thanks to Zoltan Hudak publish the way to use stm32f103c8t6 on mbed. now you can use it with MPC4725 DAC

Dependencies:   mbed-STM32F103C8T6 mbed

Fork of Wii_IRCam_Test by Michael Shimniok

Committer:
Zeran
Date:
Thu May 25 16:49:26 2017 +0000
Revision:
3:37fb1e2aacf3
Parent:
2:2b68d1d14aca
STM32f103c8t6 work with GY91(mpu9250 only on bmp280) Example

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Zeran 2:2b68d1d14aca 1 #include "stm32f103c8t6.h"
shimniok 0:cf1bc7c313b4 2 #include "mbed.h"
Zeran 3:37fb1e2aacf3 3 #include "MPU9250.h"
shimniok 0:cf1bc7c313b4 4
Zeran 3:37fb1e2aacf3 5 float sum = 0;
Zeran 3:37fb1e2aacf3 6 uint32_t sumCount = 0;
Zeran 3:37fb1e2aacf3 7 char buffer[14];
shimniok 0:cf1bc7c313b4 8
Zeran 3:37fb1e2aacf3 9 MPU9250 mpu9250;
shimniok 0:cf1bc7c313b4 10
Zeran 3:37fb1e2aacf3 11 Timer t;
Zeran 2:2b68d1d14aca 12
Zeran 2:2b68d1d14aca 13 int main()
shimniok 0:cf1bc7c313b4 14 {
Zeran 3:37fb1e2aacf3 15
Zeran 2:2b68d1d14aca 16 confSysClock();
Zeran 3:37fb1e2aacf3 17 Serial pc(PA_2, PA_3);//pc(USBTX, USBRX); // tx, rx
shimniok 0:cf1bc7c313b4 18 pc.baud(115200);
Zeran 3:37fb1e2aacf3 19
Zeran 3:37fb1e2aacf3 20 //Set up I2C
Zeran 3:37fb1e2aacf3 21 i2c.frequency(400000); // use fast (400 kHz) I2C
Zeran 3:37fb1e2aacf3 22
Zeran 3:37fb1e2aacf3 23 pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);
Zeran 3:37fb1e2aacf3 24
Zeran 3:37fb1e2aacf3 25 t.start();
Zeran 3:37fb1e2aacf3 26
Zeran 3:37fb1e2aacf3 27 // Read the WHO_AM_I register, this is a good test of communication
Zeran 3:37fb1e2aacf3 28 uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250
Zeran 3:37fb1e2aacf3 29 pc.printf("I AM 0x%x\n\r", whoami);
Zeran 3:37fb1e2aacf3 30 pc.printf("I SHOULD BE 0x71\n\r");
Zeran 3:37fb1e2aacf3 31
Zeran 3:37fb1e2aacf3 32 if (whoami == 0x73) { // WHO_AM_I should always be 0x68
Zeran 3:37fb1e2aacf3 33 pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
Zeran 3:37fb1e2aacf3 34 pc.printf("MPU9250 is online...\n\r");
Zeran 3:37fb1e2aacf3 35 sprintf(buffer, "0x%x", whoami);
Zeran 3:37fb1e2aacf3 36 wait(1);
shimniok 0:cf1bc7c313b4 37
Zeran 3:37fb1e2aacf3 38 mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
Zeran 3:37fb1e2aacf3 39 mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
Zeran 3:37fb1e2aacf3 40 pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);
Zeran 3:37fb1e2aacf3 41 pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);
Zeran 3:37fb1e2aacf3 42 pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);
Zeran 3:37fb1e2aacf3 43 pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);
Zeran 3:37fb1e2aacf3 44 pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);
Zeran 3:37fb1e2aacf3 45 pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);
Zeran 3:37fb1e2aacf3 46 mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
Zeran 3:37fb1e2aacf3 47 pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
Zeran 3:37fb1e2aacf3 48 pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
Zeran 3:37fb1e2aacf3 49 pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
