Library to control a Graphics TFT connected to 4-wire SPI - revised for the Raio RA8875 Display Controller.

Dependents:   FRDM_RA8875_mPaint RA8875_Demo RA8875_KeyPadDemo SignalGenerator ... more

Fork of SPI_TFT by Peter Drescher

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers RA8875.h Source File

RA8875.h

00001 ///
00002 /// @mainpage RA8875 Display Controller Driver library
00003 ///
00004 /// The RA8875 Display controller is a powerful interface for low cost displays. It
00005 /// can support displays up to 800 x 480 pixels x 16-bit color and has an integrated
00006 /// 2D graphics engine which significantly unburdens the hosting cpu. The 2D engine
00007 /// handles many drawing primitives; such as line, rectangle, triangle, circles, and
00008 /// each either filled or unfilled. Further, it supports fonts - both internal and
00009 /// with specific formats of external font roms.
00010 ///
00011 /// @image html Example_Program.png "Image of an Example Program"
00012 ///
00013 /// In more detail:
00014 ///
00015 /// Aside from 800 x 480 pixel displays, another common implementation is
00016 /// 480 x 272 x 16 with two layers. The two layers can be exchanged, or blended
00017 /// in various ways (transparency, OR, AND, and more).
00018 ///
00019 /// It is not a display for video-speed animations, and maybe could hold its own
00020 /// as a slow picture frame, at least when using the SPI interface. How the
00021 /// performance differs using I2C, 8-bit parallel or 16-bit parallel has not
00022 /// been evaluated. Certainly the parallel interface option would be expected to be
00023 /// a lot faster.
00024 ///
00025 /// What it is good at is performing as a basic display for appliances or simple
00026 /// home automation, and because of the built-in capability to draw lines, circles,
00027 /// ellipses, rectangles, rounded rectangles, and triangles, it does a lot of the
00028 /// work that your host micro would otherwise be doing, and in many cases it does
00029 /// it much faster.
00030 ///
00031 /// While it is good to know about Bresenham's algorithm (to draw a line) and how
00032 /// to implement it in software, this controller simplifies things -
00033 /// You just give it (x1,y1), (x2,y2) and tell it to draw a line.
00034 /// Without the hardware acceleration built into the RA8875, the host would have to
00035 /// compute every point, set the graphics cursor to that point, and fill in that
00036 /// point with the target color. A diagonal line of some length might take 100
00037 /// transactions instead of just a few. Other drawing primitives are similarly easy.
00038 ///
00039 /// It has some built-in fonts, which can be enhanced with optional font-chips, and
00040 /// with the software font engine that is part of this library. Instructions are provided
00041 /// to convert most any True Type Font into the data structures suitable for this display.
00042 /// The user of this library is expected to respect the copyright of those fonts (there
00043 /// are open-source fonts that can be found on the web).
00044 ///
00045 /// To round out the features, this library offers the ability to render Bitmap (BMP),
00046 /// Icon (ICO), Joint Photographic Experts Group (JPG), and Graphics Interchange Format
00047 /// (GIF) images. These are implemented primarily in software, taking advantage of the
00048 /// hardware acceleration where it can. There are some limitations, based on available
00049 /// memory.
00050 ///
00051 /// When you are satisfied with what appears on screen, there is a PrintScreen method
00052 /// to pull that image back out of the display RAM and write it to a file system as a
00053 /// BitMap image.
00054 ///
00055 ///
00056 /// The RA8875 has an integrated PWM, commonly used for backlight brightness, keypad scanning
00057 /// (for a 4 x 5 matrix) and an integrated resistive touch-panel support. Support for capacitive
00058 /// touch screens is also integrated in this library, in a manner that makes the resistive and
00059 /// capacitive interfaces nearly API identical. The capacitive touch support was crafted to
00060 /// interface with either the FT5206 or the GSL1680 controller chips (two popular controllers
00061 /// commonly integrated with the RA8875).
00062 ///
00063 /// Recent Changes:
00064 /// * @ref RA8875::SelectDrawingLayer() returns the previously selected layer, making restore quicker.
00065 /// * @ref RA8875::SetGraphicsOrientation() has been improved to support 0 deg (typical landscape),
00066 ///             90 deg, 180 deg, and 270 deg, and this includes bitmap and soft-font presentation,
00067 ///             as well as touch support and to return the previous angle.
00068 /// * @ref RA8875::SetBackgroundTransparencyColor() returns the previous color value, making
00069 ///             restore quicker.
00070 /// * @ref RA8875::SetWindow() accepts a rect_t, or an (x1,y1, x2,y2) point-pair, rather than a
00071 ///             point-pair and a width,height. This makes it much more consisten with all other APIs.
00072 /// * @ref RA8875::SetLayerMode() returns the previous layer mode.
00073 /// * @ref RA8875::SetTextCursor() returns the previous cursor.
00074 /// * @ref RA8875::background() returns the previous color.
00075 /// * @ref RA8875::foreground() returns the previous color.
00076 
00077 /// Here's a few hints to get started:
00078 /// * @ref Display_Config
00079 /// * @ref Touch_Panel
00080 /// * @ref Hardwired_KeyPad
00081 /// * @ref Example_Program
00082 /// * @ref Wiring_Diagram
00083 /// * @ref External_Resources
00084 /// * @ref Future_Plans
00085 ///
00086 /// @todo Integrate the touch as a runtime linkable feature, which can then eliminate
00087 ///     the huge memory footprint for the GSL1680 firmware when it is not needed.
00088 /// @todo Move the global enums into the class (e.g. NOFILL becomes RA8875::NOFILL) to
00089 ///     avoid namespace clashes.
00090 /// @todo Integrate access to an installed font-rom.
00091 /// @todo Figure out how to "init()" in the constructor. I ran into some issues if
00092 ///     the display was instantiated before main(), and the code would not run,
00093 ///     thus the exposure and activation of the init() function. If the constructor
00094 ///     was within main(), then it seemed to work as expected.
00095 /// @todo Add Scroll support for text in a window.
00096 /// @todo Add Hardware reset signal - testing to date indicates it is not needed.
00097 /// @todo Add APIs for the 2nd RA8875 PWM channel. If the frequency can be independently
00098 ///     controlled, it could be used as a simple sound channel (beeper).
00099 /// @todo Find out if 4-wire SPI can leverage 16-bit mode, and if so, how does the
00100 ///     performance change?
00101 ///
00102 /// @note As the author of this library, let me state that I am not affiliated with
00103 ///     Raio (silicon provider of the RA8875), or with BuyDisplay.com (where a lot
00104 ///     of these displays can be purchased), I am simply a very satisfied customer
00105 ///     of the technology of the RA8875 chip.
00106 ///
00107 /// @copyright Copyright © 2012-2020 by Smartware Computing, all rights reserved.
00108 ///     This library is predominantly that of Smartware Computing, however some
00109 ///     portions integrate the work of others. Where the contribution of
00110 ///     others was listed as copyright, that copyright is maintained, even as a
00111 ///     derivative work may have been created for better integration in this library.
00112 ///     See @ref Copyright_References.
00113 ///
00114 /// @page Copyright_References Copyright References
00115 ///
00116 /// Following are links to the known copyright references. If I overlooked any, it was
00117 /// unintentional - please let me know so I can update it. Some portions of the code
00118 /// have been acquired from the cloud, and where any copyright information was available,
00119 /// it was preserved.
00120 ///
00121 /// * @ref GraphicDisplay_Copyright
00122 /// * @ref TextDisplay_Copyright
00123 /// * @ref TinyJPEGDecompressor_Copyright
00124 /// * @ref RA8875::TouchPanelComputeCalibration
00125 ///
00126 /// @page Display_Config Display Configuration
00127 ///
00128 /// This section details basics for bringing the display online. At a minimum,
00129 /// the display is instantiated, after which nearly any of the available commands
00130 /// may be issued.
00131 ///
00132 /// @image html RA8875_Display.png "Schematic Representation of the Display"
00133 ///
00134 /// During the instantiation, the display is powered on, cleared, and the backlight
00135 /// is energized. Additionally, the keypad and touchscreen features are activated.
00136 /// It is important to keep in mind that the keypad has its default mapping,
00137 /// a resistive touchscreen does not yet have the calibration matrix configured,
00138 /// and the RA8875::init() function is required to configure other important options
00139 /// like the display resolution.
00140 ///
00141 /// @code
00142 /// RA8875 lcd(p5, p6, p7, p12, NC, "tft");
00143 /// lcd.init();
00144 /// lcd.foreground(Blue);
00145 /// lcd.line(0,0, 479,271);
00146 /// ...
00147 /// @endcode
00148 ///
00149 /// @section RA8875_Capabilities Basic Capabilities
00150 /// @subsection RA8875_Resolution Display Resolution
00151 /// There are two very common display resolutions that use the RA8875:
00152 /// * 480 x 272 pixels
00153 /// * 800 x 480 pixels
00154 ///
00155 /// @subsection RA8875_Layers Display Layers
00156 /// The RA8875 Controller, depending on the resolution and color depth, can support
00157 /// multiple display layers.
00158 ///
00159 /// * 1 Layer - when the color depth is 16 bits per pixel
00160 /// * 2 Layers - when the color depth is 8 bits per pixel and the resolution is 480 x 272.
00161 ///
00162 /// @page Touch_Panel Touch Panel
00163 ///
00164 /// There is support for various touch panel interfaces.
00165 /// * @ref Resistive_Touch_Panel - native control for a resistive touch panel.
00166 ///     There are a few steps to enable this interface.
00167 ///
00168 /// For the Capacitive Touch controllers, an I2C interface is required.
00169 ///
00170 /// @image html RA8875_Touch.png "Schematic Representation of the Touch Interface"
00171 ///
00172 /// * @ref CapSense_FT5206 - FT5206 capacitive touch controller, integrated in
00173 ///     several popular RA8875-based displays. See @ref Capacitive_Touch_Panel.
00174 /// * @ref CapSense_GSL1680 - GSL1680 capacitive touch controller, integrated in
00175 ///     several popular RA8875-based displays. See @ref Capacitive_Touch_Panel.
00176 ///
00177 /// @page MicroSD_Interface Micro SD Interface
00178 ///
00179 /// Several of the displays from BuyDisplay.com include the option for a Micro SD
00180 /// card adapter. This is not tied in to the RA8875 controller, it is just provided
00181 /// as a convenience to the display product.
00182 ///
00183 /// @image html RA8875_MicroSD.png "Schematic Representation of the Micro SD Interface"
00184 ///
00185 ///
00186 /// @page Hardwired_KeyPad Hardwired Keypad
00187 ///
00188 /// The RA8875 controller supports a hardwired matrix of keys, which can be used to
00189 /// easily monitor for up to 20 keys (4 x 5 matrix). It is quite flexible, so these
00190 /// could be a set of independent functions, or they could be wired as a simple
00191 /// calculator or telephone style of keypad.
00192 ///
00193 /// @image html RA8875_Keypad.png "Schematic Representation of the Keypad Interface"
00194 ///
00195 /// Various parameters can be configured, such as the scan rate, using @ref RA8875::KeypadInit().
00196 /// The keypad has a default keypad mapping, but there is an API that permits
00197 /// installing a custom @ref RA8875::SetKeyMap().
00198 ///
00199 /// @page Resistive_Touch_Panel Resistive Touch Panel
00200 ///
00201 /// The RA8875 controller supports a native resistive touchscreen interface than can
00202 /// track a single touch-point.
00203 ///
00204 /// If your display has this option, you can easily accept touch input, but it comes with
00205 /// some additional requirements - calibration being the primary concern.
00206 ///
00207 /// @section Touch_Panel_Enable Touch Panel Enable
00208 ///
00209 /// @ref RA8875::TouchPanelInit() has two forms - one fully automatic, and more controlled.
00210 /// See the APIs for details.
00211 ///
00212 /// @section Touch_Panel_Calibration
00213 ///
00214 /// The touch panel is not initially calibrated on startup. The application should
00215 /// provide a means to activate the calibration process, and that should not require
00216 /// the touchscreen as it may not yet be usable. Alternately, a calibration matrix
00217 /// can be loaded from non-volatile and installed.
00218 ///
00219 /// @page Capacitive_Touch_Panel Capacitive Touch Panel
00220 ///
00221 /// Common to many of the commercially available display modules that use the RA8875 is
00222 /// an option for a capacitive sense touch screen [Cap Sense] There are two known Cap Sense
00223 /// controllers that this library can work with:
00224 ///
00225 /// * @ref CapSense_FT5206.
00226 /// * @ref CapSense_GSL1680.
00227 ///
00228 /// @page CapSense_FT5206 Capacitive Sense - FT5206 Controller
00229 ///
00230 /// This is the more common controller. It supports up to 5 simultaneous touch point
00231 /// tracking.
00232 ///
00233 /// @page CapSense_GSL1680 Capacitive Sense - GSL1680 Controller
00234 ///
00235 /// This is the less common controller. It supports either 5 or 10 simultaneous touch point
00236 /// tracking, depending on the firmware installed in the controller.
00237 ///
00238 
00239 
00240 /// @page Example_Program Example Program
00241 ///
00242 /// This is just a small sample of what can be done, and what it can look like:
00243 /// @image html Example_Program.png "Example Program"
00244 ///
00245 /// @code
00246 /// // Small test program
00247 /// #include "mbed.h"       // Working: v146, not fully working: v147
00248 /// #include "RA8875.h"     // Working: v149
00249 /// RA8875 lcd(p5, p6, p7, p12, NC, "tft");
00250 ///
00251 /// int main()
00252 /// {
00253 ///     lcd.init(480,272,16,100);
00254 ///     lcd.printf("printing 3 x 2 = %d", 3*2);
00255 ///     lcd.circle(       400,25,  25,               BrightRed);
00256 ///     lcd.fillcircle(   400,25,  15,               RGB(128,255,128));
00257 ///     lcd.ellipse(      440,75,  35,20,            BrightBlue);
00258 ///     lcd.fillellipse(  440,75,  25,10,            Blue);
00259 ///     lcd.triangle(     440,100, 475,110, 450,125, Magenta);
00260 ///     lcd.filltriangle( 445,105, 467,111, 452,120, Cyan);
00261 ///     lcd.rect(         400,130, 475,155,          Brown);
00262 ///     lcd.fillrect(     405,135, 470,150,          Pink);
00263 ///     lcd.roundrect(    410,160, 475,190, 10,8,    Yellow);
00264 ///     lcd.fillroundrect(415,165, 470,185,  5,3,    Orange);
00265 ///     lcd.line(         430,200, 460,230,          RGB(0,255,0));
00266 ///     for (int i=0; i<=30; i+=5)
00267 ///         lcd.pixel(435+i,200+i, White);
00268 /// }
00269 /// @endcode
00270 ///
00271 
00272 
00273 /// @page Wiring_Diagram Example Wiring Diagram
00274 ///
00275 /// This library was crafted around the 4-Wire SPI interface. This was the chosen
00276 /// interface method in order to balance the requirements of the host micro IO with
00277 /// the capability of this display. Alternatives include: 3-Wire SPI, I2C, 8-bit and
00278 /// 16-bit parallel.
00279 ///
00280 /// @section Schematic_Basic Basic Schematic
00281 ///
00282 /// The basic schematic should be the most portable to any system that has SPI support.
00283 ///
00284 /// @image html RA8875_display_schematic.png "Basic Display support"
00285 ///
00286 /// @section Schematic_DisplayTouch Display with Capacitive Touch
00287 ///
00288 /// A more advanced schematic - this with the I2C interface connecting to the Capacitive
00289 /// Touch controller. Note that this requires additional IO pins.
00290 ///
00291 /// @image html RA8875_captouch_wiring.png "Display and Capacitive Touch support"
00292 ///
00293 /// @section Schematic_DisplayTouchMicroSD Display with Capacitive Touch and micro SD
00294 ///
00295 /// The most advanced schematic - taking advantage of the display, the capacitive touch
00296 /// controller, and the peripheral support for a micro SD card on some of the display
00297 /// modules.
00298 ///
00299 /// @note There are online indications that the RA8875 has a defect in its SPI interface
00300 ///         where it will not release the MISO pin. If this pin is shared with the micro SD
00301 ///         port, then it could interfere with successful read/write of the files.
00302 ///         The easiest solution is to put that interface on a separate SPI port.
00303 ///
00304 /// @image html RA8875_display_full.png "Display, Touch, and micro SD support"
00305 ///
00306 /// @page External_Resources External Resources
00307 ///
00308 /// There are many websites with information on the RA8875 Display. This partial list
00309 /// may be helpful:
00310 ///
00311 /// * <a href="https://os.mbed.com/components/RA8875-Based-Display/">RA8875 Library</a>
00312 ///     on the <a href="https://os.mbed.com/">mbed site</a><br/>
00313 ///     This page has **a lot** of detail, schematices, sample programs, instructions to
00314 ///     create your own fonts, and more...
00315 /// * <a href="https://os.mbed.com/search/?q=RA8875">RA8875 search on the mbed site</a><br/>
00316 ///     Many more links, discussions, questions and answers, and more...
00317 /// * <a href="https://www.buydisplay.com/">Buy Display</a> site<br/>
00318 ///     Where you can find many inexpensive displays, some with the **RA8875** controller
00319 ///     (which this library supports), and others using different controllers (thus not
00320 ///     supported by this library).
00321 /// * <a href="https://github.com/sumotoy/RA8875/wiki/Fix-compatibility-with-other-SPI-devices">SPI Bug notes</a><br/>
00322 ///     A link to a site that discusses a SPI bug on the RA8875. [I have not verified this
00323 ///     bug]
00324 /// * <a href="https://www.google.com/search?safe=on&source=hp&ei=1oN1XP6hEsPq_AbZlKMw&q=RA8875">RA8875 - Google</a><br/>
00325 ///     Because new things show up all the time.
00326 /// * <a href="https://www.bing.com/search?q=RA8875">RA8875 - Bing</a><br/>
00327 ///     And you want to look in more than one place.
00328 ///
00329 /// @image html RA8875_display_full.png "Example Wiring Diagram"
00330 ///
00331 
00332 
00333 /// @page Future_Plans Future Plans
00334 ///
00335 /// Following are some notions of future plans. This does not mean they will all be
00336 /// implemented, just consider them as things I'm thinking about. If you have a suggestion,
00337 /// please send it to me.
00338 ///
00339 /// - Change the return values for several functions. Most functions return @ref RA8875::RetCode_t,
00340 ///     but would benefit from returning a data type related to that function. For example,
00341 ///     @ref RA8875::SelectDrawingLayer() should return the current drawing layer even as a new
00342 ///     layer is defined. This can facilitate switching back and forth between configurations.
00343 ///
00344 ///     Review the API for these (and other) functions for this change:
00345 ///     - @ref RA8875::SelectUserFont()
00346 ///     - @ref RA8875::SetLayerTransparency()
00347 ///     - @ref RA8875::SetTextCursorControl()
00348 ///     - @ref RA8875::SetTextFont()
00349 ///     - @ref RA8875::SetTextFontControl()
00350 ///     - @ref RA8875::SetTextFontSize()
00351 ///     - @ref RA8875::Backlight()
00352 ///
00353 /// - Change the title-case of the functions to be consistent. Because this was adapted
00354 ///     from parts of several different libraries, it isn't very consistently titled.
00355 ///
00356 /// - Change names of some of the functions to be more consistent. Why are some Set*
00357 ///     and others are Select*. The layer commands SetDrawingLayer and GetDrawingLayer do
00358 ///     not need 'Drawing' in them.
00359 ///
00360 /// - Improve the PrintScreen method. There are two functions - one that accepts a filename,
00361 ///     and a second more experimental version that could pipe the image stream back to
00362 ///     a calling process. This could be used, for example, to send the image over a
00363 ///     network interface. The intended side effect is that there is then only a single
00364 ///     PrintScreen method with either an internal helper (for file system access) or
00365 ///     a callback for the user handled process.
00366 ///
00367 /// - Add support for the hardware reset pin
00368 ///
00369 /// - Figure out how to "init()" in the constructor when it is not in main(). I ran into
00370 ///        some issues if the display was instantiated before main(), and the code would not
00371 ///        run, thus the exposure and activation of the init() function. If the instantiation
00372 ///        is within main(), then it seemed to work as expected.
00373 ///
00374 /// - Add Scroll support for text.
00375 ///
00376 /// - Add high level objects - x-y graph, meter, buttons, ... but these will probably be
00377 ///        best served in another class, since they may not be needed for many uses.
00378 ///
00379 #ifndef RA8875_H
00380 #define RA8875_H
00381 #include <mbed.h>
00382 
00383 #include "RA8875_Regs.h"
00384 #include "RA8875_Touch_FT5206.h"
00385 #include "RA8875_Touch_GSL1680.h"
00386 #include "GraphicsDisplay.h"
00387 
00388 #define RA8875_DEFAULT_SPI_FREQ 5000000
00389 
00390 #ifndef MBED_ENCODE_VERSION
00391 #define MBED_MAJOR_VERSION 2
00392 #define MBED_MINOR_VERSION 0
00393 #define MBED_PATCH_VERSION MBED_LIBRARY_VERSION
00394 #define MBED_ENCODE_VERSION(major, minor, patch) ((major)*10000 + (minor)*100 + (patch))
00395 #endif
00396 
00397 #if defined(__GNUC__) || defined(__clang__)
00398 #define DEPRECATED(msg) __attribute__((deprecated(msg)))
00399 #elif defined(_MSC_VER)
00400 #define DEPRECATED __declspec(deprecated)
00401 #else
00402 #pragma message("WARNING: You need to implement DEPRECATED for this compiler")
00403 #define DEPRECATED
00404 #endif
00405 
00406 // Define this to enable code that monitors the performance of various
00407 // graphics commands.
