MWARE-1930 fixed

Committer:
Vkadaba
Date:
Tue Nov 19 12:10:45 2019 +0000
Revision:
36:54e2418e7620
Parent:
33:df7a00f1b8e1
Child:
41:df78b7d7b675
Added open circuit detection support to host ; Added VOUT sensor support to host

Who changed what in which revision?

UserRevisionLine numberNew contents of line
ADIJake 0:85855ecd3257 1 /*
Vkadaba 8:2f2775c34640 2 Copyright 2019 (c) Analog Devices, Inc.
ADIJake 0:85855ecd3257 3
ADIJake 0:85855ecd3257 4 All rights reserved.
ADIJake 0:85855ecd3257 5
ADIJake 0:85855ecd3257 6 Redistribution and use in source and binary forms, with or without
ADIJake 0:85855ecd3257 7 modification, are permitted provided that the following conditions are met:
ADIJake 0:85855ecd3257 8 - Redistributions of source code must retain the above copyright
ADIJake 0:85855ecd3257 9 notice, this list of conditions and the following disclaimer.
ADIJake 0:85855ecd3257 10 - Redistributions in binary form must reproduce the above copyright
ADIJake 0:85855ecd3257 11 notice, this list of conditions and the following disclaimer in
ADIJake 0:85855ecd3257 12 the documentation and/or other materials provided with the
ADIJake 0:85855ecd3257 13 distribution.
ADIJake 0:85855ecd3257 14 - Neither the name of Analog Devices, Inc. nor the names of its
ADIJake 0:85855ecd3257 15 contributors may be used to endorse or promote products derived
ADIJake 0:85855ecd3257 16 from this software without specific prior written permission.
ADIJake 0:85855ecd3257 17 - The use of this software may or may not infringe the patent rights
ADIJake 0:85855ecd3257 18 of one or more patent holders. This license does not release you
ADIJake 0:85855ecd3257 19 from the requirement that you obtain separate licenses from these
ADIJake 0:85855ecd3257 20 patent holders to use this software.
ADIJake 0:85855ecd3257 21 - Use of the software either in source or binary form, must be run
ADIJake 0:85855ecd3257 22 on or directly connected to an Analog Devices Inc. component.
ADIJake 0:85855ecd3257 23
ADIJake 0:85855ecd3257 24 THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
ADIJake 0:85855ecd3257 25 IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
ADIJake 0:85855ecd3257 26 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
ADIJake 0:85855ecd3257 27 IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
ADIJake 0:85855ecd3257 28 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
ADIJake 0:85855ecd3257 29 LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
ADIJake 0:85855ecd3257 30 SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
ADIJake 0:85855ecd3257 31 CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
ADIJake 0:85855ecd3257 32 OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
ADIJake 0:85855ecd3257 33 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
ADIJake 0:85855ecd3257 34 */
ADIJake 0:85855ecd3257 35
ADIJake 0:85855ecd3257 36 /*!
