770 void TextLCD_SPI_N_3_24::_setData(int value) {
wim 32:59c4b8f648d4 3771 }
wim 32:59c4b8f648d4 3772
wim 32:59c4b8f648d4 3773 //Mapping table to flip the bits around cause SPI3_24 expects LSB first.
wim 32:59c4b8f648d4 3774 const uint8_t map3_24[16] = {0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0};
wim 32:59c4b8f648d4 3775
wim 32:59c4b8f648d4 3776 // Write a byte using SPI3 24 bits mode
wim 32:59c4b8f648d4 3777 void TextLCD_SPI_N_3_24::_writeByte(int value) {
wim 32:59c4b8f648d4 3778 _cs = 0;
wim 32:59c4b8f648d4 3779 wait_us(1);
wim 32:59c4b8f648d4 3780 _spi->write(_controlbyte);
wim 32:59c4b8f648d4 3781
wim 32:59c4b8f648d4 3782 //Map and send the LSB nibble
wim 32:59c4b8f648d4 3783 _spi->write( map3_24[value & 0x0F]);
wim 32:59c4b8f648d4 3784
wim 32:59c4b8f648d4 3785 //Map and send the MSB nibble
wim 32:59c4b8f648d4 3786 _spi->write( map3_24[(value >> 4) & 0x0F]);
wim 32:59c4b8f648d4 3787
wim 32:59c4b8f648d4 3788 wait_us(1);
wim 32:59c4b8f648d4 3789 _cs = 1;
wim 32:59c4b8f648d4 3790 }
wim 34:e5a0dcb43ecc 3791 #endif /* Native SPI bus */
wim 32:59c4b8f648d4 3792 //------- End TextLCD_SPI_N_3_24 ----------