00408 //#define PERF_METRICS
00409 
00410 // What better place for some test code than in here and the companion
00411 // .cpp file. See also the bottom of this file.
00412 //#define TESTENABLE
00413 
00414 /// @page PredefinedColors Predefined Colors
00415 ///
00416 /// Keep in mind that the color scheme shown here is unlikely to precisely match
00417 /// that on the actual display. The perceived color is additionally affected by
00418 /// other attributes, such as the polarizer, backlight brightness, liquid crystal
00419 /// fluid properties, viewing angle, and more...
00420 ///
00421 /// These are the predefined colors that are typically used where any @ref color_t
00422 /// variable is applied.
00423 ///
00424 /// <blockquote>
00425 /// <table>
00426 /// <tr>
00427 /// <td bgcolor='#000000'>&nbsp;</td><td>@ref Black</td>
00428 /// <td bgcolor='#0000BB'>&nbsp;</td><td>@ref Blue</td>
00429 /// <td bgcolor='#00BB00'>&nbsp;</td><td>@ref Green</td>
00430 /// <td bgcolor='#00BBBB'>&nbsp;</td><td>@ref Cyan</td>
00431 /// </tr>
00432 /// <tr>
00433 /// <td bgcolor='#BB0000'>&nbsp;</td><td>@ref Red</td>
00434 /// <td bgcolor='#BB00BB'>&nbsp;</td><td>@ref Magenta</td>
00435 /// <td bgcolor='#3F3F3F'>&nbsp;</td><td>@ref Brown</td>
00436 /// <td bgcolor='#BBBBBB'>&nbsp;</td><td>@ref Gray</td>
00437 /// </tr>
00438 /// <tr>
00439 /// <td bgcolor='#555555'>&nbsp;</td><td>@ref Charcoal</td>
00440 /// <td bgcolor='#0000FF'>&nbsp;</td><td>@ref BrightBlue</td>
00441 /// <td bgcolor='#00FF00'>&nbsp;</td><td>@ref BrightGreen</td>
00442 /// <td bgcolor='#00FFFF'>&nbsp;</td><td>@ref BrightCyan</td>
00443 /// </tr>
00444 /// <tr>
00445 /// <td bgcolor='#FF0000'>&nbsp;</td><td>@ref BrightRed</td>
00446 /// <td bgcolor='#FF5555'>&nbsp;</td><td>@ref Orange</td>
00447 /// <td bgcolor='#FF55FF'>&nbsp;</td><td>@ref Pink</td>
00448 /// <td bgcolor='#BBBB00'>&nbsp;</td><td>@ref Yellow</td>
00449 /// </tr>
00450 /// <tr>
00451 /// <td bgcolor='#FFFF00'>&nbsp;</td><td>@ref BrightYellow</td>
00452 /// <td bgcolor='#FFFFFF'>&nbsp;</td><td>@ref White</td>
00453 /// <td bgcolor='#00003F'>&nbsp;</td><td>@ref DarkBlue </td>
00454 /// <td bgcolor='#003F00'>&nbsp;</td><td>@ref DarkGreen</td>
00455 /// </tr>
00456 /// <tr>
00457 /// <td bgcolor='#003F3F'>&nbsp;</td><td>@ref DarkCyan </td>
00458 /// <td bgcolor='#3F0000'>&nbsp;</td><td>@ref DarkRed  </td>
00459 /// <td bgcolor='#3F003F'>&nbsp;</td><td>@ref DarkMagenta</td>
00460 /// <td bgcolor='#3F3F00'>&nbsp;</td><td>@ref DarkBrown  </td>
00461 /// </tr>
00462 /// <tr>
00463 /// <td bgcolor='#3F3F3F'>&nbsp;</td><td>@ref DarkGray   </td>
00464 /// <td bgcolor='#FFFFFF'>&nbsp;</td><td>&nbsp;</td>
00465 /// <td bgcolor='#FFFFFF'>&nbsp;</td><td>&nbsp;</td>
00466 /// <td bgcolor='#FFFFFF'>&nbsp;</td><td>&nbsp;</td>
00467 /// </tr>
00468 /// </table>
00469 /// </blockquote>
00470 ///
00471 
00472 #define Black           (color_t)(RGB(0,0,0))
00473 #define Blue            (color_t)(RGB(0,0,187))
00474 #define Green           (color_t)(RGB(0,187,0))
00475 #define Cyan            (color_t)(RGB(0,187,187))
00476 #define Red             (color_t)(RGB(187,0,0))
00477 #define Magenta         (color_t)(RGB(187,0,187))
00478 #define Brown           (color_t)(RGB(63,63,0))
00479 #define Gray            (color_t)(RGB(187,187,187))
00480 #define Charcoal        (color_t)(RGB(85,85,85))
00481 #define BrightBlue      (color_t)(RGB(0,0,255))
00482 #define BrightGreen     (color_t)(RGB(0,255,0))
00483 #define BrightCyan      (color_t)(RGB(0,255,255))
00484 #define BrightRed       (color_t)(RGB(255,0,0))
00485 #define Orange          (color_t)(RGB(255,85,85))
00486 #define Pink            (color_t)(RGB(255,85,255))
00487 #define Yellow          (color_t)(RGB(187,187,0))
00488 #define BrightYellow    (color_t)(RGB(255,255,0))
00489 #define White           (color_t)(RGB(255,255,255))
00490 
00491 #define DarkBlue        (color_t)(RGB(0,0,63))
00492 #define DarkGreen       (color_t)(RGB(0,63,0))
00493 #define DarkCyan        (color_t)(RGB(0,63,63))
00494 #define DarkRed         (color_t)(RGB(63,0,0))
00495 #define DarkMagenta     (color_t)(RGB(63,0,63))
00496 #define DarkBrown       (color_t)(RGB(63,63,0))
00497 #define DarkGray        (color_t)(RGB(63,63,63))
00498 
00499 #define RAmin(a,b) ((a<b)?a:b)
00500 #define RAmax(a,b) ((a>b)?a:b)
00501 
00502 
00503 //namespace SW_graphics
00504 //{
00505 
00506 class FPointerDummy;    // used by the callback methods.
00507 
00508 /// This is a graphics library for the Raio RA8875 Display Controller chip
00509 /// attached to a 4-wire SPI interface.
00510 ///
00511 /// It offers both primitive and high level APIs.
00512 ///
00513 /// Central to this API is a coordinate system, where the origin (0,0) is in
00514 /// the top-left corner of the display, and the width (x) extends positive to the
00515 /// right and the height (y) extends positive toward the bottom.
00516 ///
00517 /// @note As there are both graphics and text commands, one must take care to use
00518 /// the proper coordinate system for each. Some of the text APIs are in units
00519 /// of column and row, which is measured in character positions (and dependent
00520 /// on the font size), where other text APIs permit pixel level positioning.
00521 ///
00522 /// @code
00523 /// #include "RA8875.h"
00524 /// RA8875 lcd(p5, p6, p7, p12, NC, "tft");
00525 ///
00526 /// int main()
00527 /// {
00528 ///     lcd.init();
00529 ///     lcd.printf("printing 3 x 2 = %d", 3*2);
00530 ///     lcd.circle(       400,25,  25,               BrightRed);
00531 ///     lcd.fillcircle(   400,25,  15,               RGB(128,255,128));
00532 ///     lcd.ellipse(      440,75,  35,20,            BrightBlue);
00533 ///     lcd.fillellipse(  440,75,  25,10,            Blue);
00534 ///     lcd.triangle(     440,100, 475,110, 450,125, Magenta);
00535 ///     lcd.filltriangle( 445,105, 467,111, 452,120, Cyan);
00536 ///     lcd.rect(         400,130, 475,155,          Brown);
00537 ///     lcd.fillrect(     405,135, 470,150,          Pink);
00538 ///     lcd.roundrect(    410,160, 475,190, 10,8,    Yellow);
00539 ///     lcd.fillroundrect(415,165, 470,185,  5,3,    Orange);
00540 ///     lcd.line(         430,200, 460,230,          RGB(0,255,0));
00541 ///     for (int i=0; i<=30; i+=5)
00542 ///         lcd.pixel(435+i,200+i, White);
00543 /// }
00544 /// @endcode
00545 ///
00546 class RA8875 : public GraphicsDisplay
00547 {
00548 public:
00549     /// Vertical alignment attribute. Used to align one rect against another.
00550     /// @ref AlignRectInRect
00551     typedef enum {
00552         top,            ///< vertically align to the top
00553         middle,         ///< vertically align to the middle
00554         bottom          ///< vertically align to the bottom
00555     } valign_t;
00556 
00557     /// Horizontal alignment attribute. Used to align one rect against another.
00558     /// @ref AlignRectInRect
00559     typedef enum {
00560         left,           ///< horizontally align to the left
00561         center,         ///< horizontally align to the center
00562         right           ///< horizontally align to the right
00563     } halign_t;
00564 
00565     /// cursor type argument for @ref SetTextCursorControl()
00566     typedef enum {
00567         NOCURSOR,   ///< cursor is hidden
00568         IBEAM,      ///< I Beam '|' cursor
00569         UNDER,      ///< Underscore '_' cursor
00570         BLOCK       ///< Block cursor
00571     } cursor_t;
00572 
00573     /// font type selection argument for @ref SetTextFont()
00574     typedef enum {
00575         ISO8859_1,      ///< ISO8859-1 font
00576         ISO8859_2,      ///< ISO8859-2 font
00577         ISO8859_3,      ///< ISO8859-3 font
00578         ISO8859_4       ///< ISO8859-4 font
00579     } font_t;
00580 
00581     /// alignment control argument for @ref SetTextFontControl()
00582     typedef enum {
00583         align_none,     ///< align - none
00584         align_full      ///< align - full
00585     } alignment_t;
00586 
00587     /// Font Horizontal Scale factor - 1, 2, 3 4 for @ref SetTextFontSize(), @ref GetTextFontSize()
00588     typedef int HorizontalScale;
00589 
00590     /// Font Vertical Scale factor - 1, 2, 3, 4 for @ref SetTextFontSize(), @ref GetTextFontSize()
00591     typedef int VerticalScale;
00592 
00593     /// Clear screen region option for @ref clsw()
00594     typedef enum {
00595         FULLWINDOW,     ///< Full screen
00596         ACTIVEWINDOW    ///< active window/region
00597     } Region_t;
00598 
00599     /// Layer Display Mode argument for @ref SetLayerMode, @ref GetLayerMode
00600     typedef enum {
00601         ShowLayer0,         ///< Only layer 0 is visible, layer 1 is hidden (default)
00602         ShowLayer1,         ///< Only layer 1 is visible, layer 0 is hidden
00603         LightenOverlay,     ///< Lighten-overlay mode
00604         TransparentMode,    ///< Transparent mode
00605         BooleanOR,          ///< Boolean OR mode
00606         BooleanAND,         ///< Boolean AND mode
00607         FloatingWindow      ///< Floating Window mode
00608     } LayerMode_T;
00609 
00610     /// Touch Panel modes
00611     typedef enum {
00612         TP_Auto,               ///< Auto touch detection mode
00613         TP_Manual,             ///< Manual touch detection mode
00614     } tpmode_t;
00615 
00616     /// PrintScreen callback commands for the user code @ref PrintCallback_T()
00617     typedef enum {
00618         OPEN,       ///< command to open the file. cast uint32_t * to the buffer to get the total size to be written.
00619         WRITE,      ///< command to write some data, buffer points to the data and the size is in bytes.
00620         CLOSE,      ///< command to close the file
00621     } filecmd_t;
00622 
00623     /// print screen callback
00624     ///
00625     /// The special form of the print screen will pass one blob at a time
00626     /// to the callback. There are basic commands declaring that the stream
00627     /// can be opened, a block written, and the stream closed. There is
00628     /// also a command to communicate the total size being delivered.
00629     ///
00630     /// If the idle callback is registered, it will be activated passing
00631     /// a parameter indicating the percent complete, which may be of value.
00632     ///
00633     /// @code
00634     /// lcd.PrintScreen(x,y,w,h,callback);
00635     /// ...
00636     /// void callback(filecmd_t cmd, uint8_t * buffer, uint16_t size) {
00637     ///     switch(cmd) {
00638     ///         case OPEN:
00639     ///             pc.printf("About to write %u bytes\r\n", *(uint32_t *)buffer);
00640     ///             fh = fopen("file.bmp", "w+b");
00641     ///             break;
00642     ///         case WRITE:
00643     ///             fwrite(buffer, size, fh);
00644     ///             break;
00645     ///         case CLOSE:
00646     ///             fclose(fh);
00647     ///             break;
00648     ///         default:
00649     ///             pc.printf("Unexpected callback %d\r\n", cmd);
00650     ///             break;
00651     ///     }
00652     /// }
00653     /// @endcode
00654     ///
00655     /// @param cmd is the command to execute. See @ref filecmd_t.
00656     /// @param buffer is a pointer to the buffer being passed.
00657     /// @param size is the number of bytes in the buffer.
00658     /// @returns @ref RetCode_t value.
00659     ///
00660     typedef RetCode_t (* PrintCallback_T)(filecmd_t cmd, uint8_t * buffer, uint16_t size);
00661 
00662     /// Idle reason provided in the Idle Callback @ref IdleCallback_T()
00663     typedef enum {
00664         unknown,            ///< reason has not been assigned (this should not happen)
00665         status_wait,        ///< driver is polling the status register while busy
00666         command_wait,       ///< driver is polling the command register while busy
00667         getc_wait,          ///< user has called the getc function
00668         touch_wait,         ///< user has called the touch function
00669         touchcal_wait,      ///< driver is performing a touch calibration
00670         progress,           ///< communicates progress
00671     } IdleReason_T;
00672 
00673     /// Idle Callback
00674     ///
00675     /// This defines the interface for an idle callback. That is, when the
00676     /// driver is held up, pending some event, it can call a previously registered
00677     /// idle function. This could be most useful for servicing a watchdog.
00678     ///
00679     /// The user code, which is notified via this API, can force the idle
00680     /// to abort, by returning the external_abort value back to the driver.
00681     /// It is important to note that the abort could leave the driver in
00682     /// an undesireable state, so this should be used with care.
00683     ///
00684     /// @note Should it be called the BusyCallback? It is true, that it will
00685     ///     call this function when the RA8875 is busy, but this is also
00686     ///     when the CPU is largely idle.
00687     ///
00688     /// @code
00689     /// RetCode_t myIdle_handler(RA8875::IdleReason_T reason, uint16_t param)
00690     /// {
00691     ///     idleFlasher = !idleFlasher;
00692     ///     if (it_has_been_too_long())
00693     ///         return external_abort;
00694     ///     else
00695     ///         return noerror;
00696     /// }
00697     /// @endcode
00698     ///
00699     /// @param reason informs the callback why it is idle.
00700     /// @param param is a 2nd parameter, which is used for certain reason codes
00701     ///        for 'progress' reason code, param ranges from 0 to 100 (percent)
00702     /// @returns @ref RetCode_t value.
00703     ///
00704     typedef RetCode_t (* IdleCallback_T)(IdleReason_T reason, uint16_t param);
00705 
00706     /// Basic constructor for a display based on the RAiO RA8875
00707     /// display controller, which can be used with no touchscreen,
00708     /// or the RA8875 managed resistive touchscreen.
00709     ///
00710     /// This constructor differs from the alternate by supportting
00711     /// either No Touch Screen, or the RA8875 built-in resistive
00712     /// touch screen. If the application requires the use of the
00713     /// capacitive touchscreen, the alternate constructor must
00714     /// be used.
00715     ///
00716     /// This configures the registers and calls the @ref init method.
00717     ///
00718     /// @code
00719     /// #include "RA8875.h"
00720     /// RA8875 lcd(p5, p6, p7, p12, NC, "tft");
00721     ///
00722     /// int main()
00723     /// {
00724     ///     lcd.init();     // defaults for 480x272x16 at low brightness
00725     ///     lcd.printf("printing 3 x 2 = %d", 3*2);
00726     ///     lcd.circle(400,25, 25, BrightRed);
00727     /// }
00728     /// @endcode
00729     ///
00730     /// @param[in] mosi is the SPI master out slave in pin on the mbed.
00731     /// @param[in] miso is the SPI master in slave out pin on the mbed.
00732     /// @param[in] sclk is the SPI shift clock pin on the mbed.
00733     /// @param[in] csel is the DigitalOut pin on the mbed to use as the
00734     ///         active low chip select for the display controller.
00735     /// @param[in] reset is the DigitalOut pin on the mbed to use as the
00736     ///         active low reset input on the display controller -
00737     ///         but this is not currently used.
00738     /// @param[in] name is a text name for this object, which will permit
00739     ///         capturing stdout to puts() and printf() directly to it.
00740     ///
00741     RA8875(PinName mosi, PinName miso, PinName sclk, PinName csel, PinName reset,
00742            const char * name = "lcd");
00743 
00744 
00745     /// Constructor for a display based on the RAiO RA8875 display controller
00746     /// (using the FT5206 Capacitive TouchScreen Controller)
00747     ///
00748     /// @code
00749     /// #include "RA8875.h"
00750     /// RA8875 lcd(p5,p6,p7,p12,NC, p9,p10,p13, "tft");
00751     ///
00752     /// int main()
00753     /// {
00754     ///     lcd.init();
00755     ///     lcd.printf("printing 3 x 2 = %d", 3*2);
00756     ///     lcd.circle(400,25, 25, BrightRed);
00757     ///     TouchCode_t tp = lcd.TouchPanelReadable();
00758     ///     if (tp == touch)
00759     ///         ...
00760     /// }
00761     /// @endcode
00762     ///
00763     /// @param[in] mosi is the SPI master out slave in pin on the mbed.
00764     /// @param[in] miso is the SPI master in slave out pin on the mbed.
00765     /// @param[in] sclk is the SPI shift clock pin on the mbed.
00766     /// @param[in] csel is the DigitalOut pin on the mbed to use as the
00767     ///         active low chip select for the display controller.
00768     /// @param[in] reset is the DigitalOut pin on the mbed to use as the
00769     ///         active low reset input on the display controller -
00770     ///         but this is not currently used.
00771     /// @param[in] sda is the I2C Serial Data pin you are wiring to the FT5206.
00772     /// @param[in] scl is the I2C Serial Clock pin you are wiring to the FT5206.
00773     /// @param[in] irq is the Interrupt Request pin you are wiring to the FT5206.
00774     /// @param[in] name is a text name for this object, which will permit
00775     ///         capturing stdout to puts() and printf() directly to it.
00776     ///
00777     RA8875(PinName mosi, PinName miso, PinName sclk, PinName csel, PinName reset,
00778            PinName sda, PinName scl, PinName irq, const char * name = "lcd");
00779 
00780 
00781     /// Constructor for a display based on the RAiO RA8875 display controller
00782     /// (using the GSL1680 Capacitive TouchScreen Controller)
00783     ///
00784     /// @code
00785     /// #include "RA8875.h"
00786     /// RA8875 lcd(p5,p6,p7,p12,NC, p9,p10,p13,p14, "tft");
00787     ///
00788     /// int main()
00789     /// {
00790     ///     lcd.init();
00791     ///     lcd.printf("printing 3 x 2 = %d", 3*2);
00792     ///     lcd.circle(400,25, 25, BrightRed);
00793     ///     TouchCode_t tp = lcd.TouchPanelReadable();
00794     ///     if (tp == touch)
00795     ///         ...
00796     /// }
00797     /// @endcode
00798     ///
00799     /// @param[in] mosi is the SPI master out slave in pin on the mbed.
00800     /// @param[in] miso is the SPI master in slave out pin on the mbed.
00801     /// @param[in] sclk is the SPI shift clock pin on the mbed.
00802     /// @param[in] csel is the DigitalOut pin on the mbed to use as the
00803     ///         active low chip select for the display controller.
00804     /// @param[in] reset is the DigitalOut pin on the mbed to use as the
00805     ///         active low reset input on the display controller -
00806     ///         but this is not currently used.
00807     /// @param[in] sda is the I2C Serial Data pin you are wiring to the GSL1680.
00808     /// @param[in] scl is the I2C Serial Clock pin you are wiring to the GSL1680.
00809     /// @param[in] wake is the wake control pin you are wiring to the GSL1680.
00810     /// @param[in] irq is the Interrupt Request pin you are wiring to the GSL1680.
00811     /// @param[in] name is a text name for this object, which will permit
00812     ///         capturing stdout to puts() and printf() directly to it.
00813     ///
00814     RA8875(PinName mosi, PinName miso, PinName sclk, PinName csel, PinName reset,
00815            PinName sda, PinName scl, PinName wake, PinName irq, const char * name = "lcd");
00816 
00817 
00818     // Destructor doesn't have much to do as this would typically be created
00819     // at startup, and not at runtime.