Zeran 3:37fb1e2aacf3 50 pc.printf("x accel bias = %f\n\r", accelBias[0]);
Zeran 3:37fb1e2aacf3 51 pc.printf("y accel bias = %f\n\r", accelBias[1]);
Zeran 3:37fb1e2aacf3 52 pc.printf("z accel bias = %f\n\r", accelBias[2]);
Zeran 3:37fb1e2aacf3 53 wait(2);
Zeran 3:37fb1e2aacf3 54
Zeran 3:37fb1e2aacf3 55 mpu9250.initMPU9250();
Zeran 3:37fb1e2aacf3 56 pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
Zeran 3:37fb1e2aacf3 57 mpu9250.initAK8963(magCalibration);
Zeran 3:37fb1e2aacf3 58 pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
Zeran 3:37fb1e2aacf3 59 pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale));
Zeran 3:37fb1e2aacf3 60 pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale));
Zeran 3:37fb1e2aacf3 61 if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r");
Zeran 3:37fb1e2aacf3 62 if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r");
Zeran 3:37fb1e2aacf3 63 if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
Zeran 3:37fb1e2aacf3 64 if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
Zeran 3:37fb1e2aacf3 65 wait(1);
Zeran 3:37fb1e2aacf3 66 } else {
Zeran 3:37fb1e2aacf3 67 pc.printf("Could not connect to MPU9250: \n\r");
Zeran 3:37fb1e2aacf3 68 pc.printf("%#x \n", whoami);
Zeran 3:37fb1e2aacf3 69
Zeran 3:37fb1e2aacf3 70 sprintf(buffer, "WHO_AM_I 0x%x", whoami);
Zeran 3:37fb1e2aacf3 71 while(1) ; // Loop forever if communication doesn't happen
Zeran 3:37fb1e2aacf3 72 }
Zeran 3:37fb1e2aacf3 73 mpu9250.getAres(); // Get accelerometer sensitivity
Zeran 3:37fb1e2aacf3 74 mpu9250.getGres(); // Get gyro sensitivity
Zeran 3:37fb1e2aacf3 75 mpu9250.getMres(); // Get magnetometer sensitivity
Zeran 3:37fb1e2aacf3 76 pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
Zeran 3:37fb1e2aacf3 77 pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
Zeran 3:37fb1e2aacf3 78 pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
Zeran 3:37fb1e2aacf3 79 magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated
Zeran 3:37fb1e2aacf3 80 magbias[1] = +120.; // User environmental x-axis correction in milliGauss
Zeran 3:37fb1e2aacf3 81 magbias[2] = +125.; // User environmental x-axis correction in milliGauss
Zeran 3:37fb1e2aacf3 82
Zeran 3:37fb1e2aacf3 83
shimniok 0:cf1bc7c313b4 84 while(1) {
Zeran 3:37fb1e2aacf3 85
Zeran 3:37fb1e2aacf3 86 // If intPin goes high, all data registers have new data
Zeran 3:37fb1e2aacf3 87 if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt
Zeran 3:37fb1e2aacf3 88
Zeran 3:37fb1e2aacf3 89 mpu9250.readAccelData(accelCount); // Read the x/y/z adc values
Zeran 3:37fb1e2aacf3 90 // Now we'll calculate the accleration value into actual g's
Zeran 3:37fb1e2aacf3 91 ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
Zeran 3:37fb1e2aacf3 92 ay = (float)accelCount[1]*aRes - accelBias[1];
Zeran 3:37fb1e2aacf3 93 az = (float)accelCount[2]*aRes - accelBias[2];
Zeran 3:37fb1e2aacf3 94
Zeran 3:37fb1e2aacf3 95 mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values