ADIJake 0:85855ecd3257 37 ******************************************************************************
ADIJake 0:85855ecd3257 38 * @file:
Vkadaba 8:2f2775c34640 39 * @brief: API implementation for ADMW1001
ADIJake 0:85855ecd3257 40 *-----------------------------------------------------------------------------
ADIJake 0:85855ecd3257 41 */
ADIJake 0:85855ecd3257 42
ADIJake 0:85855ecd3257 43 #include <float.h>
ADIJake 0:85855ecd3257 44 #include <math.h>
ADIJake 0:85855ecd3257 45 #include <string.h>
ADIJake 0:85855ecd3257 46
Vkadaba 5:0728bde67bdb 47 #include "admw_platform.h"
Vkadaba 5:0728bde67bdb 48 #include "admw_api.h"
Vkadaba 5:0728bde67bdb 49 #include "admw1001/admw1001_api.h"
Vkadaba 5:0728bde67bdb 50
Vkadaba 5:0728bde67bdb 51 #include "admw1001/ADMW1001_REGISTERS_typedefs.h"
Vkadaba 5:0728bde67bdb 52 #include "admw1001/ADMW1001_REGISTERS.h"
Vkadaba 5:0728bde67bdb 53 #include "admw1001/admw1001_lut_data.h"
Vkadaba 5:0728bde67bdb 54 #include "admw1001/admw1001_host_comms.h"
ADIJake 0:85855ecd3257 55
ADIJake 0:85855ecd3257 56 #include "crc16.h"
Vkadaba 13:97cb32670539 57 #define VERSIONID_MAJOR 2
Vkadaba 13:97cb32670539 58 #define VERSIONID_MINOR 0
ADIJake 0:85855ecd3257 59
ADIJake 0:85855ecd3257 60 uint32_t getDataCnt = 0;
Vkadaba 32:52445bef314d 61 #define ADMW_VERSION_REG_VAL_SIZE 4u
Vkadaba 32:52445bef314d 62 #define ADMW_FORMATTED_VERSION_SIZE 11u
ADIJake 0:85855ecd3257 63
Vkadaba 32:52445bef314d 64 #define ADMW_SFL_READ_STATUS_SIZE 42u
ADIJake 0:85855ecd3257 65 /*
ADIJake 0:85855ecd3257 66 * The following macros are used to encapsulate the register access code
ADIJake 0:85855ecd3257 67 * to improve readability in the functions further below in this file
ADIJake 0:85855ecd3257 68 */
ADIJake 0:85855ecd3257 69 #define STRINGIFY(name) #name
ADIJake 0:85855ecd3257 70
ADIJake 0:85855ecd3257 71 /* Expand the full name of the reset value macro for the specified register */
Vkadaba 5:0728bde67bdb 72 #define REG_RESET_VAL(_name) REG_##_name##_RESET
ADIJake 0:85855ecd3257 73
ADIJake 0:85855ecd3257 74 /* Checks if a value is outside the bounds of the specified register field */
ADIJake 0:85855ecd3257 75 #define CHECK_REG_FIELD_VAL(_field, _val) \
ADIJake 0:85855ecd3257 76 do { \
Vkadaba 8:2f2775c34640 77 uint32_t _mask = BITM_##_field; \
Vkadaba 8:2f2775c34640 78 uint32_t _shift = BITP_##_field; \
ADIJake 0:85855ecd3257 79 if ((((_val) << _shift) & ~(_mask)) != 0) { \
Vkadaba 6:9d393a9677f4 80 ADMW_LOG_ERROR("Value 0x%08X invalid for register field %s",\
ADIJake 0:85855ecd3257 81 (uint32_t)(_val), \
Vkadaba 6:9d393a9677f4 82 STRINGIFY(ADMW_##_field)); \
Vkadaba 8:2f2775c34640 83 return ADMW_INVALID_PARAM; \
ADIJake 0:85855ecd3257 84 } \
ADIJake 0:85855ecd3257 85 } while(false)
ADIJake 0:85855ecd3257 86
ADIJake 0:85855ecd3257 87 /*
ADIJake 0:85855ecd3257 88 * Encapsulates the write to a specified register
ADIJake 0:85855ecd3257 89 * NOTE - this will cause the calling function to return on error
ADIJake 0:85855ecd3257 90 */
ADIJake 0:85855ecd3257 91 #define WRITE_REG(_hdev, _val, _name, _type) \
ADIJake 0:85855ecd3257 92 do { \
Vkadaba 8:2f2775c34640 93 ADMW_RESULT _res; \