00820     //~RA8875();
00821 
00822     /// Initialize the driver.
00823     ///
00824     /// The RA8875 can control typical displays from the 480x272 to 800x480, and it supports 8 or 16-bit color.
00825     /// It also supports 2 graphics layers, but it cannot support 2 layers at the maximum color depth and
00826     /// screen size. When configured under 480x400, it will support both 16-bit color depth and 2 drawing layers.
00827     /// Above 480x400 it support either 16-bit color, or 2 layers, but not both.
00828     ///
00829     /// Typical of the displays that are readily purchased, you will find 480x272 and 800x480 resolutions.
00830     ///
00831     /// @param[in] width in pixels in landscape orientation to configure the display for.
00832     ///             This parameter is optional and the default is 480.
00833     /// @param[in] height in pixels in landscape orientation to configure the display for.
00834     ///             This parameter is optional and the default is 272.
00835     /// @param[in] color_bpp can be either 8 or 16, but must be consistent
00836     ///             with the width and height parameters. This parameter is optional
00837     ///             and the default is 16.
00838     /// @param[in] poweron defines if the display should be initialized into the power-on or off state.
00839     ///            If power is non-zero(on), the backlight is set to this value. This parameter is optional
00840     ///             and the default is 40 (on at a low brightness level because many users power
00841     ///             the module from their PC USB port and it often cannot support the curent
00842     ///             required for full brightness). See @ref Power.
00843     /// @param[in] keypadon defines if the keypad support should be enabled. This parameter is optional
00844     ///             and the default is true (enabled). See @ref KeypadInit.
00845     /// @param[in] touchscreeenon defines if the touchscreen support should be enabled.
00846     ///             This parameter is optional and the default is true (enabled). See @ref TouchPanelInit.
00847     ///             - If the constructor was called with support for the capacitive driver, this
00848     ///             parameter causes the driver to initialize.
00849     ///             - If the constructor was called without support for the capacitive driver, this
00850     ///             parameter is used to enable and initialize the resistive touchscreen driver.
00851     /// @returns @ref RetCode_t value.
00852     ///
00853     RetCode_t init(int width = 480, int height = 272, int color_bpp = 16,
00854                    uint8_t poweron = 40, bool keypadon = true, bool touchscreeenon = true);
00855 
00856 
00857     /// Get a pointer to the text string representing the RetCode_t
00858     ///
00859     /// This method returns a pointer to a text string that matches the
00860     /// code. See @ref RetCode_t.
00861     ///
00862     /// @param[in] code is the return value from RetCode_t to look up.
00863     /// @returns a pointer to the text message representing code. If code
00864     ///     is not a valid value, then it returns the text for bad_parameter;
00865     ///
00866     const char * GetErrorMessage(RetCode_t code);
00867 
00868 
00869     /// Select the drawing layer for subsequent commands.
00870     ///
00871     /// If the screen configuration is 480 x 272, or if it is 800 x 480
00872     /// and 8-bit color, the the display supports two layers, which can
00873     /// be independently drawn on and shown. Additionally, complex
00874     /// operations involving both layers are permitted.
00875     ///
00876     /// @attention If the current display configuration does not support
00877     ///     multiple layers, then layer 0 will be selected.
00878     ///
00879     /// @code
00880     ///     //lcd.SetLayerMode(OnlyLayer0); // default is layer 0
00881     ///     lcd.rect(400,130, 475,155,Brown);
00882     ///     lcd.SelectDrawingLayer(1);
00883     ///     lcd.circle(400,25, 25, BrightRed);
00884     ///     wait(1);
00885     ///     lcd.SetLayerMode(ShowLayer1);
00886     /// @endcode
00887     ///
00888     /// @attention The user manual refers to Layer 1 and Layer 2, however the
00889     ///     actual register values are value 0 and 1. This API as well as
00890     ///     others that reference the layers use the values 0 and 1 for
00891     ///     cleaner iteration in the code.
00892     ///
00893     /// @param[in] layer is 0 or 1 to select the layer for subsequent
00894     ///     commands.
00895     /// @returns previous drawing layer.
00896     ///
00897     virtual uint16_t SelectDrawingLayer(uint16_t layer);
00898 
00899 
00900     /// Get the currently active drawing layer.
00901     ///
00902     /// This returns a value, 0 or 1, based on the screen configuration
00903     /// and the currently active drawing layer.
00904     ///
00905     /// @code
00906     ///     uint16_t prevLayer = lcd.GetDrawingLayer();
00907     ///     lcd.SelectDrawingLayer(x);
00908     ///     lcd.circle(400,25, 25, BrightRed);
00909     ///     lcd.SelectDrawingLayer(prevLayer);
00910     /// @endcode
00911     ///
00912     /// @attention The user manual refers to Layer 1 and Layer 2, however the
00913     ///     actual register values are value 0 and 1. This API as well as
00914     ///     others that reference the layers use the values 0 and 1 for
00915     ///     cleaner iteration in the code.
00916     ///
00917     /// @returns the current drawing layer; 0 or 1.
00918     ///
00919     virtual uint16_t GetDrawingLayer(void);
00920 
00921 
00922     /// Set the Layer presentation mode.
00923     ///
00924     /// This sets the presentation mode for layers, and permits showing
00925     /// a single layer, or applying a mode where the two layers
00926     /// are combined using one of the hardware methods.
00927     ///
00928     /// Refer to the RA8875 data sheet for full details.
00929     ///
00930     /// @code
00931     ///     //lcd.SetLayerMode(OnlyLayer0); // default is layer 0
00932     ///     lcd.rect(400,130, 475,155,Brown);
00933     ///     lcd.SelectDrawingLayer(1);
00934     ///     lcd.circle(400,25, 25, BrightRed);
00935     ///     wait(1);
00936     ///     lcd.SetLayerMode(ShowLayer1);
00937     /// @endcode
00938     ///
00939     /// @param[in] mode sets the mode in the Layer Transparency Register.
00940     /// @returns @ref LayerMode_T as the previous layer value.
00941     ///
00942     LayerMode_T SetLayerMode(LayerMode_T mode);
00943 
00944 
00945     /// Get the Layer presentation mode.
00946     ///
00947     /// This gets the current layer mode. See @ref LayerMode_T.
00948     ///
00949     /// @returns layer mode.
00950     ///
00951     LayerMode_T GetLayerMode(void);
00952 
00953 
00954     /// Set the layer transparency for each layer.
00955     ///
00956     /// Set the transparency, where the range of values is
00957     /// from zero (fully visible) to eight (fully transparent).
00958     /// The input value is automatically limited to this range.
00959     ///
00960     /// @code
00961     ///     // draw something on each layer, then step-fade across
00962     ///     display.SetLayerMode(RA8875::TransparentMode);
00963     ///     for (i=0; i<=8; i++) {
00964     ///         display.SetLayerTransparency(i, 8-i);
00965     ///         wait_us(200000);
00966     ///     }
00967     /// @endcode
00968     ///
00969     /// @param[in] layer1 sets the layer 1 transparency.
00970     /// @param[in] layer2 sets the layer 2 transparency.
00971     /// @returns @ref RetCode_t value.
00972     ///
00973     RetCode_t SetLayerTransparency(uint8_t layer1, uint8_t layer2);
00974 
00975 
00976     /// Set the background color register used for transparency.
00977     ///
00978     /// This command sets the background color registers that are used
00979     /// in the transparent color operations involving the layers.
00980     ///
00981     /// @param[in] color is optional and expressed in 16-bit format. If not
00982     ///     supplied, a default of Black is used.
00983     /// @returns @ref color_t as the previous color value.
00984     ///
00985     color_t SetBackgroundTransparencyColor(color_t color = RGB(0,0,0));
00986 
00987 
00988     /// Get the background color value used for transparency.
00989     ///
00990     /// This command reads the background color registers that define
00991     /// the transparency color for operations involving layers.
00992     ///
00993     /// @returns the color.
00994     ///
00995     color_t GetBackgroundTransparencyColor(void);
00996 
00997 
00998     /// Initialize theTouch Panel controller with default values
00999     ///
01000     /// This activates the simplified touch panel init, which may work for
01001     /// most uses. The alternate API is available if fine-grained control
01002     /// of the numerous settings of the resistive panel is needed.
01003     ///
01004     /// Additionally, for an even simpler interface for most RESISTIVE
01005     /// touch use cases, the init() method can perform the calibration.
01006     ///
01007     /// @returns @ref RetCode_t value.
01008     ///
01009     RetCode_t TouchPanelInit(void);
01010 
01011 
01012     /// Initialize the Touch Panel controller with detailed settings.
01013     ///
01014     /// This is the detailed touch panel init, which provides the ability
01015     /// to set nearly every option.
01016     ///
01017     /// @note If the capacitive touch panel was constructed, this behaves
01018     ///     the same as the simplified version.
01019     ///
01020     /// @param[in]  bTpEnable           Touch Panel enable/disable control:
01021     ///                                 - TP_ENABLE: enable the touch panel
01022     ///                                 - TP_DISABLE: disable the touch panel
01023     /// @param[in]  bTpAutoManual       Touch Panel operating mode:
01024     ///                                 - TP_MODE_AUTO: automatic capture
01025     ///                                 - TP_MODE_MANUAL: manual capture
01026     /// @param[in]  bTpDebounce         Debounce circuit enable for touch panel interrupt:
01027     ///                                 - TP_DEBOUNCE_OFF: disable the debounce circuit
01028     ///                                 - TP_DEBOUNCE_ON: enable the debounce circuit
01029     /// @param[in]  bTpManualMode       When Manual Mode is selected, this sets the mode:
01030     ///                                 - TP_MANUAL_IDLE: touch panel is idle
01031     ///                                 - TP_MANUAL_WAIT: wait for touch panel event
01032     ///                                 - TP_MANUAL_LATCH_X: latch X data
01033     ///                                 - TP_MANUAL_LATCH_Y: latch Y data
01034     /// @param[in]  bTpAdcClkDiv        Sets the ADC clock as a fraction of the System CLK:
01035     ///                                 - TP_ADC_CLKDIV_1: Use CLK
01036     ///                                 - TP_ADC_CLKDIV_2: Use CLK/2
01037     ///                                 - TP_ADC_CLKDIV_4: Use CLK/4
01038     ///                                 - TP_ADC_CLKDIV_8: Use CLK/8
01039     ///                                 - TP_ADC_CLKDIV_16: Use CLK/16
01040     ///                                 - TP_ADC_CLKDIV_32: Use CLK/32
01041     ///                                 - TP_ADC_CLKDIV_64: Use CLK/64
01042     ///                                 - TP_ADC_CLKDIV_128: Use CLK/128
01043     /// @param[in]  bTpAdcSampleTime    Touch Panel sample time delay before ADC data is ready:
01044     ///                                 - TP_ADC_SAMPLE_512_CLKS: Wait 512 system clocks
01045     ///                                 - TP_ADC_SAMPLE_1024_CLKS: Wait 1024 system clocks
01046     ///                                 - TP_ADC_SAMPLE_2048_CLKS: Wait 2048 system clocks
01047     ///                                 - TP_ADC_SAMPLE_4096_CLKS: Wait 4096 system clocks
01048     ///                                 - TP_ADC_SAMPLE_8192_CLKS: Wait 8192 system clocks
01049     ///                                 - TP_ADC_SAMPLE_16384_CLKS: Wait 16384 system clocks
01050     ///                                 - TP_ADC_SAMPLE_32768_CLKS: Wait 32768 system clocks
01051     ///                                 - TP_ADC_SAMPLE_65536_CLKS: Wait 65536 system clocks
01052     /// @returns @ref RetCode_t value.
01053     ///
01054     RetCode_t TouchPanelInit(uint8_t bTpEnable, uint8_t bTpAutoManual, uint8_t bTpDebounce,
01055                              uint8_t bTpManualMode, uint8_t bTpAdcClkDiv, uint8_t bTpAdcSampleTime);
01056 
01057 
01058     /// Get the screen calibrated point of touch.
01059     ///
01060     /// This method determines if there is a touch and if so it will provide
01061     /// the screen-relative touch coordinates. This method can be used in
01062     /// a manner similar to Serial.readable(), to determine if there was a
01063     /// touch and indicate that - but not care about the coordinates. Alternately,
01064     /// if a valid pointer to a point_t is provided, then if a touch is detected
01065     /// the point_t will be populated with data.
01066     ///
01067     /// @code
01068     ///     Timer t;
01069     ///     t.start();
01070     ///     do {
01071     ///        point_t point = {0, 0};
01072     ///        if (display.TouchPanelReadable(&point)) {
01073     ///            display.pixel(point, Red);
01074     ///        }
01075     ///    } while (t.read_ms() < 30000);
01076     /// @endcode
01077     ///
01078     /// @param[out] TouchPoint is a pointer to a point_t, which is set as the touch point,
01079     ///             if a touch is registered. The coordinate system is based on the
01080     ///             graphics orientation (@ref SetGraphicsOrientation(), @ref GetGraphicsOrientation())
01081     /// @returns a value indicating the state of the touch,
01082     ///         - no_cal:   no calibration matrix is available, touch coordinates are not returned.
01083     ///         - no_touch: no touch is detected, touch coordinates are not returned.
01084     ///         - touch:    touch is detected, touch coordinates are returned.
01085     ///         - held:     held after touch, touch coordinates are returned.
01086     ///         - release:  indicates a release, touch coordinates are returned.
01087     ///
01088     TouchCode_t TouchPanelReadable(point_t * TouchPoint = NULL);
01089 
01090 
01091     /// Get the reported touch gesture, if any.
01092     ///
01093     /// If it could detect a gesture, it will return a value based on
01094     /// the interpreted gesture.
01095     ///
01096     /// Valid gesture values are:
01097     /// @li 0x00 No gesture
01098     /// @li 0x48 Zoom in
01099     /// @li 0x49 Zoom out
01100     ///
01101     /// The following gestures are defined in the FT5206 specification, but
01102     /// do not appear to work.
01103     /// @li 0x10 Move up
01104     /// @li 0x14 Move left
01105     /// @li 0x18 Move down
01106     /// @li 0x1C Move right
01107     ///
01108     /// @returns gesture information.
01109     ///
01110     uint8_t TouchGesture(void)
01111     {
01112         return gesture;
01113     }
01114 
01115 
01116     /// Get the count of registered touches.
01117     ///
01118     /// @returns count of touch points to communicate; 0 to 5.
01119     ///
01120     int TouchCount(void)
01121     {
01122         return numberOfTouchPoints;
01123     }
01124 
01125 
01126     /// Get the count of possible touch channels.
01127     ///
01128     /// @returns count of touch channels supported by the hardware.
01129     ///
01130     int TouchChannels(void);
01131 
01132 
01133     /// Get the Touch ID value for a specified touch channel.
01134     ///
01135     /// Touch ID is a tracking number based on the order of the touch
01136     /// detections. The first touch is ID 0, the next is ID 1, and
01137     /// so on. If the first touch is lifted (no touch), the touch count
01138     /// decrements, and the remaining touch is communicated on
01139     /// touch channel zero, even as the Touch ID remains as originally
01140     /// reported (1 in this example). In this way, it is easy to track
01141     /// a specific touch.
01142     ///
01143     /// It is possible to query the data for a channel that is not
01144     /// presently reported as touched.
01145     ///
01146     /// @param[in] channel is the touch channel, from 0 to 4, or 0 to TouchChannels()-1
01147     ///     It defaults to 0, in case the user is not interested in multi-touch.
01148     /// @returns the touch ID, or 15 if you get the ID for an untouched channel.
01149     /// @returns 0 if an invalid channel is queried.
01150     ///
01151     uint8_t TouchID(uint8_t channel = 0);
01152 
01153     /// Get the Touch Code for a touch channel.
01154     ///
01155     /// It is possible to query the data for a channel that is not
01156     /// presently reported as touched.
01157     ///
01158     /// @param[in] channel is the touch channel, from 0 to 4, or 0 to TouchChannels()-1
01159     ///     It defaults to 0, in case the user is not interested in multi-touch.
01160     /// @returns the touch code (@ref TouchCode_t).
01161     /// @returns channel 0 information if an invalid channel is queried.
01162     ///
01163     TouchCode_t TouchCode(uint8_t channel = 0);
01164 
01165 
01166     /// Get the coordinates for a touch channel.
01167     ///
01168     /// This returns the (X,Y) coordinates for a touch channel.
01169     ///
01170     ///
01171     /// It is possible to query the data for a channel that is not
01172     /// presently reported as touched.
01173     ///
01174     /// @param[in] channel is an optional touch channel, from 0 to 4, or 0 to TouchChannels()-1.
01175     ///     It defaults to 0, in case the user is not interested in multi-touch.
01176     /// @returns the coordinates as a point_t structure.
01177     /// @returns channel 0 information if an invalid channel is queried.
01178     ///
01179     point_t TouchCoordinates(uint8_t channel = 0);
01180 
01181 
01182     /// Poll the TouchPanel and on a touch event return the a to d filtered x, y coordinates.
01183     ///
01184     /// This method reads the touch controller, which has a 10-bit range for each the
01185     /// x and the y axis.
01186     ///
01187     /// @note The returned values are not in display (pixel) units but are in analog to
01188     ///     digital converter units.
01189     ///
01190     /// @note This API is usually not needed and is likely to be deprecated.
01191     ///     See @ref TouchPanelComputeCalibration.
01192     ///     See @ref TouchPanelReadable.
01193     ///
01194     /// @param[out] x is the x scale a/d value.
01195     /// @param[out] y is the y scale a/d value.
01196     /// @returns a value indicating the state of the touch,
01197     ///         - no_cal:   no calibration matrix is available, touch coordinates are not returned.
01198     ///         - no_touch: no touch is detected, touch coordinates are not returned.
01199     ///         - touch:    touch is detected, touch coordinates are returned.
01200     ///         - held:     held after touch, touch coordinates are returned.
01201     ///         - release:  indicates a release, touch coordinates are returned.
01202     ///
01203     TouchCode_t TouchPanelA2DFiltered(int *x, int *y);
01204 
01205 
01206     /// Poll the TouchPanel and on a touch event return the a to d raw x, y coordinates.
01207     ///
01208     /// This method reads the touch controller, which has a 10-bit range for each the
01209     /// x and the y axis. A number of samples of the raw data are taken, filtered,
01210     /// and the results are returned.
01211     ///
01212     /// @note The returned values are not in display (pixel) units but are in analog to
01213     ///     digital converter units.
01214     ///
01215     /// @note This API is usually not needed and is likely to be deprecated.
01216     ///     See @ref TouchPanelComputeCalibration.
01217     ///     See @ref TouchPanelReadable.
01218     ///
01219     /// @param[out] x is the x scale a/d value.
01220     /// @param[out] y is the y scale a/d value.
01221     /// @returns a value indicating the state of the touch,
01222     ///         - no_cal:   no calibration matrix is available, touch coordinates are not returned.
01223     ///         - no_touch: no touch is detected, touch coordinates are not returned.
01224     ///         - touch:    touch is detected, touch coordinates are returned.
01225     ///         - held:     held after touch, touch coordinates are returned.
01226     ///         - release:  indicates a release, touch coordinates are returned.
01227     ///
01228     TouchCode_t TouchPanelA2DRaw(int *x, int *y);
01229 
01230 
01231     /// Wait for a touch panel touch and return it.
01232     ///
01233     /// This method is similar to Serial.getc() in that it will wait for a touch
01234     /// and then return. In order to extract the coordinates of the touch, a
01235     /// valid pointer to a point_t must be provided.
01236     ///
01237     /// @note There is no timeout on this function, so its use is not recommended.
01238     ///
01239     /// @code
01240     ///     Timer t;
01241     ///     t.start();
01242     ///     do {
01243     ///        point_t point = {0, 0};
01244     ///        display.TouchPanelGet(&point);   // hangs here until touch
01245     ///        display.pixel(point, Red);
01246     ///    } while (t.read_ms() < 30000);
01247     /// @endcode
01248     ///
01249     /// @param[out] TouchPoint is the touch point, if a touch is registered.
01250     /// @returns a value indicating the state of the touch,
01251     ///         - no_cal:   no calibration matrix is available, touch coordinates are not returned.
01252     ///         - no_touch: no touch is detected, touch coordinates are not returned.
01253     ///         - touch:    touch is detected, touch coordinates are returned.
01254     ///         - held:     held after touch, touch coordinates are returned.
01255     ///         - release:  indicates a release, touch coordinates are returned.
01256     ///
01257     TouchCode_t TouchPanelGet(point_t * TouchPoint);
01258 
01259 
01260     /// Configuration Option for the Resistive Touch Panel Calibration.
01261     ///
01262     /// This method is only useful for the resistive touchscreen.
01263     ///
01264     /// Also, this method is optional - the user can take all of the responsibility
01265     /// in their code, or for simplicity sake, this API can be used prior
01266     /// to the init method.
01267     ///
01268     /// @code
01269     ///     RA8875 lcd(p5, p6, p7, p12, NC);
01270     ///     ...
01271     ///     LocalFileSystem local();
01272     ///     // Be sure you previously mounted the "/sd" file system to put the cal there.