Zeran 3:37fb1e2aacf3 96 // Calculate the gyro value into actual degrees per second
Zeran 3:37fb1e2aacf3 97 gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set
Zeran 3:37fb1e2aacf3 98 gy = (float)gyroCount[1]*gRes - gyroBias[1];
Zeran 3:37fb1e2aacf3 99 gz = (float)gyroCount[2]*gRes - gyroBias[2];
Zeran 3:37fb1e2aacf3 100
Zeran 3:37fb1e2aacf3 101 mpu9250.readMagData(magCount); // Read the x/y/z adc values
Zeran 3:37fb1e2aacf3 102 // Calculate the magnetometer values in milliGauss
Zeran 3:37fb1e2aacf3 103 // Include factory calibration per data sheet and user environmental corrections
Zeran 3:37fb1e2aacf3 104 mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set
Zeran 3:37fb1e2aacf3 105 my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
Zeran 3:37fb1e2aacf3 106 mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
Zeran 3:37fb1e2aacf3 107 }
Zeran 3:37fb1e2aacf3 108
Zeran 3:37fb1e2aacf3 109 Now = t.read_us();
Zeran 3:37fb1e2aacf3 110 deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
Zeran 3:37fb1e2aacf3 111 lastUpdate = Now;
Zeran 3:37fb1e2aacf3 112
Zeran 3:37fb1e2aacf3 113 sum += deltat;
Zeran 3:37fb1e2aacf3 114 sumCount++;
Zeran 3:37fb1e2aacf3 115
Zeran 3:37fb1e2aacf3 116 // if(lastUpdate - firstUpdate > 10000000.0f) {
Zeran 3:37fb1e2aacf3 117 // beta = 0.04; // decrease filter gain after stabilized
Zeran 3:37fb1e2aacf3 118 // zeta = 0.015; // increasey bias drift gain after stabilized
Zeran 3:37fb1e2aacf3 119 // }
Zeran 3:37fb1e2aacf3 120
Zeran 3:37fb1e2aacf3 121 // Pass gyro rate as rad/s
Zeran 3:37fb1e2aacf3 122 // mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
Zeran 3:37fb1e2aacf3 123 mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
Zeran 3:37fb1e2aacf3 124
Zeran 3:37fb1e2aacf3 125 // Serial print and/or display at 0.5 s rate independent of data rates
Zeran 3:37fb1e2aacf3 126 delt_t = t.read_ms() - count;
Zeran 3:37fb1e2aacf3 127 if (delt_t > 500) { // update LCD once per half-second independent of read rate
Zeran 3:37fb1e2aacf3 128
Zeran 3:37fb1e2aacf3 129 pc.printf("ax = %f", 1000*ax);
Zeran 3:37fb1e2aacf3 130 pc.printf(" ay = %f", 1000*ay);
Zeran 3:37fb1e2aacf3 131 pc.printf(" az = %f mg\n\r", 1000*az);
Zeran 3:37fb1e2aacf3 132
Zeran 3:37fb1e2aacf3 133 pc.printf("gx = %f", gx);
Zeran 3:37fb1e2aacf3 134 pc.printf(" gy = %f", gy);
Zeran 3:37fb1e2aacf3 135 pc.printf(" gz = %f deg/s\n\r", gz);
Zeran 3:37fb1e2aacf3 136
Zeran 3:37fb1e2aacf3 137 pc.printf("gx = %f", mx);
Zeran 3:37fb1e2aacf3 138 pc.printf(" gy = %f", my);
Zeran 3:37fb1e2aacf3 139 pc.printf(" gz = %f mG\n\r", mz);
Zeran 3:37fb1e2aacf3 140
Zeran 3:37fb1e2aacf3 141 tempCount = mpu9250.readTempData(); // Read the adc values
Zeran 3:37fb1e2aacf3 142 temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
Zeran 3:37fb1e2aacf3 143 pc.printf(" temperature = %f C\n\r", temperature);
Zeran 3:37fb1e2aacf3 144
Zeran 3:37fb1e2aacf3 145 pc.printf("q0 = %f\n\r", q[0]);
Zeran 3:37fb1e2aacf3 146 pc.printf("q1 = %f\n\r", q[1]);
Zeran 3:37fb1e2aacf3 147 pc.printf("q2 = %f\n\r", q[2]);
