
SPI slave program to enable communication between the FPGA and the STM32L432 board.
main.cpp
- Committer:
- Zbyszek
- Date:
- 2019-03-08
- Revision:
- 10:5b96211275d4
- Parent:
- 9:9ed9dffd602a
- Child:
- 11:366f1186c121
File content as of revision 10:5b96211275d4:
#include "mbed.h" #include "SPI.h" #include "IMUs.h" #include "Structures.h" #include "Quaternions.h" #include "DMA_SPI.h" //DigitalOut myled(LED1); Serial pc(USBTX, USBRX); int masterRx = 0; int16_t slaveRx = 0; int i = 2; int k = 0; int16_t zgHigher = 0; int16_t zgLower = 0; int16_t zGyro = 0; int countx = 0; int p = 32776; double const SSF = 0.06097560975609756097560975609756f; //FSEL = 0: 0.00763358778625954198473282442748, FSEL = 3: 0.06097560975609756097560975609756f int OffsetX = 254; int OffsetY = -14; int OffsetZ = 81; int OffsetXA = -306; int OffsetYA = -131; int OffsetZA = -531; IMU IMU0 (0, -306.0f, -131.0f, -351.0f, 254.0f, -14.0f, 81.0f, 0, 3); IMU_Data Dat; vector Datt; int D2T; Timer t; float dTime = 0.0f; vector vertical; vector globalAccel; vector correctionGlobalAccel; vector correctionBodyAccel; Quaternion gyroQ; vector Eangles; Quaternion CF; vector intGyro; vector GyroVals; vector AccelVals; vector accelTilt; Quaternion accelQ; void calibrateOffset(); int stateRXNE = 0; int stateTXE = 0; int stateBSY = 0; int DMA1_CH2_Transfer_Complete_Flag = 0; int DMA1_CH3_Transfer_Complete_Flag = 0; int DMA1_CH2_Transfer_Error_Flag = 0; int DMA1_CH3_Transfer_Error_Flag = 0; int stateDMAch2interrupt = 0; int stateDMAch3interrupt = 0; int flag = 0; int flag2 = 0; int rx_data = 0; int16_t rxx; /* */ //------------------Printing-All-values----------------------// int16_t IMUarray[12]; //Store each separate reading in an array uint16_t IDarray[12]; //Holds the identification of each data piece char idx = 0; //IMUarray Pointer char dataCount = 0; //Keeps track of how many data points have been read in using SPI uint16_t id = 0; //Used to store extracted data ID void ProcessAndPrint(); //------------------Printing-All-values----------------------// //-------------Testing-Variables-Remove-Later----------------// //int blinkCounter = 0; //-------------Testing-Variables-Remove-Later----------------// int main() { pc.baud (115200); IDarray[0] = 1; IDarray[1] = 0; IDarray[2] = 9; IDarray[3] = 8; IDarray[4] = 17; IDarray[5] = 16; IDarray[6] = 3; IDarray[7] = 2; //2 IDarray[8] = 11; IDarray[9] = 10; IDarray[10] = 19; IDarray[11] = 18; //init_spi1(); t.start(); SPI_DMA_init(); gyroQ.w = 1; gyroQ.x = 0.0001; gyroQ.y = 0.0001; gyroQ.z = 0.0001; CF.w = 1; CF.x = 0.0001; CF.y = 0.0001; CF.z = 0.0001; gyroQ = normaliseQuaternion(gyroQ); CF = normaliseQuaternion(CF); vertical.x = 0.0f; vertical.y = 0.0f; vertical.z = 1.0f; data_to_transmit[0] = 1; data_to_transmit[1] = 2; data_to_transmit[2] = 3; data_to_transmit[3] = 4; data_to_transmit[4] = 5; data_to_transmit[5] = 6; data_to_transmit[6] = 7; data_to_transmit[7] = 8; data_to_transmit[8] = 9; data_to_transmit[9] = 10; data_to_transmit[10] = 11; data_to_transmit[11] = 12; //data_to_transmit[12] = 13; while(1) { stateRXNE = SPI1->SR&0x01; stateTXE = SPI1->SR&0x02; stateBSY = SPI1->SR&(1u<<7); DMA1_CH2_Transfer_Complete_Flag = DMA1->ISR&(1u<<5); DMA1_CH3_Transfer_Complete_Flag = DMA1->ISR&(1u<<9); DMA1_CH2_Transfer_Error_Flag = DMA1->ISR&(1u<<7); DMA1_CH3_Transfer_Error_Flag = DMA1->ISR&(1u<<11); //D2T pc.printf("RXNE: %d, TXE: %d, BSY: %d, CH2 Transfer Complete: %d, CH2 Transfer Complete: %d, CH2 Transfer Error: %d, CH3 Transfer Error: %d\n\r",stateRXNE, stateTXE, stateBSY, DMA1_CH2_Transfer_Complete_Flag, DMA1_CH3_Transfer_Complete_Flag, DMA1_CH2_Transfer_Error_Flag, DMA1_CH3_Transfer_Error_Flag); if(DMA1->ISR&(1u<<5)) { //Check whether data read transfer is complete for(int x = 0; x <= 12; x++) { IMUarray[x] = received_data[x]; } CLEAR_DMA1_CH2_IFCR_GFLAG(); //Clear global channel interrupt flag for channel 2 } if(DMA1->ISR&(1u<<9)) { //Check whteher data transmit transfer is complete //Read data from the array that