01273     ///     lcd.ResTouchPanelCfg("/sd/tpcal.cfg", "Touch '+' to calibrate the touch panel");
01274     ///
01275     ///     // Only if the touch panel is enabled, AND is configured as the resistive
01276     ///     // panel will the prior command be useful.
01277     ///     lcd.init(LCD_PHYS_W,LCD_PHYS_H,LCD_C,40, false, true);
01278     ///
01279     /// @endcode
01280     ///
01281     /// @param[in] tpFQFN is a pointer to a fully qualified read-write accessible
01282     ///     filename where the calibration is held.
01283     /// @param[in] tpCalMessage is an optional pointer to a message shown to the
01284     ///     user in the calibration process.
01285     ///     - If this parameter is not included, a default message will be shown.
01286     ///     - If this parameter points to a NULL string, no message is shown.
01287     ///     - If this parameter points to a non-NULL string, that string will be shown.
01288     ///
01289     void ResTouchPanelCfg(const char * tpFQFN = NULL, const char * tpCalMessage = NULL);
01290 
01291 
01292     /// Calibrate the touch panel.
01293     ///
01294     /// This method accepts two lists - one list is target points in ,
01295     /// display coordinates and the other is a lit of raw touch coordinate
01296     /// values. It generates a calibration matrix for later use. This
01297     /// matrix is also accessible to the calling API, which may store
01298     /// the matrix in persistent memory and then install the calibration
01299     /// matrix on the next power cycle. By doing so, it can avoid the
01300     /// need to calibrate on every power cycle.
01301     ///
01302     /// @note The methods "TouchPanelComputeCalibration", "TouchPanelReadable", and
01303     ///     indirectly the "TouchPanelSetMatrix" methods are all derived
01304     ///     from a program by Carlos E. Vidales. See the copyright note
01305     ///     for further details. See also the article
01306     ///     http://www.embedded.com/design/system-integration/4023968/How-To-Calibrate-Touch-Screens
01307     ///
01308     /// @copyright Copyright &copy; 2001, Carlos E. Vidales. All rights reserved.
01309     ///     This sample program was written and put in the public domain
01310     ///      by Carlos E. Vidales.  The program is provided "as is"
01311     ///      without warranty of any kind, either expressed or implied.
01312     ///     If you choose to use the program within your own products
01313     ///      you do so at your own risk, and assume the responsibility
01314     ///      for servicing, repairing or correcting the program should
01315     ///      it prove defective in any manner.
01316     ///     You may copy and distribute the program's source code in any
01317     ///      medium, provided that you also include in each copy an
01318     ///      appropriate copyright notice and disclaimer of warranty.
01319     ///     You may also modify this program and distribute copies of
01320     ///      it provided that you include prominent notices stating
01321     ///      that you changed the file(s) and the date of any change,
01322     ///      and that you do not charge any royalties or licenses for
01323     ///      its use.
01324     ///
01325     /// @param[in] display is a pointer to a set of 3 points, which
01326     ///             are in display units of measure. These are the targets
01327     ///             the calibration was aiming for.
01328     /// @param[in] screen is a pointer to a set of 3 points, which
01329     ///             are in touchscreen units of measure. These are the
01330     ///             registered touches.
01331     /// @param[out] matrix is an optional parameter to hold the calibration matrix
01332     ///             as a result of the calibration. This can be saved in
01333     ///             non-volatile memory to recover the calibration after a power fail.
01334     /// @returns @ref RetCode_t value.
01335     ///
01336     RetCode_t TouchPanelComputeCalibration(point_t display[3], point_t screen[3], tpMatrix_t * matrix);
01337 
01338 
01339     /// Perform the touch panel calibration process.
01340     ///
01341     /// This method provides the easy "shortcut" to calibrating the touch panel.
01342     /// The process will automatically generate the calibration points, present
01343     /// the targets on-screen, detect the touches, compute the calibration
01344     /// matrix, and optionally provide the calibration matrix to the calling code
01345     /// for persistence in non-volatile memory.
01346     ///
01347     /// @param[out] matrix is an optional parameter to hold the calibration matrix
01348     ///             as a result of the calibration. This can be saved in
01349     ///             non-volatile memory to recover the calibration after a power fail.
01350     /// @returns @ref RetCode_t value.
01351     ///
01352     RetCode_t TouchPanelCalibrate(tpMatrix_t * matrix = NULL);
01353 
01354 
01355     /// Perform the touch panel calibration process.
01356     ///
01357     /// This method provides the easy "shortcut" to calibrating the touch panel.
01358     /// The process will automatically generate the calibration points, present
01359     /// the targets on-screen, detect the touches, compute the calibration
01360     /// matrix, and optionally provide the calibration matrix to the calling code
01361     /// for persistence in non-volatile memory.
01362     ///
01363     /// @param[in] msg is a text message to present on the screen during the
01364     ///             calibration process.
01365     /// @param[out] matrix is an optional parameter to hold the calibration matrix
01366     ///             as a result of the calibration. This can be saved in
01367     ///             non-volatile memory to recover the calibration after a power fail.
01368     /// @param[in] maxwait_s is the maximum number of seconds to wait for a touch
01369     ///             calibration. If no touch panel installed, it then reports
01370     ///             touch_cal_timeout. Default: 30 s.
01371     /// @returns @ref RetCode_t value.
01372     ///
01373     RetCode_t TouchPanelCalibrate(const char * msg, tpMatrix_t * matrix = NULL, int maxwait_s = 30);
01374 
01375 
01376     /// Set the calibration matrix for the resistive touch panel.
01377     ///
01378     /// This method is used to set the calibration matrix for the touch panel. After
01379     /// performing the calibration (See @ref TouchPanelComputeCalibration), the matrix can be stored.
01380     /// On a subsequence power cycle, the matrix may be restored from non-volatile and
01381     /// passed in to this method. It will then be held to perform the corrections when
01382     /// reading the touch panel point.
01383     ///
01384     /// @code
01385     /// FILE * fh = fopen("/local/tpmatrix.cfg", "r");
01386     /// if (fh) {
01387     ///     tpMatrix_t matrix;
01388     ///     if (fread(fh, &matrix, sizeof(tpMatrix_t))) {
01389     ///         lcd.TouchPanelSetMatrix(&matrix);
01390     ///     }
01391     ///     fclose(fh);
01392     /// }
01393     /// @endcode
01394     ///
01395     /// @param[in] matrix is a pointer to the touch panel calibration matrix.
01396     /// @returns @ref RetCode_t value.
01397     ///
01398     ///
01399     RetCode_t TouchPanelSetMatrix(tpMatrix_t * matrix);
01400 
01401     /// Get the calibration matrix for the resistive touch panel.
01402     ///
01403     /// This method returns a const pointer to the matrix. If this matrix has
01404     /// not be set, with either the TouchPanelSetMatrix API or the calibration
01405     /// process, the results are indeterminate.
01406     ///
01407     /// return const tpMatrix_t pointer
01408     ///
01409     const tpMatrix_t * TouchPanelGetMatrix();
01410 
01411 #if 0
01412     /// Append interrupt handler for specific RA8875 interrupt source
01413     ///
01414     /// @param[in]    bISRType        Interrupt Source, should be:
01415     ///                                - RA8875_INT_KEYSCAN: KEYCAN interrupt
01416     ///                                - RA8875_INT_DMA: DMA interrupt
01417     ///                                - RA8875_INT_TP: Touch panel interrupt
01418     ///                                - RA8875_INT_BTE: BTE process complete interrupt
01419     ///                                - RA8875_INT_BTEMCU_FONTWR: Multi-purpose interrupt (see spec sheet)
01420     /// @param[in]    fptr is a callback function to handle the interrupt event.
01421     /// @returns       none
01422     ///
01423     void AppendISR(uint8_t bISRType, void(*fptr)(void));
01424 
01425     /// Unappend interrupt handler for specific RA8875 interrupt source
01426     ///
01427     /// @param[in]    bISRType        Interrupt Source, should be:
01428     ///                                - RA8875_INT_KEYSCAN: KEYCAN interrupt
01429     ///                                - RA8875_INT_DMA: DMA interrupt
01430     ///                                - RA8875_INT_TP: Touch panel interrupt
01431     ///                                - RA8875_INT_BTE: BTE process complete interrupt
01432     ///                                - RA8875_INT_BTEMCU_FONTWR: Multi-purpose interrupt (see spec sheet)
01433     /// @return       none
01434     ///
01435     void UnAppendISR(uint8_t bISRType);
01436 #endif
01437 
01438 
01439     /// Initialize the keypad interface on the RA8875 controller.
01440     ///
01441     /// Enables the keypad subsystem. It will scan the 4 x 5 matrix
01442     /// and make available key presses. See also @ref SetKeyMap().
01443     ///
01444     /// @note See section 5-13 of RAIO RA8875 data sheet for more details.
01445     /// @note When using the display from buy-display.com, be sure that
01446     ///     the option for the keypad is configured on the hardware.
01447     ///
01448     /// All parameters are optional.
01449     /// @param[in] scanEnable when true, enables the key scan function (default: true).
01450     /// @param[in] longDetect when true, additionally enables the long key held detection (default: false).
01451     /// @param[in] sampleTime setting (range: 0 - 3, default: 0).
01452     /// @param[in] scanFrequency setting (range: 0 - 7, default: 0).
01453     /// @param[in] longTimeAdjustment (range: 0 - 3, default: 0).
01454     /// @param[in] interruptEnable when true, enables interrupts from keypress (default: false).
01455     /// @param[in] wakeupEnable when true, activates the wakeup function (default: false).
01456     ///
01457     /// @returns @ref RetCode_t value.
01458     ///
01459     RetCode_t  KeypadInit(bool scanEnable = true, bool longDetect = false,
01460                           uint8_t sampleTime = 0, uint8_t scanFrequency = 0,
01461                           uint8_t longTimeAdjustment = 0,
01462                           bool interruptEnable = false, bool wakeupEnable = false);
01463 
01464 
01465     /// Create Key Code definitions for the key matrix.
01466     ///
01467     /// This API provides a table of 22 key-code assignments for the matrix of keys.
01468     /// See also KeypadInit().
01469     /// This can be used to translate the keys 1 - 20 into some other value, as
01470     /// well as to communicate the "no key" (zero) and "error state" (21).
01471     ///
01472     /// In this way, a keypad could easily emulate a piece of a keyboard, transforming
01473     /// 0 - 20 into the values 0, '0', '1', '2', '3', '4', '5', '6', '7', '8',
01474     /// '9', '+', '-', '*' , '/', '=', '(bs)', '(cr)', and so on...
01475     ///
01476     /// @code
01477     /// //        Return Value by Row, Column   Example reassignment
01478     /// //    Column    0    1    2    3    4
01479     /// //          +-------------------------+  +-------------------------+
01480     /// // Row   0  |   1    2    3    4    5 |  | '7'  '8'  '9'  ',' '<-' |
01481     /// //       1  |   6    7    8    9   10 |  | '4'  '5'  '6'  '/'  '-' |
01482     /// //       2  |  11   12   13   14   15 |  | '1'  '2'  '3'  '*'  '+' |
01483     /// //       3  |  16   17   18   19   20 |  | '0'  '.'  '('  ')' '\n' |
01484     /// //          +-------------------------+  +-------------------------+
01485     /// //     Return value  0 = No Key pressed
01486     /// //     Return value 21 = Error
01487     /// const uint8_t CodeList[22] =
01488     ///     {0, '7', '8', '9', ',', '\h',
01489     ///         '4', '5', '6', '/', '-',
01490     ///         '1', '2', '3', '*', '+',
01491     ///         '0', '.', '(', ')', '\n',
01492     ///         '\x1b'};
01493     ///     lcd.SetKeyMap(CodeList);
01494     /// @endcode
01495     ///
01496     /// @param[in] CodeList is a pointer to an always available byte-array
01497     ///             where the first 22 bytes are used as the transformation
01498     ///             from raw code to your reassigned value.
01499     ///            If CodeList is NULL, the original raw value key map is
01500     ///             restored.
01501     /// @returns @ref RetCode_t value.
01502     ///
01503     RetCode_t SetKeyMap(const uint8_t * CodeList = NULL);
01504 
01505 
01506     /// Determine if a key has been hit
01507     ///
01508     /// @returns true if a key has been hit
01509     ///
01510     bool readable();
01511 
01512 
01513     /// Blocking read of the keypad.
01514     ///
01515     /// @note: This is a blocking read, so it is important to first call _kbhit()
01516     ///         to avoid hanging your processes.
01517     ///
01518     /// A keypad connected to the RA8875 is connected in a matrix of 4 rows and 5 columns.
01519     /// When pressed, this method will return a code in the range of 1 through 20, reserving
01520     /// the value 0 to indicate that no key is pressed.
01521     ///
01522     /// Additionally, if configured to detect a "long press", bit 7 will be set to indicate
01523     /// this. In this situation, first a "normal press" would be detected and signaled and
01524     /// soon after that a "long press" of the same key would be detected and communicated.
01525     ///
01526     /// @return 8-bit where bit 7 indicates a long press. The remaining bits indicate the
01527     ///     keypress using 0 = no key pressed, 1 - 20 = the key pressed.
01528     ///
01529     uint8_t getc();
01530 
01531 
01532     /// Align one rectangle against another.
01533     ///
01534     /// This will accept a rectangle to align and align it against another rectangle.
01535     /// It would be most typical if the rectangle to align is smaller than the reference rectangle.
01536     ///
01537     /// @param[in] toAlign is a rectangular region to align against another.
01538     /// @param[in] inRect is a rectangle to align against.
01539     /// @param[in] v specifies the vertical alignment - top, middle, bottom.
01540     /// @param[in] h specified the horizontal alignment - left, center, right.
01541     /// @returns a new rectangle, the size of the toAlign.
01542     ///
01543     rect_t AlignRectInRect(rect_t toAlign, rect_t inRect, valign_t v, halign_t h);
01544 
01545     /// Determine if a point is within a rectangle.
01546     ///
01547     /// @param[in] rect is a rectangular region to use.
01548     /// @param[in] p is a point to analyze to see if it is within the rect.
01549     /// @returns true if p is within rect.
01550     ///
01551     bool Intersect(rect_t rect, point_t p);
01552 
01553     /// Determine if a rectangle intersects another rectangle.
01554     ///
01555     /// @param[in] rect1 is a rectangular region.
01556     /// @param[in] rect2 is a second rectangular region.
01557     /// @returns true if any part of rect2 intersects rect1.
01558     ///
01559     bool Intersect(rect_t rect1, rect_t rect2);
01560 
01561     /// Determine if a rectangle intersects another rectangle and provides
01562     /// the area of intersection.
01563     ///
01564     /// @code
01565     ///     +---------------------+
01566     ///     | rect1               |
01567     ///     |                     |
01568     ///     |          +------------------+
01569     ///     |          | rect3    |       |
01570     ///     |          |          |       |
01571     ///     +---------------------+       |
01572     ///                | rect2            |
01573     ///                +------------------+
01574     /// @endcode
01575     ///
01576     /// @note that the first parameter is a pointer to a rect and the
01577     ///
01578     /// @param[inout] pRect1 is a pointer to a rectangular region, and returns
01579     ///             the area of intersection.
01580     /// @param[in] pRect2 is a pointer to a second rectangular region.
01581     /// @returns true if pRect1 and pRect2 intersect and pRect1 is written with
01582     ///             the rectangle describing the intersection.
01583     ///
01584     bool Intersect(rect_t * pRect1, const rect_t * pRect2);
01585 
01586 
01587     /// Write a command to the display with a word of data.
01588     ///
01589     /// This is a high level command, and may invoke several primitives.
01590     ///
01591     /// @param[in] command is the command to write.
01592     /// @param[in] data is data to be written to the command register.
01593     /// @returns @ref RetCode_t value.
01594     ///
01595     RetCode_t WriteCommandW(uint8_t command, uint16_t data);
01596 
01597 
01598     /// Write a command to the display
01599     ///
01600     /// This is a high level command, and may invoke several primitives.
01601     ///
01602     /// @param[in] command is the command to write.
01603     /// @param[in] data is optional data to be written to the command register
01604     ///     and only occurs if the data is in the range [0 - 0xFF].
01605     /// @returns @ref RetCode_t value.
01606     ///
01607     virtual RetCode_t WriteCommand(unsigned char command, unsigned int data = 0xFFFF);
01608 
01609 
01610     /// Write a data word to the display
01611     ///
01612     /// This is a high level command, and may invoke several primitives.
01613     ///
01614     /// @param[in] data is the data to write.
01615     /// @returns @ref RetCode_t value.
01616     ///
01617     RetCode_t WriteDataW(uint16_t data);
01618 
01619 
01620     /// Write a data byte to the display
01621     ///
01622     /// This is a high level command, and may invoke several primitives.
01623     ///
01624     /// @param[in] data is the data to write.
01625     /// @returns @ref RetCode_t value.
01626     ///
01627     virtual RetCode_t WriteData(unsigned char data);
01628 
01629 
01630     /// Read a command register
01631     ///
01632     /// @param[in] command is the command register to read.
01633     /// @returns the value read from the register.
01634     ///
01635     unsigned char ReadCommand(unsigned char command);
01636 
01637 
01638     /// Read a word from a command register
01639     ///
01640     /// @param[in] command is the command register to read.
01641     /// @returns the value read from the register.
01642     ///
01643     uint16_t ReadCommandW(unsigned char command);
01644 
01645 
01646     /// Read a data byte from the display
01647     ///
01648     /// This is a high level command, and may invoke several primitives.
01649     ///
01650     /// @returns data that was read.
01651     ///
01652     unsigned char ReadData(void);
01653 
01654 
01655     /// Read a word from the display
01656     ///
01657     /// This is a high level command, and may invoke several primitives.
01658     ///
01659     /// @returns data that was read.
01660     ///
01661     uint16_t ReadDataW(void);
01662 
01663 
01664     /// Read the display status
01665     ///
01666     /// This is a high level command, and may invoke several primitives.
01667     ///
01668     /// @returns data that was read.
01669     ///
01670     unsigned char ReadStatus(void);
01671 
01672 
01673     /// get the width in pixels of the currently active font
01674     ///
01675     /// @returns font width in pixels.
01676     ///
01677     dim_t fontwidth(void);
01678 
01679 
01680     /// get the height in pixels of the currently active font
01681     ///
01682     /// @returns font height in pixels.
01683     ///
01684     dim_t fontheight(void);
01685 
01686 
01687     /// get the number of colums based on the currently active font
01688     ///
01689     /// @returns number of columns.
01690     ///
01691     virtual int columns(void);
01692 
01693 
01694     /// get the number of rows based on the currently active font
01695     ///
01696     /// @returns number of rows.
01697     ///
01698     virtual int rows(void);
01699 
01700 
01701     /// get the screen width in pixels
01702     ///
01703     /// @returns screen width in pixels.
01704     ///
01705     virtual dim_t width(void);
01706 
01707 
01708     /// get the screen height in pixels
01709     ///
01710     /// @returns screen height in pixels.
01711     ///
01712     virtual dim_t height(void);
01713 
01714 
01715     /// get the color depth in bits per pixel.
01716     ///
01717     /// @returns 8 or 16 only.
01718     ///
01719     virtual dim_t color_bpp(void);
01720 
01721     /// Set cursor position based on the current font size.
01722     ///
01723     /// @param[in] column is the horizontal position in character positions
01724     /// @param[in] row is the vertical position in character positions
01725     /// @returns @ref point_t value that was the last location.
01726     ///
01727     virtual point_t locate(textloc_t column, textloc_t row);
01728 
01729     /// Enable word-wrap in _puts()
01730     ///
01731     /// @todo Consider adding a method to define the word-delimiters, which could then
01732     ///         include user-selection of characters (e.g. ' ', '-', ';', and so on).
01733     ///
01734     /// @param[in] _wordwrap when true controls _puts() to wrap on word-boundary, which
01735     ///         is delimited by 'space' character or 'cr' 'lf' sequences.
01736     /// @returns previous wordwrap setting to permit an easy restore.
01737     ///
01738     bool SetWordWrap(bool _wordwrap);
01739 
01740 
01741     /// Prepare the controller to write text to the screen by positioning
01742     /// the cursor.
01743     ///
01744     /// @note If the cursor location is not valid (not on-screen), the
01745     ///     cursor is not set and no error is generated.
01746     ///
01747     /// @code
01748     ///     lcd.SetTextCursor(100, 25);
01749     ///     lcd.puts("Hello");
01750     /// @endcode
01751     ///
01752     /// @param[in] x is the horizontal position in pixels (from the left edge)
01753     /// @param[in] y is the vertical position in pixels (from the top edge)
01754     /// @returns @ref point_t value with the prior cursor position.
01755     ///
01756     point_t SetTextCursor(loc_t x, loc_t y);
01757 
01758 
01759     /// Prepare the controller to write text to the screen by positioning
01760     /// the cursor.
01761     ///
01762     /// @note If the cursor location is not valid (not on-screen), the
01763     ///     cursor is not set.
01764     ///
01765     /// @code
01766     ///     point_t point = {100, 25};
01767     ///     lcd.SetTextCursor(point);
01768     ///     lcd.puts("Hello");
01769     /// @endcode
01770     ///
01771     /// @param[in] p is the x:y point in pixels from the top-left.