Zeran 3:37fb1e2aacf3 148 pc.printf("q3 = %f\n\r", q[3]);
Zeran 3:37fb1e2aacf3 149
Zeran 3:37fb1e2aacf3 150 /* lcd.clear();
Zeran 3:37fb1e2aacf3 151 lcd.printString("MPU9250", 0, 0);
Zeran 3:37fb1e2aacf3 152 lcd.printString("x y z", 0, 1);
Zeran 3:37fb1e2aacf3 153 sprintf(buffer, "%d %d %d mg", (int)(1000.0f*ax), (int)(1000.0f*ay), (int)(1000.0f*az));
Zeran 3:37fb1e2aacf3 154 lcd.printString(buffer, 0, 2);
Zeran 3:37fb1e2aacf3 155 sprintf(buffer, "%d %d %d deg/s", (int)gx, (int)gy, (int)gz);
Zeran 3:37fb1e2aacf3 156 lcd.printString(buffer, 0, 3);
Zeran 3:37fb1e2aacf3 157 sprintf(buffer, "%d %d %d mG", (int)mx, (int)my, (int)mz);
Zeran 3:37fb1e2aacf3 158 lcd.printString(buffer, 0, 4);
Zeran 3:37fb1e2aacf3 159 */
Zeran 3:37fb1e2aacf3 160 // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
Zeran 3:37fb1e2aacf3 161 // In this coordinate system, the positive z-axis is down toward Earth.
Zeran 3:37fb1e2aacf3 162 // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
Zeran 3:37fb1e2aacf3 163 // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
Zeran 3:37fb1e2aacf3 164 // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
Zeran 3:37fb1e2aacf3 165 // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
Zeran 3:37fb1e2aacf3 166 // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
Zeran 3:37fb1e2aacf3 167 // applied in the correct order which for this configuration is yaw, pitch, and then roll.
Zeran 3:37fb1e2aacf3 168 // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
Zeran 3:37fb1e2aacf3 169 yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
Zeran 3:37fb1e2aacf3 170 pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
Zeran 3:37fb1e2aacf3 171 roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
Zeran 3:37fb1e2aacf3 172 pitch *= 180.0f / PI;
Zeran 3:37fb1e2aacf3 173 yaw *= 180.0f / PI;
Zeran 3:37fb1e2aacf3 174 yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
Zeran 3:37fb1e2aacf3 175 roll *= 180.0f / PI;
Zeran 3:37fb1e2aacf3 176
Zeran 3:37fb1e2aacf3 177 pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
Zeran 3:37fb1e2aacf3 178 pc.printf("average rate = %f\n\r", (float) sumCount/sum);
Zeran 3:37fb1e2aacf3 179 // sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll);
Zeran 3:37fb1e2aacf3 180 // lcd.printString(buffer, 0, 4);
Zeran 3:37fb1e2aacf3 181 // sprintf(buffer, "rate = %f", (float) sumCount/sum);
Zeran 3:37fb1e2aacf3 182 // lcd.printString(buffer, 0, 5);
Zeran 3:37fb1e2aacf3 183
Zeran 3:37fb1e2aacf3 184 myled= !myled;
Zeran 3:37fb1e2aacf3 185 count = t.read_ms();
Zeran 3:37fb1e2aacf3 186
Zeran 3:37fb1e2aacf3 187 if(count > 1<<21) {
Zeran 3:37fb1e2aacf3 188 t.start(); // start the timer over again if ~30 minutes has passed
Zeran 3:37fb1e2aacf3 189 count = 0;
Zeran 3:37fb1e2aacf3 190 deltat= 0;
Zeran 3:37fb1e2aacf3 191 lastUpdate = t.read_us();
Zeran 2:2b68d1d14aca 192 }
Zeran 3:37fb1e2aacf3 193 sum = 0;
Zeran 3:37fb1e2aacf3 194 sumCount = 0;
Zeran 2:2b68d1d14aca 195 }
shimniok 0:cf1bc7c313b4 196 }
Zeran 3:37fb1e2aacf3 197 }