stores received data for(int x = 0; x <= 12; x++) { data_to_transmit[x] = x+1; } CLEAR_DMA1_CH3_IFCR_GFLAG(); //Clear global channel interrupt flag for channel 3 } /* if(DMA1->ISR&(1u<<11) && flag == 0) { if(SPI1->SR&(1u<<7) == 0) { //Check whether SPI is busy before disabling SPI1->CR1 &= ~SPI_CR1_SPE; //Disable the SPI DMA1->IFCR |= (1u << (4*(C3S - 1))); DMA1_Channel3->CCR |= (0x01<<CCR_EN); SPI1->CR1 |= SPI_CR1_SPE; //Enable SPI flag = 1; } } if(DMA1->ISR&(1u<<7) && flag2 == 0) { DMA1->IFCR |= (15u << (4*(C2S - 1))); flag2 = 1; } if(DMA1->ISR&(1u<<9) && flag == 0) { DMA1->IFCR |= (1u << (4*(C3S - 1))); } if(DMA1->ISR&(1u<<5) && flag2 == 0) { DMA1->IFCR |= (15u << (4*(C2S - 1))); for(int x = 0; x <= 10; x++) { rxx = received_data[x]; } } */ //------------------------------------------------------------------------------ /* if(i == 2) { //slaveRx = transfer_spi_slave(10); //get IMU data id = slaveRx; //Save sample to id for id extraction id &= ~(255); //get rid of the actual data to only be left with the id id = id >> 8; //shift the id to the right for comparison //pc.printf("ID: %d \n\r", id); //Print each id to see what sequence is obtained. Only the correct sequence will make the code run/ if(IDarray[dataCount] == id) { //compare if the order of data is right and if not wait until it is. dataCount++; //Increase dataCount as new value has been read in. IMUarray[idx] = slaveRx; //save the newly read value to current free space in the array idx++; //increment the pointer to point to next free space in the array if(dataCount == 12) { //reset idx and dataCount dataCount = 0; idx = 0; //calibrateOffset(); //IMU0.concatenateData(IMUarray); Datt = IMU0.CalculateQCFAngles(IMUarray); t.stop(); dTime = t.read(); t.reset(); t.start(); }//if(dataCount == 12) }//if(IDarray[dataCount] == id) else { //-----Code-Used-For-Testing-----// //pc.printf("Failed at: %d \n\r", dataCount); //Print an error if there is one // if(blinkCounter == 10) { //Slow the blinking down to make it visible if there are errors // myled = !myled; //Change state of the LED if error occurs // blinkCounter = 0; //Reset Blink counter // } // else { // blinkCounter++; //} //-----Code-Used-For-Testing-----// dataCount = 0; //ID sequence is worng so reset the counter idx = 0; //ID sequence is worng so reset the counter } }//if(i == 2) */ } } //---------------------------------------------------------------------------OFFSET-CALIBRATION-------------------------------------------------------------------- void calibrateOffset() { int16_t MSB = 0; //Store Most Significant Byte of data piece in this variable for processing int16_t LSB = 0; //Store Least Significant Byte of data piece in this variable for processing char arrPointer = 0; //Array Pointer //-----------Concatentated-Data-Pieces------------------------------------------ int16_t gyroX = 0; int16_t gyroY = 0; int16_t gyroZ = 0; int16_t accelX = 0; int16_t accelY = 0; int16_t accelZ = 0; vector accelRaw; vector accelG; vector gyroRaw; vector gyroDPS; static unsigned int sampleCounter = 1; static vector accelRawAvg; static vector accelGAvg; static vector gyroRawAvg; static vector gyroDPSAvg; for(char x = 0; x <= 5; x++) { MSB = IMUarray[arrPointer]; //Odd data pieces are MSBs MSB &= ~(255<<8); //Mask the MSB bits as they are not part of data MSB = MSB << 8; //Shift the Value as its the MSB of the data piece arrPointer++; //Increment array pointer LSB = IMUarray[arrPointer]; //Even data pieces are LSBs LSB &= ~(255 << 8); //Mask the MSB bits as they are not part of data arrPointer++; //Increment array pointer switch(x) { case 0: accelX = MSB + LSB; //Combine Accelerometer x-axis data accelRaw.x = (double)accelX; //accelRaw accelG.x = (double)accelX * 0.00006103515625f; //accelSSF break; case 1: accelY = MSB + LSB; //Combine Accelerometer y-axis data accelRaw.y = (double)accelY; accelG.y = (double)accelY * 0.00006103515625f; break; case 2: accelZ = MSB + LSB; //Combine Accelerometer z-axis data accelRaw.z = (double)accelZ; accelG.z = (double)accelZ * 0.00006103515625f; break; case 3: gyroX = MSB + LSB; //Combine Gyroscope x-axis data gyroRaw.x = (double)gyroX; //gyroRaw gyroDPS.x = (double)gyroX * SSF; //gyroSSF break; case 4: gyroY = MSB + LSB; //Combine Gyroscope y-axis data gyroRaw.y = (double)gyroY; gyroDPS.y = (double)gyroY * SSF; break; case 5: gyroZ = MSB + LSB; //Combine Gyroscope z-axis data gyroRaw.z = (double)gyroZ; gyroDPS.z = (double)gyroZ * SSF; break; default: break; }//switch(x) }//for(char x = 0; x <= 5; x++) //Take-Running-Averages------------------------------------------------------------------------ //Raw accel averages accelRawAvg.x = accelRawAvg.x + ((accelRaw.x - accelRawAvg.x)/sampleCounter); accelRawAvg.y = accelRawAvg.y + ((accelRaw.y - accelRawAvg.y)/sampleCounter); accelRawAvg.z = accelRawAvg.z + ((accelRaw.z - accelRawAvg.z)/sampleCounter); //SSF accel averages accelGAvg.x = accelGAvg.x + ((accelG.x - accelGAvg.x)/sampleCounter); accelGAvg.y = accelGAvg.y + ((accelG.y - accelGAvg.y)/sampleCounter); accelGAvg.z = accelGAvg.z + ((accelG.z - accelGAvg.z)/sampleCounter); //Raw gyroo averages gyroRawAvg.x = gyroRawAvg.x + ((gyroRaw.x - gyroRawAvg.x)/sampleCounter); gyroRawAvg.y = gyroRawAvg.y + ((gyroRaw.y - gyroRawAvg.y)/sampleCounter); gyroRawAvg.z = gyroRawAvg.z + ((gyroRaw.z - gyroRawAvg.z)/sampleCounter); //SSF gyro averages gyroDPSAvg.x = gyroDPSAvg.x + ((gyroDPS.x - gyroDPSAvg.x)/sampleCounter); gyroDPSAvg.y = gyroDPSAvg.y + ((gyroDPS.y - gyroDPSAvg.y)/sampleCounter); gyroDPSAvg.z = gyroDPSAvg.z + ((gyroDPS.z - gyroDPSAvg.z)/sampleCounter); //Take-Running-Averages------------------------------------------------------------------------ //Print Messages------------------------------------------------------------------------------- if(sampleCounter == 1) { pc.printf("Collecting Raw and Sensitivity Scale Factor multiplied Gyroscope and Accelerometer Offsets...\n\r"); }; if(sampleCounter == 5000) { pc.printf("RawAX RawAY RawAZ RawGX RawGY RawGZ SampleN\n\r"); pc.printf("%+-6.2f %+-6.2f %+-6.2f %+-6.2f %+-6.2f %+-6.2f %-10d\n\r", accelRawAvg.x, accelRawAvg.y, accelRawAvg.z, gyroRawAvg.x, gyroRawAvg.y, gyroRawAvg.z, sampleCounter); pc.printf("\n\r"); pc.printf("\n\r"); pc.printf("\n\r"); //Add the sensitivity scale factor multiplied data pc.printf("SSFAX SSFAY SSFAZ SSFGX SSFGY SSFGZ SampleN\n\r"); pc.printf("%+-6.2f %+-6.2f %+-6.2f %+-6.2f %+-6.2f %+-6.2f %-10d\n\r", accelGAvg.x, accelGAvg.y, accelGAvg.z, gyroDPSAvg.x, gyroDPSAvg.y, gyroDPSAvg.z, sampleCounter); }; sampleCounter++; //Print Messages------------------------------------------------------------------------------- } //---------------------------------------------------------------------------OFFSET-CALIBRATION-------------------------------------------------------------------- //------------------------------------------Artifacts---------------------------------------- //----------------------Insert Whole--------------------------------------------------- //Rotate the accel data Global reference frame by qvq*--------------------------------- //globalAccel = rotateGlobal(AccelVals, gyroQ); //Rotate the accel data Global reference frame by qvq*--------------------------------- //get the correction values and rotate back to IMU reference--------------------------- // correctionGlobalAccel = crossProduct(globalAccel, vertical); // correctionBodyAccel = rotateLocal(correctionGlobalAccel, gyroQ); //get the correction values and rotate back to IMU reference--------------------------- //Add the correction to gyro readings and update the quaternion------------------------ //GyroVals = sumVector(GyroVals, correctionBodyAccel); //incRot = toQuaternionNotation123(GyroVals, dTime); //gyroQ = getQuaternionProduct(gyroQ, incRot); //gyroQ = normaliseQuaternion(gyroQ); //----------------------Insert Whole--------------------------------------------------- //------------------------------------------Artifacts----------------------------------------