01772     /// @returns @ref point_t value with the prior cursor position.
01773     ///
01774     point_t SetTextCursor(point_t p);
01775 
01776 
01777     /// Get the current cursor position in pixels.
01778     ///
01779     /// @code
01780     ///     point_t point = GetTextCursor();
01781     ///     if (point.x > 100 && point.y > 150)
01782     ///         //...
01783     /// @endcode
01784     ///
01785     /// @returns cursor position.
01786     ///
01787     point_t GetTextCursor(void);
01788 
01789 
01790     /// Get the current cursor horizontal position in pixels.
01791     ///
01792     /// @returns cursor position horizontal offset.
01793     ///
01794     loc_t GetTextCursor_X(void);
01795 
01796 
01797     /// Get the current cursor vertical position in pixels.
01798     ///
01799     /// @returns cursor position vertical offset.
01800     ///
01801     loc_t GetTextCursor_Y(void);
01802 
01803 
01804     /// Configure additional Cursor Control settings.
01805     ///
01806     /// This API lets you modify other cursor control settings;
01807     /// Cursor visible/hidden, Cursor blink/normal,
01808     /// Cursor I-Beam/underscore/box.
01809     ///
01810     /// @param[in] cursor can be set to NOCURSOR (default), IBEAM,
01811     ///         UNDER, or BLOCK.
01812     /// @param[in] blink can be set to true or false (default false)
01813     /// @returns @ref RetCode_t value.
01814     ///
01815     RetCode_t SetTextCursorControl(cursor_t cursor = NOCURSOR, bool blink = false);
01816 
01817 
01818     /// Select the built-in ISO 8859-X font to use next.
01819     ///
01820     /// Supported fonts: ISO 8859-1, -2, -3, -4
01821     ///
01822     /// @note This only modifies the choice of font from the RA8875 internal
01823     ///     fonts.
01824     ///
01825     /// @param[in] font selects the font for the subsequent text rendering.
01826     ///
01827     /// @note if either hScale or vScale is outside of its permitted range,
01828     ///     the command is not executed.
01829     /// @returns @ref RetCode_t value.
01830     ///
01831     RetCode_t SetTextFont(font_t font = ISO8859_1);
01832 
01833 
01834     /// Translate an (x,y) orientation in the display hardware coordinates
01835     /// into (x,y) coordinates given the current orientation.
01836     ///
01837     /// @param[in] x is the hardware x coordinate
01838     /// @param[in] y is the hardware y coordinate
01839     /// @returns the translated coordinates as a point
01840     ///
01841     point_t TranslateOrientation(loc_t x, loc_t y);
01842 
01843 
01844     /// Gets the display orientation
01845     ///
01846 
01847     /// @returns the basic display orientationas an @ref orientation_t value.
01848     ///
01849     orientation_t GetGraphicsOrientation();
01850 
01851     /// Sets the basic graphics orientation.
01852     ///
01853     /// @note This command does not let you "merge" text onto an existing
01854     ///       image, since it reuses the memory for the new orientation.
01855     ///       Therefore, it is recommended that you issue a cls() prior
01856     ///       to sending text to the screen, or you end with a blended
01857     ///       image that is probably not as intended.
01858     ///
01859     /// @note This command only operates on the RA8875 internal fonts.
01860     ///
01861     /// @note more sophisticated control of drawings with rotated text may
01862     ///       be achieved by direct control of the registers. See the RA8875
01863     ///       datasheet.
01864     ///
01865     /// @code
01866     ///     lcd.cls();
01867     ///     lcd.SetGraphicsOrientation(RA8875::normal);
01868     ///     lcd.puts(30,30, "Normal Landscape");
01869     ///     wait_us(2500000);
01870     ///
01871     ///     lcd.cls();
01872     ///     lcd.SetGraphicsOrientation(RA8875::rotate_90);
01873     ///     lcd.puts(30,30, "Rotated 90 Text\r\n");
01874     ///     wait_us(2500000);
01875     ///
01876     ///     lcd.cls();
01877     ///     lcd.SetGraphicsOrientation(RA8875::rotate_180);
01878     ///     lcd.puts(30,30, "Rotated 180 Text\r\n");
01879     ///     wait_us(2500000);
01880     ///
01881     ///     lcd.cls();
01882     ///     lcd.SetGraphicsOrientation(RA8875::rotate_270);
01883     ///     lcd.puts(30,30, "Rotated 270 Text\r\n");
01884     ///     wait_us(2500000);
01885     /// @endcode
01886     ///
01887     /// @param[in] angle defaults to normal, but can be rotated
01888     ///         - normal | rotate_0
01889     ///         - rotate_90 (clockwise)
01890     ///         - rotate_180
01891     ///         - rotate_270 (clockwise)
01892     /// @returns @ref RetCode_t value.
01893     ///
01894     orientation_t SetGraphicsOrientation(orientation_t angle = normal);
01895 
01896     /// Sets the text orientation - Normal or 90 degree.
01897     ///
01898     /// @attention This command is experimental.
01899     ///
01900     /// @note This command does not let you "merge" text onto an existing
01901     ///       image, since it reuses the memory for the new orientation.
01902     ///       Therefore, it is recommended that you issue a cls() prior
01903     ///       to sending text to the screen, or you end with a blended
01904     ///       image that is probably not as intended.
01905     ///
01906     /// @note This command only operates on the RA8875 internal fonts.
01907     ///
01908     /// @code
01909     ///     lcd.cls();
01910     ///     lcd.SetTextFontOrientation(RA8875::normal);
01911     ///     lcd.puts(30,30, "Normal Landscape");
01912     ///     wait_us(2500000);
01913     ///
01914     ///     lcd.cls();
01915     ///     lcd.SetTextFontOrientation(RA8875::rotate_90);
01916     ///     lcd.puts(30,30, "Rotated 90 Text\r\n");
01917     ///     wait_us(2500000);
01918     ///
01919     ///     lcd.cls();
01920     ///     lcd.SetTextFontOrientation(RA8875::rotate_180);
01921     ///     lcd.puts(30,30, "Rotated 180 Text\r\n");
01922     ///     wait_us(2500000);
01923     ///
01924     ///     lcd.cls();
01925     ///     lcd.SetTextFontOrientation(RA8875::rotate_270);
01926     ///     lcd.puts(30,30, "Rotated 270 Text\r\n");
01927     ///     wait_us(2500000);
01928     /// @endcode
01929     ///
01930     /// @param[in] angle defaults to normal, but can be rotated
01931     ///         - normal | rotate_0
01932     ///         - rotate_90 (sets the 90 degree display bit)
01933     ///         - rotate_180
01934     ///         - rotate_270 (sets the 90 degree display bit)
01935     /// @returns @ref RetCode_t value.
01936     ///
01937     orientation_t SetTextFontOrientation(orientation_t angle);
01938 
01939 
01940     /// Control the font behavior.
01941     ///
01942     /// This command lets you make several modifications to any text that
01943     /// will be written to the screen.
01944     ///
01945     /// @note This command only operates on the RA8875 internal fonts.
01946     ///
01947     /// Options can be combined:
01948     /// Default:
01949     /// @li Full alignment disabled,
01950     /// @li Font with Background color,
01951     /// @li Font in normal orientiation, or rotated 90, 180, or 270 clockwise,
01952     /// @li Horizontal scale x 1, 2, 3, or 4
01953     /// @li Vertical scale x 1, 2, 3, or 4
01954     ///
01955     /// @note alignment is a special mode for the fonts, when mixing half and
01956     ///     full fonts on one presentation. 'align_full' starts each full
01957     ///     character on an even alignment. See section 7-4-7 of the RA8875
01958     ///     specification.
01959     ///
01960     /// @param[in] fillit defaults to FILL, but can be NOFILL
01961     /// @param[in] hScale defaults to 1, but can be 1, 2, 3, or 4,
01962     ///     and scales the font size by this amount.
01963     /// @param[in] vScale defaults to 1, but can be 1, 2, 3, or 4,
01964     ///     and scales the font size by this amount.
01965     /// @param[in] alignment defaults to align_none, but can be
01966     ///     align_full.
01967     ///
01968     /// @note if either hScale or vScale is outside of its permitted range,
01969     ///     the command is not executed.
01970     /// @returns @ref RetCode_t value.
01971     ///
01972     RetCode_t SetTextFontControl(fill_t fillit = FILL,
01973                                  HorizontalScale hScale = 1,
01974                                  VerticalScale vScale = 1,
01975                                  alignment_t alignment = align_none);
01976 
01977 
01978     /// Control the font - to background fill or "ink-only"
01979     ///
01980     /// This command configures the font presentation to write
01981     /// only the font "ink", or to write the ink and also overwrite
01982     /// the background with the background color.
01983     ///
01984     /// @note This command applies only to the internal fonts not to user fonts
01985     ///         e.g. SelectUserFont(...) out of concerns for performance.
01986     ///         User fonts always write the character block as a continuous
01987     ///         stream (for efficiency). This precludes first reading the
01988     ///         character block before writing it. Alternately, addressing
01989     ///         individual pixels would also be a significant performance
01990     ///         impact.
01991     ///
01992     /// @param[in] fillit set to FILL will also write the background,
01993     ///                 and set to NOFILL will write only the ink.
01994     /// @returns the previous fill setting permitting easy restore.
01995     ///
01996     fill_t SetTextFontFill(fill_t fillit);
01997 
01998     /// Control the font size of the RA8875 rendered fonts.
01999     ///
02000     /// This command lets you set the font enlargement for both horizontal
02001     /// and vertical, independent of the rotation, background, and
02002     /// alignment. See @ref SetTextFontControl.
02003     ///
02004     /// @note This command operates on the RA8875 internal fonts.
02005     /// @note This command also operates on the selected soft font.
02006     ///
02007     /// @param[in] hScale defaults to 1, but can be 1, 2, 3, or 4,
02008     ///     and scales the font size by this amount.
02009     /// @param[in] vScale is an optional parameter that defaults to the hScale value,
02010     ///     but can be 1, 2, 3, or 4, and scales the font size by this amount.
02011     ///
02012     /// @code
02013     ///     lcd.SetTextFontSize(2);     // Set the font to 2x normal size
02014     ///     lcd.puts("Two times");
02015     ///     lcd.SetTextFontSize(2,3);   // Set the font to 2x Width and 3x Height
02016     ///     lcd.puts("2*2 3*h");
02017     ///     lcd.SetTextFontSize();      // Restore to normal size in both dimensions
02018     ///     lcd.puts("normal");
02019     ///     lcd.SelectUserFont(BPG_Arial63x63); // Large user font
02020     ///     lcd.puts("B63x63");                 // Show a sample
02021     ///     lcd.SetTextFontSize(2);             // Now twice as big
02022     ///     lcd.puts("x2");                     // Show a sample
02023     /// @endcode
02024     ///
02025     /// @note if either hScale or vScale is outside of its permitted range,
02026     ///     the command is not executed.
02027     /// @returns @ref RetCode_t value.
02028     ///
02029     RetCode_t SetTextFontSize(HorizontalScale hScale = 1, VerticalScale vScale = -1);
02030 
02031 
02032     /// Get the text font size of the RA8875 internal fonts.
02033     ///
02034     /// This command lets you retrieve the current settings for the font
02035     /// horizontal and vertical scale factors. The return value is
02036     /// one of the scale factors 1, 2, 3, or 4.
02037     ///
02038     /// @param[out] hScale is a pointer to memory where the horizontal scale factor
02039     ///     will be written. If the pointer is null, that item will be ignored.
02040     /// @param[out] vScale is a pointer to memory where the vertical scale factor
02041     ///     will be written. If the pointer is null, that item will be ignored.
02042     /// @returns @ref RetCode_t value.
02043     ///
02044     RetCode_t GetTextFontSize(HorizontalScale * hScale, VerticalScale * vScale);
02045 
02046     /// Get the width of a string (or character) based on the current font.
02047     ///
02048     /// @param[in] text is a pointer to a text string to evaluate.
02049     /// @param[in] charOnly defaults to false, which computes over the whole string.
02050     /// @returns width in pixels, given the selected font and scale.
02051     ///
02052     dim_t GetTextWidth(const char* text, bool charOnly = false);
02053 
02054     /// Get the rectange of a string (or character) based on the current font.
02055     ///
02056     /// @note This computes the rect without considering wordwrap. It will
02057     ///     treat <cr> as a return to left margin and <lf> as a vertical
02058     ///     advance. It will also use the currently selected font metrics,
02059     ///     which includes proportional fonts.
02060     ///
02061     /// @param[in] text is a pointer to a text string to evaluate.
02062     /// @param[in] charOnly defaults to false, which computes over the whole string.
02063     /// @returns rectangle that holds this text, as a rect_t
02064     ///
02065     rect_t GetTextRect(const char* text, bool charOnly = false);
02066 
02067     /// put a character on the screen.
02068     ///
02069     /// @param[in] c is the character.
02070     /// @returns the character, or EOF if there is an error.
02071     ///
02072     virtual int _putc(int c);
02073 
02074 
02075     /// Write string of text to the display
02076     ///
02077     /// @code
02078     ///     lcd.puts("Test STring");
02079     /// @endcode
02080     ///
02081     /// @param[in] string is the null terminated string to send to the display.
02082     ///
02083     void puts(const char * string);
02084 
02085 
02086     /// Write string of text to the display at the specified location.
02087     ///
02088     /// @code
02089     ///     const point_t pt = {10, 25};
02090     ///     lcd.puts(pt, "Test STring");
02091     /// @endcode
02092     ///
02093     /// @param[in] pt is the x,y position as a point
02094     /// @param[in] string is the null terminated string to send to the display.
02095     ///
02096     void puts(point_t pt, const char * string);
02097 
02098     /// Write string of text to the display at the specified location.
02099     ///
02100     /// @code
02101     ///     lcd.puts(10,25, "Test STring");
02102     /// @endcode
02103     ///
02104     /// @param[in] x is the horizontal position in pixels (from the left edge)
02105     /// @param[in] y is the vertical position in pixels (from the top edge)
02106     /// @param[in] string is the null terminated string to send to the display.
02107     ///
02108     void puts(loc_t x, loc_t y, const char * string);
02109 
02110 
02111     /// Prepare the controller to write binary data to the screen by positioning
02112     /// the memory cursor.
02113     ///
02114     /// @param[in] x is the horizontal position in pixels (from the left edge)
02115     /// @param[in] y is the vertical position in pixels (from the top edge)
02116     /// @returns @ref RetCode_t value.
02117     ///
02118     virtual RetCode_t SetGraphicsCursor(loc_t x, loc_t y);
02119 
02120     /// Prepare the controller to write binary data to the screen by positioning
02121     /// the memory cursor.
02122     ///
02123     /// @param[in] p is the point representing the cursor position to set
02124     /// @returns @ref RetCode_t value.
02125     ///
02126     virtual RetCode_t SetGraphicsCursor(point_t p);
02127 
02128     /// Read the current graphics cursor position as a point.
02129     ///
02130     /// @returns the graphics cursor as a point.
02131     ///
02132     virtual point_t GetGraphicsCursor(void);
02133 
02134 
02135     /// Prepare the controller to read binary data from the screen by positioning
02136     /// the memory read cursor.
02137     ///
02138     /// @param[in] x is the horizontal position in pixels (from the left edge)
02139     /// @param[in] y is the vertical position in pixels (from the top edge)
02140     /// @returns @ref RetCode_t value.
02141     ///
02142     virtual RetCode_t SetGraphicsCursorRead(loc_t x, loc_t y);
02143 
02144 
02145     /// Set the window, constraining where items are written to the screen.
02146     ///
02147     /// After setting the window, text and graphics are constrained to this
02148     /// window. Text will wrap from the right edge back to the left and down
02149     /// one row and from the bottom to the top. Graphics drawing will be clipped
02150     /// at the edge of the window.
02151     ///
02152     /// @note If the initial text write is outside the window, it will be shown
02153     /// where the cursor position it. Once the write hits the right edge of
02154     /// the defined window, it will then wrap back to the left edge. Once it
02155     /// hits the bottom, it wraps to the top of the window. For this reason,
02156     /// it is common to set the text cursor to the window.
02157     ///
02158     /// @code
02159     ///     rect_t r = {10,10, 90,90};
02160     ///     r = lcd.SetWindow(r);
02161     ///     lcd.SetTextCursor(r.p1.x, r.p1.y);
02162     ///     lcd.puts("012345678901234567890123456789012345678901234567890");
02163     ///     lcd.SetWindow(r); restore to previous window setting
02164     /// @endcode
02165     ///
02166     /// @param[in] r is the rect_t used to set the window.
02167     /// @returns the previous window definition.
02168     ///
02169     virtual rect_t SetWindow(rect_t r);
02170 
02171     /// Set the window, constraining where items are written to the screen.
02172     ///
02173     /// After setting the window, text and graphics are constrained to this
02174     /// window. Text will wrap from the right edge back to the left and down
02175     /// one row and from the bottom to the top. Graphics drawing will be clipped
02176     /// at the edge of the window.
02177     ///
02178     /// @note if no parameters are provided, it restores the window to full screen.
02179     ///
02180     /// @note If the initial text write is outside the window, it will be shown
02181     /// where the cursor positions it. Once the write hits the right edge of
02182     /// the defined window, it will then wrap back to the left edge. Once it
02183     /// hits the bottom, it wraps to the top of the window. For this reason,
02184     /// it is common to set the text cursor to the window.
02185     ///
02186     /// @code
02187     ///     lcd.SetWindow(10,10, 80,80);
02188     ///     lcd.SetTextCursor(10,10);
02189     ///     lcd.puts("012345678901234567890123456789012345678901234567890");
02190     ///     lcd.SetWindow(); restore to full screen
02191     /// @endcode
02192     ///
02193     /// @param[in] x1 is the left edge in pixels.
02194     /// @param[in] y1 is the top edge in pixels.
02195     /// @param[in] x2 is the right edge in pixels.
02196     /// @param[in] y2 is the bottom edge in pixels.
02197     /// @returns the previous window definition.
02198     ///
02199     virtual rect_t SetWindow(loc_t x1 = 0, loc_t y1 = 0, loc_t x2 = (loc_t)-1, loc_t y2 = (loc_t)-1);
02200 
02201     /// Get the current window setting, which constrains what is written to the screen.
02202     ///
02203     /// @returns the current window definition.
02204     ///
02205     virtual rect_t GetWindow();
02206 
02207 
02208     /// Clear either the specified layer, or the active layer.
02209     ///
02210     /// The behavior is to clear the whole screen for the specified
02211     /// layer. When not specified, the active drawing layer is cleared.
02212     /// This command can also be used to specifically clear either,
02213     /// or both layers. See @ref clsw().
02214     ///
02215     /// @code
02216     ///     lcd.cls();
02217     /// @endcode
02218     ///
02219     /// @param[in] layers is optional. If not provided, the active layer
02220     ///     is cleared. If bit 0 is set, layer 0 is cleared, if bit
02221     ///     1 is set, layer 1 is cleared. If both are set, both layers
02222     ///     are cleared. Any other value does not cause an action.
02223     ///
02224     /// @returns @ref RetCode_t value.
02225     ///
02226     virtual RetCode_t cls(uint16_t layers = 0);
02227 
02228 
02229     /// Clear the screen, or clear only the active window.
02230     ///
02231     /// The default behavior is to clear the whole screen. With the optional
02232     /// parameter, the action can be restricted to the active window, which
02233     /// can be set with the See @ref SetWindow method.
02234     ///
02235     /// @code
02236     ///     lcd.SetWindow(20,20, 40,10);
02237     ///     lcd.clsw();
02238     /// @endcode
02239     ///
02240     /// @param[in] region is an optional parameter that defaults to FULLWINDOW
02241     ///         or may be set to ACTIVEWINDOW.
02242     /// @returns @ref RetCode_t value.
02243     ///
02244     RetCode_t clsw(RA8875::Region_t region = FULLWINDOW);
02245 
02246 
02247     /// Set the background color.
02248     ///
02249     /// @param[in] color is expressed in 16-bit format.
02250     /// @returns @ref color_t value as the previous background color.
02251     ///
02252     virtual color_t background(color_t color);
02253 
02254 
02255     /// Set the background color.
02256     ///
02257     /// @param[in] r is the red element of the color.
02258     /// @param[in] g is the green element of the color.
02259     /// @param[in] b is the blue element of the color.
02260     /// @returns @ref color_t value as the previous background color.
02261     ///
02262     virtual color_t background(unsigned char r, unsigned char g, unsigned char b);
02263 
02264 
02265     /// Set the foreground color.
02266     ///
02267     /// @param[in] color is expressed in 16-bit format.
02268     /// @returns @ref color_t value as the previous background color.
02269     ///
02270     virtual color_t foreground(color_t color);
02271 
02272 
02273     /// Set the foreground color.
02274     ///
02275     /// @param[in] r is the red element of the color.
02276     /// @param[in] g is the green element of the color.
02277     /// @param[in] b is the blue element of the color.
02278     /// @returns @ref color_t value as the previous background color.