ADIJake 0:85855ecd3257 94 _type _regval = _val; \
Vkadaba 8:2f2775c34640 95 _res = admw1001_WriteRegister((_hdev), \
Vkadaba 8:2f2775c34640 96 REG_##_name, \
ADIJake 0:85855ecd3257 97 &_regval, sizeof(_regval)); \
Vkadaba 8:2f2775c34640 98 if (_res != ADMW_SUCCESS) \
ADIJake 0:85855ecd3257 99 return _res; \
ADIJake 0:85855ecd3257 100 } while(false)
ADIJake 0:85855ecd3257 101
ADIJake 0:85855ecd3257 102 /* Wrapper macro to write a value to a uint32_t register */
Vkadaba 8:2f2775c34640 103 #define WRITE_REG_U32(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 104 WRITE_REG(_hdev, _val, _name, uint32_t)
ADIJake 0:85855ecd3257 105 /* Wrapper macro to write a value to a uint16_t register */
Vkadaba 8:2f2775c34640 106 #define WRITE_REG_U16(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 107 WRITE_REG(_hdev, _val, _name, uint16_t)
ADIJake 0:85855ecd3257 108 /* Wrapper macro to write a value to a uint8_t register */
Vkadaba 8:2f2775c34640 109 #define WRITE_REG_U8(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 110 WRITE_REG(_hdev, _val, _name, uint8_t)
ADIJake 0:85855ecd3257 111 /* Wrapper macro to write a value to a float32_t register */
Vkadaba 8:2f2775c34640 112 #define WRITE_REG_FLOAT(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 113 WRITE_REG(_hdev, _val, _name, float32_t)
ADIJake 0:85855ecd3257 114
ADIJake 0:85855ecd3257 115 /*
ADIJake 0:85855ecd3257 116 * Encapsulates the read from a specified register
ADIJake 0:85855ecd3257 117 * NOTE - this will cause the calling function to return on error
ADIJake 0:85855ecd3257 118 */
ADIJake 0:85855ecd3257 119 #define READ_REG(_hdev, _val, _name, _type) \
ADIJake 0:85855ecd3257 120 do { \
Vkadaba 8:2f2775c34640 121 ADMW_RESULT _res; \
ADIJake 0:85855ecd3257 122 _type _regval; \
Vkadaba 8:2f2775c34640 123 _res = admw1001_ReadRegister((_hdev), \
Vkadaba 8:2f2775c34640 124 REG_##_name, \
ADIJake 0:85855ecd3257 125 &_regval, sizeof(_regval)); \
Vkadaba 8:2f2775c34640 126 if (_res != ADMW_SUCCESS) \
ADIJake 0:85855ecd3257 127 return _res; \
ADIJake 0:85855ecd3257 128 _val = _regval; \
ADIJake 0:85855ecd3257 129 } while(false)
ADIJake 0:85855ecd3257 130
ADIJake 0:85855ecd3257 131 /* Wrapper macro to read a value from a uint32_t register */
Vkadaba 8:2f2775c34640 132 #define READ_REG_U32(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 133 READ_REG(_hdev, _val, _name, uint32_t)
ADIJake 0:85855ecd3257 134 /* Wrapper macro to read a value from a uint16_t register */
Vkadaba 8:2f2775c34640 135 #define READ_REG_U16(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 136 READ_REG(_hdev, _val, _name, uint16_t)
ADIJake 0:85855ecd3257 137 /* Wrapper macro to read a value from a uint8_t register */
Vkadaba 8:2f2775c34640 138 #define READ_REG_U8(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 139 READ_REG(_hdev, _val, _name, uint8_t)
ADIJake 0:85855ecd3257 140 /* Wrapper macro to read a value from a float32_t register */
Vkadaba 8:2f2775c34640 141 #define READ_REG_FLOAT(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 142 READ_REG(_hdev, _val, _name, float32_t)
ADIJake 0:85855ecd3257 143