02279     ///
02280     virtual color_t foreground(unsigned char r, unsigned char g, unsigned char b);
02281 
02282 
02283     /// Get the current foreground color value.
02284     ///
02285     /// @returns the current foreground color as @ref color_t.
02286     ///
02287     color_t GetForeColor(void);
02288 
02289 
02290     /// Get the current background color value.
02291     ///
02292     /// @returns the current background color as @ref color_t.
02293     ///
02294     color_t GetBackColor(void);
02295 
02296 
02297     /// Draw a pixel in the specified color.
02298     ///
02299     /// @note Unlike many other operations, this does not
02300     ///         set the forecolor!
02301     ///
02302     /// @param[in] p is the point_t defining the location.
02303     /// @param[in] color is expressed in 16-bit format.
02304     /// @returns @ref RetCode_t value.
02305     ///
02306     virtual RetCode_t pixel(point_t p, color_t color);
02307 
02308 
02309     /// Draw a pixel in the current foreground color.
02310     ///
02311     /// @param[in] p is the point_t defining the location.
02312     /// @returns @ref RetCode_t value.
02313     ///
02314     virtual RetCode_t pixel(point_t p);
02315 
02316 
02317     /// Draw a pixel in the specified color.
02318     ///
02319     /// @note Unlike many other operations, this does not
02320     ///         set the forecolor!
02321     ///
02322     /// @param[in] x is the horizontal offset to this pixel.
02323     /// @param[in] y is the vertical offset to this pixel.
02324     /// @param[in] color defines the color for the pixel.
02325     /// @returns @ref RetCode_t value.
02326     ///
02327     virtual RetCode_t pixel(loc_t x, loc_t y, color_t color);
02328 
02329 
02330     /// Draw a pixel in the current foreground color.
02331     ///
02332     /// @param[in] x is the horizontal offset to this pixel.
02333     /// @param[in] y is the veritical offset to this pixel.
02334     /// @returns @ref RetCode_t value.
02335     ///
02336     virtual RetCode_t pixel(loc_t x, loc_t y);
02337 
02338 
02339     /// Get a pixel from the display.
02340     ///
02341     /// @param[in] x is the horizontal offset to this pixel.
02342     /// @param[in] y is the vertical offset to this pixel.
02343     /// @returns the pixel. See @ref color_t
02344     ///
02345     virtual color_t getPixel(loc_t x, loc_t y);
02346 
02347 
02348     /// Write an RGB565 stream of pixels to the display.
02349     ///
02350     /// @param[in] p is a pointer to a color_t array to write.
02351     /// @param[in] count is the number of pixels to write.
02352     /// @param[in] x is the horizontal position on the display.
02353     /// @param[in] y is the vertical position on the display.
02354     /// @returns @ref RetCode_t value.
02355     ///
02356     virtual RetCode_t pixelStream(color_t * p, uint32_t count, loc_t x, loc_t y);
02357 
02358 
02359     /// Get a stream of pixels from the display.
02360     ///
02361     /// @param[in] p is a pointer to a color_t array to accept the stream.
02362     /// @param[in] count is the number of pixels to read.
02363     /// @param[in] x is the horizontal offset to this pixel.
02364     /// @param[in] y is the vertical offset to this pixel.
02365     /// @returns @ref RetCode_t value.
02366     ///
02367     virtual RetCode_t getPixelStream(color_t * p, uint32_t count, loc_t x, loc_t y);
02368 
02369 
02370     /// Write a boolean stream to the display.
02371     ///
02372     /// This takes a bit stream in memory and using the current color settings
02373     /// it will stream it to the display. Along the way, each bit is translated
02374     /// to either the foreground or background color value and then that pixel
02375     /// is pushed onward.
02376     ///
02377     /// This is similar, but different, to the @ref pixelStream API, which is
02378     /// given a stream of color values.
02379     ///
02380     /// This is most often used for Soft Fonts, and for that reason, this method
02381     /// will scale the presentation based on the selected font size.
02382     /// See @ref SetTextFontSize, So, users may want to SetTextFontSize(1) for
02383     /// 1:1 scaling.
02384     ///
02385     /// @param[in] x is the horizontal position on the display.
02386     /// @param[in] y is the vertical position on the display.
02387     /// @param[in] w is the width of the rectangular region to fill.
02388     /// @param[in] h is the height of the rectangular region to fill.
02389     /// @param[in] boolStream is the inline memory image from which to extract
02390     ///         the bitstream.
02391     /// @returns @ref RetCode_t value.
02392     ///
02393     virtual RetCode_t booleanStream(loc_t x, loc_t y, dim_t w, dim_t h, const uint8_t * boolStream);
02394 
02395     /// Draw a line in the specified color
02396     ///
02397     /// @note As a side effect, this changes the current
02398     ///     foreground color for subsequent operations.
02399     ///
02400     /// @param[in] p1 is the point to start the line.
02401     /// @param[in] p2 is the point to end the line.
02402     /// @param[in] color defines the foreground color.
02403     /// @returns @ref RetCode_t value.
02404     ///
02405     RetCode_t line(point_t p1, point_t p2, color_t color);
02406 
02407 
02408     /// Draw a line
02409     ///
02410     /// Draws a line using the foreground color setting.
02411     ///
02412     /// @param[in] p1 is the point to start the line.
02413     /// @param[in] p2 is the point to end the line.
02414     /// @returns @ref RetCode_t value.
02415     ///
02416     RetCode_t line(point_t p1, point_t p2);
02417 
02418 
02419     /// Draw a line in the specified color
02420     ///
02421     /// @note As a side effect, this changes the current
02422     ///     foreground color for subsequent operations.
02423     ///
02424     /// @param[in] x1 is the horizontal start of the line.
02425     /// @param[in] y1 is the vertical start of the line.
02426     /// @param[in] x2 is the horizontal end of the line.
02427     /// @param[in] y2 is the vertical end of the line.
02428     /// @param[in] color defines the foreground color.
02429     /// @returns @ref RetCode_t value.
02430     ///
02431     RetCode_t line(loc_t x1, loc_t y1, loc_t x2, loc_t y2, color_t color);
02432 
02433 
02434     /// Draw a line
02435     ///
02436     /// Draws a line using the foreground color setting.
02437     ///
02438     /// @param[in] x1 is the horizontal start of the line.
02439     /// @param[in] y1 is the vertical start of the line.
02440     /// @param[in] x2 is the horizontal end of the line.
02441     /// @param[in] y2 is the vertical end of the line.
02442     /// @returns @ref RetCode_t value.
02443     ///
02444     RetCode_t line(loc_t x1, loc_t y1, loc_t x2, loc_t y2);
02445 
02446 
02447     /// Draw a thick line
02448     ///
02449     /// Draw a line of a specified thickness and color.
02450     ///
02451     /// In order to draw a thick line, this draws filled circles using
02452     /// and then draws the 'body' of the thick line using filled triangles. This
02453     /// method makes it significantly faster than in prior versions.
02454     ///
02455     /// An older version of this library used Bresenham's algorithm to move the
02456     /// center point of the circle along the line. As a result, this was much
02457     /// slower than drawing a 1-pixel line which uses the hardware line drawing
02458     /// algorithm.
02459     ///
02460     /// Drawing multiple parallel lines to create a thick line is faster,
02461     /// however the line drawing was not guaranteed to fill every pixel
02462     /// on the diagonals.
02463     ///
02464     /// @param[in] p1 is the point to start the line.
02465     /// @param[in] p2 is the point to end the line.
02466     /// @param[in] thickness is the line thickness.
02467     /// @param[in] color defines the foreground color.
02468     /// @returns @ref RetCode_t value.
02469     ///
02470     RetCode_t ThickLine(point_t p1, point_t p2, dim_t thickness, color_t color);
02471 
02472 
02473     /// Set the end-cap for ThickLines - square (default) or rounded.
02474     ///
02475     /// @param[in] roundCap when true causes the end-cap to be drawn as a filled circle.
02476     /// @returns the previous end-cap setting, permitting easy restore.
02477     ///
02478     bool SetEndCap(bool roundCap);
02479 
02480 
02481     /// Draw a rectangle in the specified color
02482     ///
02483     /// @note As a side effect, this changes the current
02484     ///     foreground color for subsequent operations.
02485     ///
02486     /// @param[in] rect defines the rectangle.
02487     /// @param[in] color defines the foreground color.
02488     /// @param[in] fillit is optional to FILL the rectangle. default is NOFILL.
02489     /// @returns @ref RetCode_t value.
02490     ///
02491     RetCode_t rect(rect_t rect, color_t color, fill_t fillit = NOFILL);
02492 
02493 
02494     /// Draw a filled rectangle in the specified color
02495     ///
02496     /// @note As a side effect, this changes the current
02497     ///     foreground color for subsequent operations.
02498     ///
02499     /// @param[in] rect defines the rectangle.
02500     /// @param[in] color defines the foreground color.
02501     /// @param[in] fillit is optional to FILL the rectangle. default is NOFILL.
02502     /// @returns @ref RetCode_t value.
02503     ///
02504     RetCode_t fillrect(rect_t rect, color_t color, fill_t fillit = FILL);
02505 
02506 
02507     /// Draw a rectangle in the specified color
02508     ///
02509     /// @note As a side effect, this changes the current
02510     ///     foreground color for subsequent operations.
02511     ///
02512     /// @param[in] x1 is the horizontal start of the line.
02513     /// @param[in] y1 is the vertical start of the line.
02514     /// @param[in] x2 is the horizontal end of the line.
02515     /// @param[in] y2 is the vertical end of the line.
02516     /// @param[in] color defines the foreground color.
02517     /// @param[in] fillit is optional to FILL the rectangle. default is FILL.
02518     /// @returns @ref RetCode_t value.
02519     ///
02520     RetCode_t rect(loc_t x1, loc_t y1, loc_t x2, loc_t y2,
02521                    color_t color, fill_t fillit = NOFILL);
02522 
02523 
02524     /// Draw a filled rectangle in the specified color
02525     ///
02526     /// @note As a side effect, this changes the current
02527     ///     foreground color for subsequent operations.
02528     ///
02529     /// @param[in] x1 is the horizontal start of the line.
02530     /// @param[in] y1 is the vertical start of the line.
02531     /// @param[in] x2 is the horizontal end of the line.
02532     /// @param[in] y2 is the vertical end of the line.
02533     /// @param[in] color defines the foreground color.
02534     /// @param[in] fillit is optional to NOFILL the rectangle. default is FILL.
02535     /// @returns @ref RetCode_t value.
02536     ///
02537     virtual RetCode_t fillrect(loc_t x1, loc_t y1, loc_t x2, loc_t y2,
02538                                color_t color, fill_t fillit = FILL);
02539 
02540 
02541     /// Draw a rectangle
02542     ///
02543     /// Draws a rectangle using the foreground color setting.
02544     ///
02545     /// @param[in] x1 is the horizontal start of the line.
02546     /// @param[in] y1 is the vertical start of the line.
02547     /// @param[in] x2 is the horizontal end of the line.
02548     /// @param[in] y2 is the vertical end of the line.
02549     /// @param[in] fillit is optional to FILL the rectangle. default is NOFILL.
02550     /// @returns @ref RetCode_t value.
02551     ///
02552     RetCode_t rect(loc_t x1, loc_t y1, loc_t x2, loc_t y2,
02553                    fill_t fillit = NOFILL);
02554 
02555 
02556     /// Draw a filled rectangle with rounded corners using the specified color.
02557     ///
02558     /// This draws a rounded rectangle. A numbers of checks are made on the values,
02559     /// and it could reduce this to drawing a line (if either x1 == x2, or y1 == y2),
02560     /// or a single point (x1 == x2 && y1 == y2). If the radius parameters are
02561     /// > 1/2 the length of that side (width or height), an error value is returned.
02562     ///
02563     /// @note As a side effect, this changes the current
02564     ///     foreground color for subsequent operations.
02565     ///
02566     /// @param[in] x1 is the horizontal start of the line and must be <= x2.
02567     /// @param[in] y1 is the vertical start of the line and must be <= y2.
02568     /// @param[in] x2 is the horizontal end of the line and must be >= x1.
02569     /// @param[in] y2 is the vertical end of the line and must be >= y1.
02570     /// @param[in] radius1 defines the horizontal radius of the curved corner. Take care
02571     ///         that this value < 1/2 the width of the rectangle, or bad_parameter
02572     ///         is returned.
02573     /// @param[in] radius2 defines the vertical radius of the curved corner. Take care
02574     ///         that this value < 1/2 the height of the rectangle, or bad_parameter
02575     ///         is returned.
02576     /// @param[in] color defines the foreground color.
02577     /// @param[in] fillit is optional to FILL the rectangle. default is NOFILL.
02578     /// @returns @ref RetCode_t value.
02579     ///
02580     RetCode_t fillroundrect(loc_t x1, loc_t y1, loc_t x2, loc_t y2,
02581                             dim_t radius1, dim_t radius2, color_t color, fill_t fillit = FILL);
02582 
02583 
02584     /// Draw a filled rectangle with rounded corners using the specified color.
02585     ///
02586     /// This draws a rounded rectangle. A numbers of checks are made on the values,
02587     /// and it could reduce this to drawing a line (if either x1 == x2, or y1 == y2),
02588     /// or a single point (x1 == x2 && y1 == y2). If the radius parameters are
02589     /// > 1/2 the length of that side (width or height), an error value is returned.
02590     ///
02591     /// @note As a side effect, this changes the current
02592     ///     foreground color for subsequent operations.
02593     ///
02594     /// @param[in] r is the rectangle to draw.
02595     /// @param[in] radius1 defines the horizontal radius of the curved corner. Take care
02596     ///         that this value < 1/2 the width of the rectangle, or bad_parameter
02597     ///         is returned.
02598     /// @param[in] radius2 defines the vertical radius of the curved corner. Take care
02599     ///         that this value < 1/2 the height of the rectangle, or bad_parameter
02600     ///         is returned.
02601     /// @param[in] color defines the foreground color.
02602     /// @param[in] fillit is optional to FILL the rectangle. default is NOFILL.
02603     /// @returns @ref RetCode_t value.
02604     ///
02605     RetCode_t fillroundrect(rect_t r,
02606                             dim_t radius1, dim_t radius2, color_t color, fill_t fillit = FILL);
02607 
02608 
02609     /// Draw a rectangle with rounded corners using the specified color.
02610     ///
02611     /// This draws a rounded rectangle. A numbers of checks are made on the values,
02612     /// and it could reduce this to drawing a line (if either x1 == x2, or y1 == y2),
02613     /// or a single point (x1 == x2 && y1 == y2). If the radius parameters are
02614     /// > 1/2 the length of that side (width or height), an error value is returned.
02615     ///
02616     /// @note As a side effect, this changes the current
02617     ///     foreground color for subsequent operations.
02618     ///
02619     /// @param[in] r is the rectangle to draw.
02620     /// @param[in] radius1 defines the horizontal radius of the curved corner. Take care
02621     ///         that this value < 1/2 the width of the rectangle, or bad_parameter
02622     ///         is returned.
02623     /// @param[in] radius2 defines the vertical radius of the curved corner. Take care
02624     ///         that this value < 1/2 the height of the rectangle, or bad_parameter
02625     ///         is returned.
02626     /// @param[in] color defines the foreground color.
02627     /// @param[in] fillit is optional to FILL the rectangle. default is NOFILL.
02628     /// @returns @ref RetCode_t value.
02629     ///
02630     RetCode_t roundrect(rect_t r,
02631                         dim_t radius1, dim_t radius2, color_t color, fill_t fillit = NOFILL);
02632 
02633 
02634     /// Draw a rectangle with rounded corners using the specified color.
02635     ///
02636     /// This draws a rounded rectangle. A numbers of checks are made on the values,
02637     /// and it could reduce this to drawing a line (if either x1 == x2, or y1 == y2),
02638     /// or a single point (x1 == x2 && y1 == y2). If the radius parameters are
02639     /// > 1/2 the length of that side (width or height), an error value is returned.
02640     ///
02641     /// @note As a side effect, this changes the current
02642     ///     foreground color for subsequent operations.
02643     ///
02644     /// @param[in] x1 is the horizontal start of the line and must be <= x2.
02645     /// @param[in] y1 is the vertical start of the line and must be <= y2.
02646     /// @param[in] x2 is the horizontal end of the line and must be >= x1.
02647     /// @param[in] y2 is the vertical end of the line and must be >= y1.
02648     /// @param[in] radius1 defines the horizontal radius of the curved corner. Take care
02649     ///         that this value < 1/2 the width of the rectangle, or bad_parameter
02650     ///         is returned.
02651     /// @param[in] radius2 defines the vertical radius of the curved corner. Take care
02652     ///         that this value < 1/2 the height of the rectangle, or bad_parameter
02653     ///         is returned.
02654     /// @param[in] color defines the foreground color.
02655     /// @param[in] fillit is optional to FILL the rectangle. default is NOFILL.
02656     /// @returns @ref RetCode_t value.
02657     ///
02658     RetCode_t roundrect(loc_t x1, loc_t y1, loc_t x2, loc_t y2,
02659                         dim_t radius1, dim_t radius2, color_t color, fill_t fillit = NOFILL);
02660 
02661 
02662     /// Draw a rectangle with rounded corners.
02663     ///
02664     /// This draws a rounded rectangle. A numbers of checks are made on the values,
02665     /// and it could reduce this to drawing a line (if either x1 == x2, or y1 == y2),
02666     /// or a single point (x1 == x2 && y1 == y2). If the radius parameters are
02667     /// > 1/2 the length of that side (width or height), an error value is returned.
02668     ///
02669     /// @param[in] x1 is the horizontal start of the line and must be <= x2.
02670     /// @param[in] y1 is the vertical start of the line and must be <= y2.
02671     /// @param[in] x2 is the horizontal end of the line and must be >= x1.
02672     /// @param[in] y2 is the vertical end of the line and must be >= y1.
02673     /// @param[in] radius1 defines the horizontal radius of the curved corner. Take care
02674     ///         that this value < 1/2 the width of the rectangle, or bad_parameter
02675     ///         is returned.
02676     /// @param[in] radius2 defines the vertical radius of the curved corner. Take care
02677     ///         that this value < 1/2 the height of the rectangle, or bad_parameter
02678     ///         is returned.
02679     /// @param[in] fillit is optional to FILL the rectangle. default is NOFILL.
02680     /// @returns @ref RetCode_t value.
02681     ///
02682     RetCode_t roundrect(loc_t x1, loc_t y1, loc_t x2, loc_t y2,
02683                         dim_t radius1, dim_t radius2, fill_t fillit = NOFILL);
02684 
02685 
02686     /// Draw a triangle in the specified color.
02687     ///
02688     /// @note As a side effect, this changes the current
02689     ///     foreground color for subsequent operations.
02690     ///
02691     /// @param[in] p1 is point 1.
02692     /// @param[in] p2 is point 2.
02693     /// @param[in] p3 is point 3.
02694     /// @param[in] color defines the foreground color.
02695     /// @param[in] fillit is optional to FILL the rectangle. default is NOFILL.
02696     /// @returns @ref RetCode_t value.
02697     ///
02698     RetCode_t filltriangle(point_t p1, point_t p2, point_t p3, color_t color, fill_t fillit = FILL);
02699 
02700     /// Draw a triangle in the specified color.
02701     ///
02702     /// @note As a side effect, this changes the current
02703     ///     foreground color for subsequent operations.
02704     ///
02705     /// @param[in] p1 is point 1.
02706     /// @param[in] p2 is point 2.
02707     /// @param[in] p3 is point 3.
02708     /// @param[in] color defines the foreground color.
02709     /// @param[in] fillit is optional to FILL the rectangle. default is NOFILL.
02710     /// @returns @ref RetCode_t value.
02711     ///
02712     RetCode_t triangle(point_t p1, point_t p2, point_t p3, color_t color, fill_t fillit = NOFILL);
02713 
02714     /// Draw a triangle in the specified color.
02715     ///
02716     /// @note As a side effect, this changes the current
02717     ///     foreground color for subsequent operations.
02718     ///
02719     /// @param[in] x1 is the horizontal for point 1.
02720     /// @param[in] y1 is the vertical for point 1.
02721     /// @param[in] x2 is the horizontal for point 2.
02722     /// @param[in] y2 is the vertical for point 2.
02723     /// @param[in] x3 is the horizontal for point 3.
02724     /// @param[in] y3 is the vertical for point 3.
02725     /// @param[in] color defines the foreground color.
02726     /// @param[in] fillit is optional to FILL the rectangle. default is NOFILL.
02727     /// @returns @ref RetCode_t value.
02728     ///
02729     RetCode_t triangle(loc_t x1, loc_t y1, loc_t x2, loc_t y2,
02730                        loc_t x3, loc_t y3, color_t color, fill_t fillit = NOFILL);
02731 
02732 
02733     /// Draw a filled triangle in the specified color.
02734     ///
02735     /// @note As a side effect, this changes the current
02736     ///     foreground color for subsequent operations.
02737     ///
02738     /// @param[in] x1 is the horizontal for point 1.
02739     /// @param[in] y1 is the vertical for point 1.
02740     /// @param[in] x2 is the horizontal for point 2.
02741     /// @param[in] y2 is the vertical for point 2.
02742     /// @param[in] x3 is the horizontal for point 3.
02743     /// @param[in] y3 is the vertical for point 3.
02744     /// @param[in] color defines the foreground color.
02745     /// @param[in] fillit is optional to FILL the rectangle. default is NOFILL.
02746     /// @returns @ref RetCode_t value.
02747     ///
02748     RetCode_t filltriangle(loc_t x1, loc_t y1, loc_t x2, loc_t y2,
02749                            loc_t x3, loc_t y3, color_t color, fill_t fillit = FILL);
02750 
02751 
02752     /// Draw a triangle
02753     ///
02754     /// Draws a triangle using the foreground color setting.
02755     ///
02756     /// @param[in] x1 is the horizontal for point 1.
02757     /// @param[in] y1 is the vertical for point 1.
02758     /// @param[in] x2 is the horizontal for point 2.
02759     /// @param[in] y2 is the vertical for point 2.
02760     /// @param[in] x3 is the horizontal for point 3.
02761     /// @param[in] y3 is the vertical for point 3.
02762     /// @param[in] fillit is optional to FILL the rectangle. default is NOFILL.
02763     /// @returns @ref RetCode_t value.
02764     ///
02765     RetCode_t triangle(loc_t x1, loc_t y1, loc_t x2, loc_t y2,
02766                        loc_t x3, loc_t y3, fill_t fillit = NOFILL);
02767 
02768 
02769     /// Draw a circle using the specified color.
02770     ///
02771     /// @note As a side effect, this changes the current
02772     ///     foreground color for subsequent operations.
02773     ///
02774     /// @param[in] p defines the center of the circle.
02775     /// @param[in] radius defines the size of the circle.
02776     /// @param[in] color defines the foreground color.
02777     /// @param[in] fillit is optional to FILL the circle. default is NOFILL.
02778     /// @returns @ref RetCode_t value.
02779     ///
02780     RetCode_t circle(point_t p, dim_t radius, color_t color, fill_t fillit = NOFILL);
02781 
02782 
02783     /// Draw a filled circle using the specified color.
02784     ///
02785     /// @note As a side effect, this changes the current
02786     ///     foreground color for subsequent operations.
02787     ///
02788     /// @param[in] p defines the center of the circle.
02789     /// @param[in] radius defines the size of the circle.
02790     /// @param[in] color defines the foreground color.
02791     /// @param[in] fillit is optional to FILL the circle. default is FILL.
02792     /// @returns @ref RetCode_t value.
02793     ///
02794     RetCode_t fillcircle(point_t p, dim_t radius, color_t color, fill_t fillit = FILL);
02795 
02796 
02797     /// Draw a circle.
02798     ///
02799     /// Draws a circle using the foreground color setting.
02800     ///
02801     /// @param[in] p defines the center of the circle.
02802     /// @param[in] radius defines the size of the circle.
02803     /// @param[in] fillit is optional to FILL the circle. default is NOFILL.
02804     /// @returns @ref RetCode_t value.
02805     ///
02806     RetCode_t circle(point_t p, dim_t radius, fill_t fillit = NOFILL);
02807 
02808 
02809     /// Draw a circle using the specified color.
02810     ///
02811     /// @note As a side effect, this changes the current
02812     ///     foreground color for subsequent operations.
02813     ///
02814     /// @param[in] x is the horizontal center of the circle.
02815     /// @param[in] y is the vertical center of the circle.
02816     /// @param[in] radius defines the size of the circle.
02817     /// @param[in] color defines the foreground color.
02818     /// @param[in] fillit is optional to FILL the circle. default is NOFILL.
02819     /// @returns @ref RetCode_t value.
02820     ///
02821     RetCode_t circle(loc_t x, loc_t y, dim_t radius, color_t color, fill_t fillit = NOFILL);
02822 
02823 
02824     /// Draw a filled circle using the specified color.
02825     ///
02826     /// @note As a side effect, this changes the current
02827     ///     foreground color for subsequent operations.
02828     ///
02829     /// @param[in] x is the horizontal center of the circle.
02830     /// @param[in] y is the vertical center of the circle.
02831     /// @param[in] radius defines the size of the circle.
02832     /// @param[in] color defines the foreground color.
02833     /// @param[in] fillit is optional to FILL the circle. default is FILL.
02834     /// @returns @ref RetCode_t value.
02835     ///
02836     RetCode_t fillcircle(loc_t x, loc_t y, dim_t radius, color_t color, fill_t fillit = FILL);
02837 
02838 
02839     /// Draw a circle.
02840     ///
02841     /// Draws a circle using the foreground color setting.
02842     ///
02843     /// @param[in] x is the horizontal center of the circle.
02844     /// @param[in] y is the vertical center of the circle.
02845     /// @param[in] radius defines the size of the circle.
02846     /// @param[in] fillit is optional to FILL the circle. default is NOFILL.
02847     /// @returns @ref RetCode_t value.
02848     ///
02849     RetCode_t circle(loc_t x, loc_t y, dim_t radius, fill_t fillit = NOFILL);
02850 
02851     /// Draw an Ellipse using the specified color
02852     ///
02853     /// @note As a side effect, this changes the current
02854     ///     foreground color for subsequent operations.
02855     ///
02856     /// @param[in] x is the horizontal center of the ellipse.
02857     /// @param[in] y is the vertical center of the ellipse.
02858     /// @param[in] radius1 defines the horizontal radius of the ellipse.
02859     /// @param[in] radius2 defines the vertical radius of the ellipse.
02860     /// @param[in] color defines the foreground color.
02861     /// @param[in] fillit defines whether the circle is filled or not.
02862     /// @returns @ref RetCode_t value.
02863     ///
02864     RetCode_t ellipse(loc_t x, loc_t y, dim_t radius1, dim_t radius2,
02865                       color_t color, fill_t fillit = NOFILL);
02866 
02867 
02868     /// Draw a filled Ellipse using the specified color
02869     ///
02870     /// @note As a side effect, this changes the current
02871     ///     foreground color for subsequent operations.
02872     ///
02873     /// @param[in] x is the horizontal center of the ellipse.
02874     /// @param[in] y is the vertical center of the ellipse.
02875     /// @param[in] radius1 defines the horizontal radius of the ellipse.
02876     /// @param[in] radius2 defines the vertical radius of the ellipse.
02877     /// @param[in] color defines the foreground color.
02878     /// @param[in] fillit defines whether the circle is filled or not.
02879     /// @returns @ref RetCode_t value.
02880     ///
02881     RetCode_t fillellipse(loc_t x, loc_t y, dim_t radius1, dim_t radius2,
02882                           color_t color, fill_t fillit = FILL);
02883 
02884 
02885     /// Draw an Ellipse
02886     ///
02887     /// Draws it using the foreground color setting.
02888     ///
02889     /// @param[in] x is the horizontal center of the ellipse.
02890     /// @param[in] y is the vertical center of the ellipse.
02891     /// @param[in] radius1 defines the horizontal radius of the ellipse.
02892     /// @param[in] radius2 defines the vertical radius of the ellipse.
02893     /// @param[in] fillit defines whether the circle is filled or not.
02894     /// @returns @ref RetCode_t value.
02895     ///
02896     RetCode_t ellipse(loc_t x, loc_t y, dim_t radius1, dim_t radius2, fill_t fillit = NOFILL);
02897 
02898 
02899     /// Draw an Ellipse
02900     ///
02901     /// Draws it using the foreground color setting.
02902     ///
02903     /// @param[in] p is point for the center of the ellipse.
02904     /// @param[in] radius1 defines the horizontal radius of the ellipse.
02905     /// @param[in] radius2 defines the vertical radius of the ellipse.
02906     /// @param[in] fillit defines whether the circle is filled or not.
02907     /// @returns @ref RetCode_t value.
02908     ///
02909     RetCode_t ellipse(point_t p, dim_t radius1, dim_t radius2, color_t color, fill_t fillit = NOFILL);
02910     
02911     
02912     /// Draw an filled Ellipse
02913     ///
02914     /// Draws it using the foreground color setting.
02915     ///
02916     /// @param[in] p is point for the center of the ellipse.
02917     /// @param[in] radius1 defines the horizontal radius of the ellipse.
02918     /// @param[in] radius2 defines the vertical radius of the ellipse.
02919     /// @param[in] fillit defines whether the circle is filled or not.
02920     /// @returns @ref RetCode_t value.
02921     ///
02922     RetCode_t fillellipse(point_t p, dim_t radius1, dim_t radius2, color_t color, fill_t fillit = FILL);
02923 
02924 
02925     /// Block Move
02926     ///
02927     /// The Block Move API activates the RA8875 Block Transfer Engine. Due to the complex
02928     /// set of possible operations, the user should read the related sections of the
02929     /// RA8875 user manual.
02930     ///
02931     /// Some operations may require that other registers are configured, such as the
02932     /// foreground and background color registers, and others. Those must be set
02933     /// outside of this API.
02934     ///
02935     /// @code
02936     /// // Block Move Demo
02937     ///
02938     /// // Calibrate the resistive touch screen, and store the data on the
02939     /// // local file system.
02940     /// //
02941     /// void CalibrateTS(void)
02942     /// {
02943     ///    FILE * fh;
02944     ///    tpMatrix_t matrix;
02945     ///    RetCode_t r;
02946     ///    Timer testperiod;
02947     ///
02948     ///    r = lcd.TouchPanelCalibrate("Calibrate the touch panel", &matrix);
02949     ///    if (r == noerror) {
02950     ///        fh = fopen("/local/tpcal.cfg", "wb");
02951     ///        if (fh) {
02952     ///             fwrite(&matrix, sizeof(tpMatrix_t), 1, fh);
02953     ///             fclose(fh);
02954     ///             printf("  tp cal written.\r\n");
02955     ///             lcd.cls();
02956     ///         } else {
02957     ///             printf("  couldn't open tpcal file.\r\n");
02958     ///         }
02959     ///     } else {
02960     ///         printf("error return: %d\r\n", r);
02961     ///     }
02962     ///     lcd.cls();
02963     /// }
02964     ///
02965     /// // Try to load a previous resistive touch screen calibration from storage. If it
02966     /// // doesn't exist, activate the touch screen calibration process.
02967     /// //
02968     /// void InitTS(void)
02969     /// {
02970     ///     FILE * fh;
02971     ///     tpMatrix_t matrix;
02972     ///
02973     ///     fh = fopen("/local/tpcal.cfg", "rb");
02974     ///     if (fh) {
02975     ///         fread(&matrix, sizeof(tpMatrix_t), 1, fh);
02976     ///         fclose(fh);
02977     ///         lcd.TouchPanelSetMatrix(&matrix);
02978     ///         printf("  tp cal loaded.\r\n");
02979     ///     } else {
02980     ///         CalibrateTS();
02981     ///     }
02982     /// }
02983     ///
02984     /// int main()
02985     /// {
02986     ///     point_t src;
02987     ///     point_t dst;
02988     ///     TouchCode_t touch;
02989     ///     const dim_t RECT_W = 100;
02990     ///     const dim_t RECT_H = 100;
02991     ///
02992     ///     pc.baud(460800);    //I like a snappy terminal, so crank it up!
02993     ///     pc.printf("\r\nRA8875 BTE Move Test - Build " __DATE__ " " __TIME__ "\r\n");
02994     ///     lcd.init(LCD_PHYS_W,LCD_PHYS_H,LCD_C, BL_NORM);
02995     ///     lcd.TouchPanelInit();
02996     ///     #ifndef CAP_TOUCH
02997     ///     InitTS();   // Calibration for resistive touch panel
02998     ///     #endif
02999     ///
03000     ///     RetCode_t r = lcd.RenderImageFile(0,0,"/local/fullscrn.jpg");
03001     ///     if (r) pc.printf("  Error: %d; %s\r\n", r, lcd.GetErrorMessage(r));
03002     ///     while (1) {
03003     ///         touch = lcd.TouchPanelReadable();
03004     ///         if (touch) {
03005     ///             point_t xy = lcd.TouchCoordinates();
03006     ///             TouchCode_t t = lcd.TouchCode();
03007     ///
03008     ///             if (t == touch) {
03009     ///                 src = ComputeTopLeftOfRect(xy, RECT_W/2, RECT_H/2, LCD_PHYS_W, LCD_PHYS_H);
03010     ///             } else if (t == release) {
03011     ///                 dst = ComputeTopLeftOfRect(xy, RECT_W/2, RECT_H/2, LCD_PHYS_W, LCD_PHYS_H);
03012     ///                 r = lcd.BlockMove(0,0,dst, 0,0,src, RECT_W,RECT_H, 0x2, 0xC);
03013     ///             }
03014     ///         }
03015     ///     }
03016     /// }
03017     /// @endcode
03018     ///
03019     /// @param[in] dstLayer layer [5B.7]. layer value is 0 or 1 representing layer 1 and 2.
03020     /// @param[in] dstDataSelect [50.5] defines the destination data type 0: block, 1: linear.
03021     /// @param[in] dstPoint [58-5B] is a point_t defining the destination coordinate.
03022     /// @param[in] srcLayer layer [57.7]. layer value is 0 or 1 representing layer 1 and 2.
03023     /// @param[in] srcDataSelect [50.6] defines the source data type 0: block, 1: linear.
03024     /// @param[in] srcPoint [54-57] is a point_t defining the source coordinate.
03025     /// @param[in] bte_width [5C-5D]. operation width.
03026     /// @param[in] bte_height [5E-5F]. operation height.
03027     /// @param[in] bte_op_code [51.3-0] defines the raster operation function
03028     ///             (write/read/move/...)
03029     /// @param[in] bte_rop_code [51.7-4] defines what type of BTE operation to perform
03030     ///             (what is placed at the destination)
03031     /// @returns @ref RetCode_t value.
03032     ///
03033     RetCode_t BlockMove(uint8_t dstLayer, uint8_t dstDataSelect, point_t dstPoint,
03034                         uint8_t srcLayer, uint8_t srcDataSelect, point_t srcPoint,
03035                         dim_t bte_width, dim_t bte_height,
03036                         uint8_t bte_op_code, uint8_t bte_rop_code);
03037 
03038 
03039     /// Control display power
03040     ///
03041     /// @param[in] on when set to true will turn on the display, when false it is turned off.
03042     /// @returns @ref RetCode_t value.
03043     ///
03044     RetCode_t Power(bool on);
03045 
03046 
03047     /// Reset the display controller via the Software Reset interface.
03048     ///
03049     /// @returns @ref RetCode_t value.
03050     ///
03051     RetCode_t Reset(void);
03052 
03053 
03054     /// Set backlight brightness.
03055     ///
03056     /// When the built-in PWM is used to control the backlight, this
03057     /// API can be used to set the brightness.
03058     ///
03059     /// @param[in] brightness ranges from 0 (off) to 255 (full on)
03060     /// @returns @ref RetCode_t value.
03061     ///
03062     RetCode_t Backlight_u8(uint8_t brightness);
03063 
03064 
03065     /// Get backlight brightness.
03066     ///
03067     /// @returns backlight setting from 0 (off) to 255 (full on).
03068     ///
03069     uint8_t GetBacklight_u8(void);
03070 
03071     /// Set backlight brightness.
03072     ///
03073     /// When the built-in PWM is used to control the backlight, this
03074     /// API can be used to set the brightness.
03075     ///
03076     /// @param[in] brightness ranges from 0.0 (off) to 1.0 (full on)
03077     /// @returns @ref RetCode_t value.
03078     ///
03079     RetCode_t Backlight(float brightness);
03080 
03081 
03082     /// Get backlight brightness.
03083     ///
03084     /// @returns backlight setting from 0 (off) to 1.0 (full on).
03085     ///
03086     float GetBacklight(void);
03087 
03088 
03089     /// Select a User Font for all subsequent text.
03090     ///
03091     /// @note Tool to create the fonts is accessible from its creator
03092     ///     available at http://www.mikroe.com.
03093     ///     For version 1.2.0.0, choose the "Export for TFT and new GLCD"
03094     ///     format.
03095     ///
03096     /// @param[in] font is a pointer to a specially formed font resource.
03097     /// @returns @ref RetCode_t value.
03098     ///
03099     virtual RetCode_t SelectUserFont(const uint8_t * font = NULL);
03100 
03101     /// Get the currently selected user font.
03102     ///
03103     /// @returns a pointer to the font, or null, if no user font is selected.
03104     ///
03105     virtual const uint8_t * GetUserFont(void)
03106     {
03107         return font;
03108     }
03109 
03110     /// Get the @ref color_t value from a DOS color index.
03111     ///
03112     /// See @ref PredefinedColors, @ref color_t.
03113     ///
03114     /// @code
03115     ///     color_t color = DOSColor(12);
03116     /// @endcode
03117     ///
03118     /// @param[in] i is the color index, in the range 0 to 15;
03119     /// @returns the @ref color_t value of the selected index,
03120     ///     or 0 (@ref Black) if the index is out of bounds.
03121     ///
03122     color_t DOSColor(int i);
03123 
03124 
03125     /// Get the color name (string) from a DOS color index.
03126     ///
03127     /// See @ref PredefinedColors, @ref color_t.
03128     ///
03129     /// @code
03130     ///     printf("color is %s\n", DOSColorNames(12));
03131     /// @endcode
03132     ///
03133     /// @param[in] i is the color index, in the range 0 to 15;
03134     /// @returns a pointer to a string with the color name,
03135     ///     or NULL if the index is out of bounds.
03136     ///
03137     const char * DOSColorNames(int i);
03138 
03139 
03140     /// Advanced method indicating the start of a graphics stream.
03141     ///
03142     /// This is called prior to a stream of pixel data being sent.
03143     /// This may cause register configuration changes in the derived
03144     /// class in order to prepare the hardware to accept the streaming
03145     /// data.
03146     ///
03147     /// Following this command, a series of See @ref _putp() commands can
03148     /// be used to send individual pixels to the screen.
03149     ///
03150     /// To conclude the graphics stream, See @ref _EndGraphicsStream should
03151     /// be called.
03152     ///
03153     /// @returns @ref RetCode_t value.
03154     ///
03155     virtual RetCode_t _StartGraphicsStream(void);
03156 
03157 
03158     /// Advanced method to put a single color pixel to the screen.
03159     ///
03160     /// This method may be called as many times as necessary after
03161     /// See @ref _StartGraphicsStream() is called, and it should be followed
03162     /// by _EndGraphicsStream.
03163     ///
03164     /// @code
03165     ///     _putp(DOSColor(12));
03166     /// @endcode
03167     ///
03168     /// @param[in] pixel is a color value to be put on the screen.
03169     /// @returns @ref RetCode_t value.
03170     ///
03171     virtual RetCode_t _putp(color_t pixel);
03172 
03173 
03174     /// Advanced method indicating the end of a graphics stream.
03175     ///
03176     /// This is called to conclude a stream of pixel data that was sent.
03177     /// This may cause register configuration changes in the derived
03178     /// class in order to stop the hardware from accept the streaming
03179     /// data.
03180     ///
03181     /// @returns @ref RetCode_t value.
03182     ///
03183     virtual RetCode_t _EndGraphicsStream(void);
03184 
03185 
03186     /// Set the SPI port frequency (in Hz).
03187     ///
03188     /// This uses the mbed SPI driver, and is therefore dependent on
03189     /// its capabilities. The RA8875 can accept writes via SPI faster
03190     /// than a read can be performed. The frequency set by this API
03191     /// is for the SPI writes. It will automatically reduce the SPI
03192     /// clock rate when a read is performed, and restore it for the
03193     /// next write. Alternately, the 2nd parameters permits setting
03194     /// the read speed rather than letting it compute it automatically.
03195     ///
03196     /// @note The primary effect of this is to recover more CPU cycles
03197     ///     for your application code. Keep in mind that when more than
03198     ///     one command is sent to the display controller, that it
03199     ///     will wait for the controller to finish the prior command.
03200     ///     In this case, the performance is limited by the RA8875.
03201     ///
03202     /// @param[in] Hz is the frequency in Hz, tested range includes the
03203     ///     range from 1,000,000 (1MHz) to 10,000,000 (10 MHz). Values
03204     ///     outside this range will be accepted, but operation may
03205     ///     be unreliable. This depends partially on your hardware design
03206     ///     and the wires connecting the display module.
03207     ///     The default value is 5,000,000, which should work for most
03208     ///     applications as a starting point.
03209     /// @param[in] Hz2 is an optional parameter and will set the read
03210     ///     speed independently of the write speed.
03211     /// @returns @ref RetCode_t value.
03212     ///
03213     RetCode_t frequency(unsigned long Hz = RA8875_DEFAULT_SPI_FREQ, unsigned long Hz2 = 0);
03214 
03215 
03216     /// This method captures the specified area as a 24-bit bitmap file.
03217     ///
03218     /// Even though this is a 16-bit display, the stored image is in
03219     /// 24-bit format.
03220     ///
03221     /// This method will interrogate the current display setting and
03222     /// create a bitmap based on those settings. For instance, if
03223     /// only layer 1 is visible, then the bitmap is only layer 1. However,
03224     /// if there is some other operation in effect (transparent mode).
03225     ///
03226     /// If the idle callback is registered, it will be activated passing
03227     /// a parameter indicating the percent complete, which may be of value.