ADIJake 0:85855ecd3257 144 /*
ADIJake 0:85855ecd3257 145 * Wrapper macro to write an array of values to a uint8_t register
ADIJake 0:85855ecd3257 146 * NOTE - this is intended only for writing to a keyhole data register
ADIJake 0:85855ecd3257 147 */
Vkadaba 8:2f2775c34640 148 #define WRITE_REG_U8_ARRAY(_hdev, _arr, _len, _name) \
Vkadaba 6:9d393a9677f4 149 do { \
Vkadaba 8:2f2775c34640 150 ADMW_RESULT _res; \
Vkadaba 8:2f2775c34640 151 _res = admw1001_WriteRegister(_hdev, \
Vkadaba 8:2f2775c34640 152 REG_##_name, \
Vkadaba 6:9d393a9677f4 153 _arr, _len); \
Vkadaba 8:2f2775c34640 154 if (_res != ADMW_SUCCESS) \
Vkadaba 6:9d393a9677f4 155 return _res; \
ADIJake 0:85855ecd3257 156 } while(false)
ADIJake 0:85855ecd3257 157
ADIJake 0:85855ecd3257 158 /*
ADIJake 0:85855ecd3257 159 * Wrapper macro to read an array of values from a uint8_t register
ADIJake 0:85855ecd3257 160 * NOTE - this is intended only for reading from a keyhole data register
ADIJake 0:85855ecd3257 161 */
Vkadaba 6:9d393a9677f4 162 #define READ_REG_U8_ARRAY(_hdev, _arr, _len, _name) \
Vkadaba 6:9d393a9677f4 163 do { \
Vkadaba 8:2f2775c34640 164 ADMW_RESULT _res; \
Vkadaba 8:2f2775c34640 165 _res = admw1001_ReadRegister((_hdev), \
Vkadaba 8:2f2775c34640 166 REG##_name, \
Vkadaba 6:9d393a9677f4 167 _arr, _len); \
Vkadaba 8:2f2775c34640 168 if (_res != ADMW_SUCCESS) \
Vkadaba 6:9d393a9677f4 169 return _res; \
ADIJake 0:85855ecd3257 170 } while(false)
ADIJake 0:85855ecd3257 171
Vkadaba 8:2f2775c34640 172 #define ADMW1001_CHANNEL_IS_ADC(c) \
Vkadaba 8:2f2775c34640 173 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL)
Vkadaba 6:9d393a9677f4 174
Vkadaba 8:2f2775c34640 175 #define ADMW1001_CHANNEL_IS_ADC_CJC(c) \
Vkadaba 8:2f2775c34640 176 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 177
Vkadaba 8:2f2775c34640 178 #define ADMW1001_CHANNEL_IS_ADC_SENSOR(c) \
Vkadaba 8:2f2775c34640 179 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 180
Vkadaba 8:2f2775c34640 181 #define ADMW1001_CHANNEL_IS_ADC_VOLTAGE(c) \
Vkadaba 8:2f2775c34640 182 ((c) == ADMW1001_CH_ID_ANLG_1_DIFFERENTIAL || ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL)
Vkadaba 6:9d393a9677f4 183
Vkadaba 8:2f2775c34640 184 #define ADMW1001_CHANNEL_IS_ADC_CURRENT(c) \
Vkadaba 8:2f2775c34640 185 ((c) == ADMW1001_CH_ID_ANLG_1_UNIVERSAL || (c) == ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 186
Vkadaba 8:2f2775c34640 187 #define ADMW1001_CHANNEL_IS_VIRTUAL(c) \
Vkadaba 8:2f2775c34640 188 ((c) == ADMW1001_CH_ID_DIG_SPI_1 || (c) == ADMW1001_CH_ID_DIG_SPI_2)
ADIJake 0:85855ecd3257 189
Vkadaba 32:52445bef314d 190 //typedef struct {
Vkadaba 32:52445bef314d 191 // unsigned nDeviceIndex;
Vkadaba 32:52445bef314d 192 // ADMW_SPI_HANDLE hSpi;
Vkadaba 32:52445bef314d 193 // ADMW_GPIO_HANDLE hGpio;
Vkadaba 32:52445bef314d 194 //
Vkadaba 32:52445bef314d 195 //} ADMW_DEVICE_CONTEXT;
Vkadaba 5:0728bde67bdb 196
Vkadaba 5:0728bde67bdb 197 static ADMW_DEVICE_CONTEXT gDeviceCtx[ADMW_PLATFORM_MAX_DEVICES];
ADIJake 0:85855ecd3257 198
ADIJake 0:85855ecd3257 199 /*
Vkadaba 5:0728bde67bdb 200 * Open an ADMW device instance.
ADIJake 0:85855ecd3257 201 */
Vkadaba 5:0728bde67bdb 202 ADMW_RESULT admw_Open(
Vkadaba 8:2f2775c34640 203 unsigned const nDeviceIndex,
Vkadaba 5:0728bde67bdb 204 ADMW_CONNECTION * const pConnectionInfo,
Vkadaba 5:0728bde67bdb 205 ADMW_DEVICE_HANDLE * const phDevice)
ADIJake 0:85855ecd3257 206 {
Vkadaba 5:0728bde67bdb 207 ADMW_DEVICE_CONTEXT *pCtx;
Vkadaba 5:0728bde67bdb 208 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 209
Vkadaba 5:0728bde67bdb 210 if (nDeviceIndex >= ADMW_PLATFORM_MAX_DEVICES)
Vkadaba 5:0728bde67bdb 211 return ADMW_INVALID_DEVICE_NUM;
ADIJake 0:85855ecd3257 212
ADIJake 0:85855ecd3257 213 pCtx = &gDeviceCtx[nDeviceIndex];
ADIJake 0:85855ecd3257 214 pCtx->nDeviceIndex = nDeviceIndex;
ADIJake 0:85855ecd3257 215
Vkadaba 5:0728bde67bdb 216 eRet = admw_LogOpen(&pConnectionInfo->log);
Vkadaba 5:0728bde67bdb 217 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 218 return eRet;
ADIJake 0:85855ecd3257 219
Vkadaba 5:0728bde67bdb 220 eRet = admw_GpioOpen(&pConnectionInfo->gpio, &pCtx->hGpio);
Vkadaba 5:0728bde67bdb 221 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 222 return eRet;
ADIJake 0:85855ecd3257 223
Vkadaba 5:0728bde67bdb 224 eRet = admw_SpiOpen(&pConnectionInfo->spi, &pCtx->hSpi);
Vkadaba 5:0728bde67bdb 225 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 226 return eRet;
ADIJake 0:85855ecd3257 227
ADIJake 0:85855ecd3257 228 *phDevice = pCtx;
Vkadaba 5:0728bde67bdb 229 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 230 }
ADIJake 0:85855ecd3257 231
ADIJake 0:85855ecd3257 232 /*
ADIJake 0:85855ecd3257 233 * Get the current state of the specified GPIO input signal.
ADIJake 0:85855ecd3257 234 */
Vkadaba 5:0728bde67bdb 235 ADMW_RESULT admw_GetGpioState(
Vkadaba 5:0728bde67bdb 236 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 237 ADMW_GPIO_PIN const ePinId,
ADIJake 0:85855ecd3257 238 bool * const pbAsserted)
ADIJake 0:85855ecd3257 239 {
Vkadaba 5:0728bde67bdb 240 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 241
Vkadaba 5:0728bde67bdb 242 return admw_GpioGet(pCtx->hGpio, ePinId, pbAsserted);
ADIJake 0:85855ecd3257 243 }
ADIJake 0:85855ecd3257 244
ADIJake 0:85855ecd3257 245 /*
ADIJake 0:85855ecd3257 246 * Register an application-defined callback function for GPIO interrupts.
ADIJake 0:85855ecd3257 247 */
Vkadaba 5:0728bde67bdb 248 ADMW_RESULT admw_RegisterGpioCallback(
Vkadaba 5:0728bde67bdb 249 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 250 ADMW_GPIO_PIN const ePinId,
Vkadaba 5:0728bde67bdb 251 ADMW_GPIO_CALLBACK const callbackFunction,
ADIJake 0:85855ecd3257 252 void * const pCallbackParam)
ADIJake 0:85855ecd3257 253 {
Vkadaba 5:0728bde67bdb 254 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
ADIJake 0:85855ecd3257 255
Vkadaba 23:bb685f35b08b 256 if (callbackFunction) {
Vkadaba 5:0728bde67bdb 257 return admw_GpioIrqEnable(pCtx->hGpio, ePinId, callbackFunction,
Vkadaba 23:bb685f35b08b 258 pCallbackParam);
Vkadaba 23:bb685f35b08b 259 } else {
Vkadaba 5:0728bde67bdb 260 return admw_GpioIrqDisable(pCtx->hGpio, ePinId);
ADIJake 0:85855ecd3257 261 }
ADIJake 0:85855ecd3257 262 }
ADIJake 0:85855ecd3257 263
Vkadaba 8:2f2775c34640 264 /*!
Vkadaba 8:2f2775c34640 265 * @brief Reset the specified ADMW device.
Vkadaba 8:2f2775c34640 266 *
Vkadaba 8:2f2775c34640 267 * @param[in] hDevice - handle of ADMW device to reset.