03228     ///
03229     /// @param[in] x is the left edge of the region to capture
03230     /// @param[in] y is the top edge of the region to capture
03231     /// @param[in] w is the width of the region to capture
03232     /// @param[in] h is the height of the region to capture.
03233     /// @param[in] Name_BMP is the filename to write the image to.
03234     /// @param[in] bitsPerPixel is optional, defaults to 24, and only
03235     ///             accepts the values 24, 8
03236     ///             NOTE: The downscaling is CPU intensive, and the operation
03237     ///             takes longer.
03238     /// @returns @ref RetCode_t value.
03239     ///
03240     RetCode_t PrintScreen(loc_t x, loc_t y, dim_t w, dim_t h, const char *Name_BMP, uint8_t bitsPerPixel = 24);
03241 
03242 
03243     /// This method captures the specified area as a 24-bit bitmap file
03244     /// and delivers it to the previously attached callback.
03245     ///
03246     /// Even though this is a 16-bit display, the stored image is in
03247     /// 24-bit format.
03248     ///
03249     /// This method will interrogate the current display setting and
03250     /// create a bitmap based on those settings. For instance, if
03251     /// only layer 1 is visible, then the bitmap is only layer 1. However,
03252     /// if there is some other operation in effect (transparent mode), it
03253     /// will return the blended image.
03254     ///
03255     /// If the idle callback is registered, it will be activated passing
03256     /// a parameter indicating the percent complete, which may be of value.
03257     ///
03258     /// @param[in] x is the left edge of the region to capture
03259     /// @param[in] y is the top edge of the region to capture
03260     /// @param[in] w is the width of the region to capture
03261     /// @param[in] h is the height of the region to capture.
03262     /// @param[in] bitsPerPixel is optional, defaults to 24, and only
03263     ///             accepts the values 24, 8
03264     ///             NOTE: The downscaling is CPU intensive, and the operation
03265     ///             takes longer.
03266     /// @returns @ref RetCode_t value.
03267     ///
03268     RetCode_t PrintScreen(loc_t x, loc_t y, dim_t w, dim_t h, uint8_t bitsPerPixel = 24);
03269 
03270 
03271     /// PrintScreen callback registration.
03272     ///
03273     /// This method attaches a simple c-compatible callback of type PrintCallback_T.
03274     /// Then, the PrintScreen(x,y,w,h) method is called. Each chunk of data in the
03275     /// BMP file to be created is passed to this callback.
03276     ///
03277     /// @param callback is the optional callback function. Without a callback function
03278     ///     it will unregister the handler.
03279     ///
03280     void AttachPrintHandler(PrintCallback_T callback = NULL)
03281     {
03282         c_callback = callback;
03283     }
03284 
03285 
03286     /// PrintScreen callback registration.
03287     ///
03288     /// This method attaches a c++ class method as a callback of type PrintCallback_T.
03289     /// Then, the PrintScreen(x,y,w,h) method is called. Each chunk of data in the
03290     /// BMP file to be created is passed to this callback.
03291     ///
03292     /// @param object is the class hosting the callback function.
03293     /// @param method is the callback method in the object to activate.
03294     ///
03295     template <class T>
03296     void AttachPrintHandler(T *object, RetCode_t (T::*method)(void))
03297     {
03298         obj_callback    = (FPointerDummy *)object;
03299         method_callback = (RetCode_t (FPointerDummy::*)(filecmd_t, uint8_t *, uint16_t))method;
03300     }
03301 
03302 
03303     /// This method captures the specified area as a 24-bit bitmap file,
03304     /// including the option of layer selection.
03305     ///
03306     /// @note This method is deprecated as the alternate PrintScreen API
03307     ///         automatically examines the display layer configuration.
03308     ///         Therefore, calls to this API will ignore the layer parameter
03309     ///         and automatically execute the other method.
03310     ///
03311     /// Even though this is a 16-bit display, the stored image is in
03312     /// 24-bit format.
03313     ///
03314     /// @param[in] layer is 0 or 1 to select the layer to extract.
03315     /// @param[in] x is the left edge of the region to capture
03316     /// @param[in] y is the top edge of the region to capture
03317     /// @param[in] w is the width of the region to capture
03318     /// @param[in] h is the height of the region to capture.
03319     /// @param[out] Name_BMP is the filename to write the image to.
03320     /// @returns @ref RetCode_t value.
03321     ///
03322     RetCode_t PrintScreen(uint16_t layer, loc_t x, loc_t y, dim_t w, dim_t h, const char *Name_BMP);
03323 
03324 
03325     /// idle callback registration.
03326     ///
03327     /// This method attaches a simple c-compatible callback of type IdleCallback_T.
03328     /// Then, at any time when the display driver is waiting, it will call the
03329     /// registered function. This is probably most useful if you want to service
03330     /// a watchdog, when you may have called an API that will "hang" waiting
03331     /// on the user.
03332     ///
03333     /// @code
03334     /// RetCode_t myIdle_handler(RA8875::IdleReason_T reason, uint16_t param)
03335     /// {
03336     ///     static uint16_t lastProgress = 0xFFFF;
03337     ///
03338     ///     if (reason == RA8875::progress && param != lastProgress) {
03339     ///         printf("Progress %3d%%\r\n", param);
03340     ///         lastProgress = progress;
03341     ///     }
03342     ///     return noerror;
03343     /// }
03344     ///
03345     ///     ...
03346     ///     lcd.AttachIdleHandler(myIdle_handler);
03347     ///     ...
03348     ///     RetCode_t r = lcd.PrintScreen(0,0,LCD_PHYS_W,LCD_PHYS_H,"/local/print.bmp");
03349     ///     if (r ...)
03350     /// @endcode
03351     ///
03352     ///
03353     /// @param callback is the idle callback function. Without a callback function
03354     ///     it will unregister the handler.
03355     ///
03356     void AttachIdleHandler(IdleCallback_T callback = NULL)
03357     {
03358         idle_callback = callback;
03359     }
03360 
03361 
03362 #ifdef PERF_METRICS
03363     /// Clear the performance metrics to zero.
03364     void ClearPerformance();
03365 
03366     /// Count idle time.
03367     ///
03368     /// @param[in] t is the amount of idle time to accumulate.
03369     ///
03370     void CountIdleTime(uint32_t t);
03371 
03372     /// Report the performance metrics for drawing functions using
03373     /// the available serial channel.
03374     ///
03375     /// @param[in,out] pc is the serial channel to write to.
03376     ///
03377     void ReportPerformance(Serial & pc);
03378 #endif
03379 
03380 
03381 private:
03382     void InitAllMemberVars();
03383 
03384     /// Touch panel parameters - common to both resistive and capacitive
03385 
03386     /// Data type to indicate which TP, if any, is in use.
03387     typedef enum {
03388         TP_NONE,            ///< no touch panel in use
03389         TP_RES,             ///< resistive touch panel using RA8875
03390         TP_FT5206,          ///< Capacitive touch panel using FT5206
03391         TP_CAP=TP_FT5206,   ///< DEPRECATED: used TP_CAP5206 for that chip-set
03392         TP_GSL1680,         ///< Capacitive touch panel using GSL1680 chip
03393     } WhichTP_T;
03394 
03395     /// boolean flag set true when using Capacitive touch panel, and false
03396     /// for resistive.
03397     WhichTP_T useTouchPanel;    ///< Indicates which TP is selected for use.
03398 
03399     /// Touch State used by TouchPanelReadable. See @ref TouchCode_t.
03400     TouchCode_t touchState;
03401 
03402     ////////////////// Start of Capacitive Touch Panel parameters
03403 
03404     int RoundUp(int value, int roundTo);
03405     uint8_t FT5206_TouchPositions(void);
03406     uint8_t FT5206_ReadRegU8(uint8_t reg);
03407     uint8_t GSL1680_TouchPositions(void);
03408     uint8_t GSL1680_ReadRegU8(uint8_t reg, uint8_t * buf, int count);
03409     RetCode_t FT5206_Init();
03410     RetCode_t GSL1680_Init();
03411     void ReadResistive();       ///< Analyze the resistive touch
03412 
03413     void TouchPanelISR(void);
03414     uint16_t numberOfTouchPoints;
03415     uint8_t gesture;            ///< Holds the reported gesture information (which doesn't work well for the FT5206)
03416 
03417     /// Touch Information data structure
03418     typedef struct {
03419         uint8_t touchID;        ///< Contains the touch ID, which is the "order" of touch, from 0 to n-1
03420         TouchCode_t touchCode;  ///< Contains the touch code; no_touch, touch, held, release
03421         point_t coordinates;    ///< Contains the X,Y coordinate of the touch
03422     } touchInfo_T;
03423 
03424     touchInfo_T * touchInfo;   /// Storage allocated by the constructor to contains the touch information
03425 
03426 #if MBED_VERSION >= MBED_ENCODE_VERSION(5,8,0)
03427     Thread eventThread;
03428     EventQueue queue;
03429 #endif
03430     InterruptIn * m_irq;
03431     I2C * m_i2c;
03432     int m_addr;                 /// I2C Address of the Cap Touch Controller
03433 
03434     bool panelTouched;
03435 
03436     ////////////////// Start of Resistive Touch Panel parameters
03437 
03438     /// Specify the default settings for the Touch Panel, where different from the chip defaults
03439 #define TP_MODE_DEFAULT             TP_MODE_AUTO
03440 #define TP_DEBOUNCE_DEFAULT         TP_DEBOUNCE_ON
03441 #define TP_ADC_CLKDIV_DEFAULT       TP_ADC_CLKDIV_8
03442 
03443 #define TP_ADC_SAMPLE_DEFAULT_CLKS  TP_ADC_SAMPLE_8192_CLKS
03444 
03445     /// Other Touch Panel params
03446 #define TPBUFSIZE   16       // Depth of the averaging buffers for x and y data
03447 
03448     // Needs both a ticker and a timer. (could have created a timer from the ticker, but this is easier).
03449     // on a touch, the timer is reset.
03450     // the ticker monitors the timer to see if it has been a long time since
03451     // a touch, and if so, it then clears the sample counter so it doesn't get partial old
03452     // and partial new.
03453 
03454     /// Touch Panel ticker
03455     /// This it bound to a timer to call the _TouchTicker() function periodically.
03456     ///
03457     Ticker touchTicker;
03458 
03459     /// Touch Panel timer
03460     /// Reset on a touch, to expire on a non-touch
03461     ///
03462     Timer timeSinceTouch;
03463 
03464     /// keeps track of which sample we're collecting to filter out the noise.
03465     int touchSample;
03466 
03467     /// Private function for touch ticker callback.
03468     void _TouchTicker(void);
03469 
03470     /// Touch Panel calibration matrix.
03471     tpMatrix_t tpMatrix;
03472 
03473     /// RESISTIVE TP: The fully qualified filename for the RESISTIVE touch panel configuration settings.
03474     const char * tpFQFN;
03475 
03476     /// RESISTIVE TP: The text message shown to the user during the calibration process.
03477     const char * tpCalMessage;
03478 
03479     /// Internal method that performs the TS Cal when the user has so-configured it
03480     RetCode_t _internal_ts_cal();
03481 
03482 
03483     ////////////////// End of Touch Panel parameters
03484 
03485 
03486     /// Internal function to put a character using the built-in (internal) font engine
03487     ///
03488     /// @param[in] c is the character to put to the screen.
03489     /// @returns the character put.
03490     ///
03491     int _internal_putc(int c);
03492 
03493     /// Internal function to put a character using the external font engine
03494     ///
03495     /// @param[in] c is the character to put to the screen.
03496     /// @returns the character put.
03497     ///
03498     int _external_putc(int c);
03499 
03500     /// Internal function to get the actual width of a character when using the external font engine
03501     ///
03502     /// @param[in] c is the character to get the width.
03503     /// @returns the width in pixels of the character. zero if not found.
03504     ///
03505     int _external_getCharWidth(int c);
03506 
03507     /// Write color to an RGB register set
03508     ///
03509     /// This API takes a color value, and writes it into the specified
03510     /// color registers, which are a trio of 3 registers. The actual
03511     /// trio write is performed based on whether the display is configured
03512     /// for 8 or 16 bits per pixel.
03513     ///
03514     /// @param[in] regAddr is the register address starting the trio
03515     /// @param[in] color is the color to write
03516     /// @returns @ref RetCode_t value.
03517     ///
03518     RetCode_t _writeColorTrio(uint8_t regAddr, color_t color);
03519 
03520     /// Read color from an RGB register set
03521     ///
03522     /// This API reads a color value from a trio of registers. The actual
03523     /// trio write is performed based on whether the display is configured
03524     /// for 8 or 16 bits per pixel.
03525     ///
03526     /// @param[in] regAddr is the register address starting the trio
03527     /// @returns color_t value
03528     ///
03529     color_t _readColorTrio(uint8_t regAddr);
03530 
03531 
03532     /// Convert a 16-bit color value to an 8-bit value
03533     ///
03534     /// @param[in] c16 is the 16-bit color value to convert.
03535     /// @returns 8-bit color value.
03536     ///
03537     uint8_t _cvt16to8(color_t c16);
03538 
03539     /// Convert an 8-bit color value to a 16-bit value
03540     ///
03541     /// @param[in] c8 is the 8-bit color value to convert.
03542     /// @returns 16-bit color value.
03543     ///
03544     color_t _cvt8to16(uint8_t c8);
03545 
03546     /// Select the peripheral to use it.
03547     ///
03548     /// @param[in] chipsel when true will select the peripheral, and when false
03549     ///     will deselect the chip. This is the logical selection, and
03550     ///     the pin selection is the invert of this.
03551     /// @returns @ref RetCode_t value.
03552     ///
03553     RetCode_t _select(bool chipsel);
03554 
03555     /// Wait while the status register indicates the controller is busy.
03556     ///
03557     /// @param[in] mask is the mask of bits to monitor.
03558     /// @returns true if a normal exit.
03559     /// @returns false if a timeout exit.
03560     ///
03561     bool _WaitWhileBusy(uint8_t mask);
03562 
03563     /// Wait while the the register anded with the mask is true.
03564     ///
03565     /// @param[in] reg is the register to monitor
03566     /// @param[in] mask is the bit mask to monitor
03567     /// @returns true if it was a normal exit
03568     /// @returns false if it was a timeout that caused the exit.
03569     ///
03570     bool _WaitWhileReg(uint8_t reg, uint8_t mask);
03571 
03572     /// set the spi port to either the write or the read speed.
03573     ///
03574     /// This is a private API used to toggle between the write
03575     /// and the read speed for the SPI port to the RA8875, since
03576     /// it can accept writes faster than reads.
03577     ///
03578     /// @param[in] writeSpeed when true selects the write frequency,
03579     ///     and when false it selects the read frequency.
03580     ///
03581     void _setWriteSpeed(bool writeSpeed);
03582 
03583     /// The most primitive - to write a data value to the SPI interface.
03584     ///
03585     /// @param[in] data is the value to write.
03586     /// @returns a value read from the port, since SPI is often shift
03587     ///     in while shifting out.
03588     ///
03589     unsigned char _spiwrite(unsigned char data);
03590 
03591     /// The most primitive - to read a data value to the SPI interface.
03592     ///
03593     /// This is really just a specialcase of the write command, where
03594     /// the value zero is written in order to read.
03595     ///
03596     /// @returns a value read from the port, since SPI is often shift
03597     ///     in while shifting out.
03598     ///
03599     unsigned char _spiread();
03600 
03601     const uint8_t * pKeyMap;
03602 
03603     SPI spi;                        ///< spi port
03604     bool spiWriteSpeed;             ///< indicates if the current mode is write or read
03605     unsigned long spiwritefreq;     ///< saved write freq
03606     unsigned long spireadfreq;      ///< saved read freq
03607     DigitalOut cs;                  ///< RA8875 chip select pin, assumed active low
03608     DigitalOut * res;               ///< RA8875 reset pin, assumed active low
03609     DigitalOut * m_wake;            ///< GSL1680 wake pin
03610 
03611     // display metrics to avoid lengthy spi read queries
03612     uint8_t screenbpp;              ///< configured bits per pixel
03613     dim_t virt_screenwidth;         ///< configured screen width cached here for speed of access
03614     dim_t virt_screenheight;        ///< configured screen height cached here for speed of access
03615     rect_t windowrect;              ///< window rect cached here for speed of access
03616     orientation_t screen_orientation;   ///< configured graphic orientation cached here for speed of access
03617     orientation_t text_orientation; ///< configured text orientation cached here for speed of access
03618     bool wordwrap;                  ///< set true when wordwrap is in effect for _puts()
03619     const unsigned char * font;     ///< reference to an external font somewhere in memory
03620     uint8_t extFontHeight;          ///< computed from the font table when the user sets the font
03621     uint8_t extFontWidth;           ///< computed from the font table when the user sets the font
03622     bool roundCap;                  ///< draw round end cap on thick lines when set.
03623     loc_t cursor_x, cursor_y;       ///< used for external fonts only
03624 
03625 #ifdef PERF_METRICS
03626     typedef enum {
03627         PRF_CLS,
03628         PRF_DRAWPIXEL,
03629         PRF_PIXELSTREAM,
03630         PRF_BOOLSTREAM,
03631         PRF_READPIXEL,
03632         PRF_READPIXELSTREAM,
03633         PRF_DRAWLINE,
03634         PRF_DRAWRECTANGLE,
03635         PRF_DRAWROUNDEDRECTANGLE,
03636         PRF_DRAWTRIANGLE,
03637         PRF_DRAWCIRCLE,
03638         PRF_DRAWELLIPSE,
03639         PRF_BLOCKMOVE,
03640         METRICCOUNT = PRF_BLOCKMOVE
03641     } method_e;
03642     unsigned long metrics[METRICCOUNT];
03643     unsigned long idletime_usec;
03644     void RegisterPerformance(method_e method);
03645     Timer performance;
03646 #endif
03647 
03648     RetCode_t _printCallback(RA8875::filecmd_t cmd, uint8_t * buffer, uint16_t size);
03649 
03650     FILE * _printFH;             ///< PrintScreen file handle
03651 
03652     RetCode_t privateCallback(filecmd_t cmd, uint8_t * buffer, uint16_t size)
03653     {
03654         if (c_callback != NULL) {
03655             return (*c_callback)(cmd, buffer, size);
03656         } else {
03657             if (obj_callback != NULL && method_callback != NULL) {
03658                 return (obj_callback->*method_callback)(cmd, buffer, size);
03659             }
03660         }
03661         return noerror;
03662     }
03663 
03664     RetCode_t (* c_callback)(filecmd_t cmd, uint8_t * buffer, uint16_t size);
03665     FPointerDummy  *obj_callback;
03666     RetCode_t (FPointerDummy::*method_callback)(filecmd_t cmd, uint8_t * buffer, uint16_t size);
03667     RetCode_t (* idle_callback)(IdleReason_T reason, uint16_t param);
03668 
03669 };
03670 
03671 
03672 //}     // namespace
03673 
03674 //using namespace SW_graphics;
03675 
03676 
03677 #ifdef TESTENABLE
03678 //      ______________  ______________  ______________  _______________
03679 //     /_____   _____/ /  ___________/ /  ___________/ /_____   ______/
03680 //          /  /      /  /            /  /                  /  /
03681 //         /  /      /  /___         /  /__________        /  /
03682 //        /  /      /  ____/        /__________   /       /  /
03683 //       /  /      /  /                       /  /       /  /
03684 //      /  /      /  /__________  ___________/  /       /  /
03685 //     /__/      /_____________/ /_____________/       /__/
03686 
03687 #include "WebColors.h"
03688 #include <algorithm>
03689 
03690 extern "C" void mbed_reset();
03691 
03692 /// This activates a small set of tests for the graphics library.
03693 ///
03694 /// Call this API and pass it the reference to the display class.
03695 /// It will then run a series of tests. It accepts interaction via
03696 /// stdin to switch from automatic test mode to manual, run a specific
03697 /// test, or to exit the test mode.
03698 ///
03699 /// @param[in] lcd is a reference to the display class.
03700 /// @param[in] pc is a reference to a serial interface, typically the USB to PC.
03701 ///
03702 void RunTestSet(RA8875 & lcd, Serial & pc);
03703 
03704 
03705 // To enable the test code, uncomment this section, or copy the
03706 // necessary pieces to your "main()".
03707 //
03708 // #include "mbed.h"
03709 // #include "RA8875.h"
03710 // RA8875 lcd(p5, p6, p7, p12, NC, "tft");    // MOSI, MISO, SCK, /ChipSelect, /reset, name
03711 // Serial pc(USBTX, USBRX);
03712 // extern "C" void mbed_reset();
03713 // int main()
03714 // {
03715 //     pc.baud(460800);    // I like a snappy terminal, so crank it up!
03716 //     pc.printf("\r\nRA8875 Test - Build " __DATE__ " " __TIME__ "\r\n");
03717 //
03718 //     pc.printf("Turning on display\r\n");
03719 //     lcd.init();
03720 //     lcd.Reset();
03721 //     lcd.Power(true);  // display power is on, but the backlight is independent
03722 //     lcd.Backlight(0.5);
03723 //     RunTestSet(lcd, pc);
03724 // }
03725 
03726 #endif // TESTENABLE
03727 
03728 #endif