Vkadaba 8:2f2775c34640 268 *
Vkadaba 8:2f2775c34640 269 * @return Status
Vkadaba 8:2f2775c34640 270 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 8:2f2775c34640 271 * - #ADMW_FAILURE If reseet faisl
Vkadaba 8:2f2775c34640 272 *
Vkadaba 23:bb685f35b08b 273 * @details Toggle reset pin of the ADMW device low for a
Vkadaba 8:2f2775c34640 274 * minimum of 4 usec.
Vkadaba 8:2f2775c34640 275 *
ADIJake 0:85855ecd3257 276 */
Vkadaba 8:2f2775c34640 277 ADMW_RESULT admw_Reset(ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 278 {
Vkadaba 5:0728bde67bdb 279 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 280 ADMW_RESULT eRet;
ADIJake 0:85855ecd3257 281
ADIJake 0:85855ecd3257 282 /* Pulse the Reset GPIO pin low for a minimum of 4 microseconds */
Vkadaba 5:0728bde67bdb 283 eRet = admw_GpioSet(pCtx->hGpio, ADMW_GPIO_PIN_RESET, false);
Vkadaba 5:0728bde67bdb 284 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 285 return eRet;
ADIJake 0:85855ecd3257 286
Vkadaba 5:0728bde67bdb 287 admw_TimeDelayUsec(4);
Vkadaba 5:0728bde67bdb 288
Vkadaba 5:0728bde67bdb 289 eRet = admw_GpioSet(pCtx->hGpio, ADMW_GPIO_PIN_RESET, true);
Vkadaba 5:0728bde67bdb 290 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 291 return eRet;
ADIJake 0:85855ecd3257 292
Vkadaba 5:0728bde67bdb 293 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 294 }
ADIJake 0:85855ecd3257 295
ADIJake 0:85855ecd3257 296 /*!
Vkadaba 8:2f2775c34640 297 * @brief Get general status of ADMW module.
ADIJake 0:85855ecd3257 298 *
ADIJake 0:85855ecd3257 299 * @param[in]
ADIJake 0:85855ecd3257 300 * @param[out] pStatus : Pointer to CORE Status struct.
ADIJake 0:85855ecd3257 301 *
ADIJake 0:85855ecd3257 302 * @return Status
Vkadaba 5:0728bde67bdb 303 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 5:0728bde67bdb 304 * - #ADMW_FAILURE If status register read fails.
ADIJake 0:85855ecd3257 305 *
Vkadaba 8:2f2775c34640 306 * @details Read the general status register for the ADMW
ADIJake 0:85855ecd3257 307 * module. Indicates Error, Alert conditions, data ready
ADIJake 0:85855ecd3257 308 * and command running.
ADIJake 0:85855ecd3257 309 *
ADIJake 0:85855ecd3257 310 */
Vkadaba 5:0728bde67bdb 311 ADMW_RESULT admw_GetStatus(
Vkadaba 5:0728bde67bdb 312 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 313 ADMW_STATUS * const pStatus)
ADIJake 0:85855ecd3257 314 {
Vkadaba 8:2f2775c34640 315 ADMW_CORE_Status_t statusReg;
ADIJake 0:85855ecd3257 316 READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS);
ADIJake 0:85855ecd3257 317
ADIJake 0:85855ecd3257 318 memset(pStatus, 0, sizeof(*pStatus));
ADIJake 0:85855ecd3257 319
ADIJake 0:85855ecd3257 320 if (!statusReg.Cmd_Running) /* Active-low, so invert it */
Vkadaba 5:0728bde67bdb 321 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_BUSY;
ADIJake 0:85855ecd3257 322 if (statusReg.Drdy)
Vkadaba 5:0728bde67bdb 323 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_DATAREADY;
ADIJake 0:85855ecd3257 324 if (statusReg.FIFO_Error)
Vkadaba 5:0728bde67bdb 325 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_FIFO_ERROR;
Vkadaba 23:bb685f35b08b 326 if (statusReg.Alert_Active) {
Vkadaba 5:0728bde67bdb 327 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_ALERT;
Vkadaba 5:0728bde67bdb 328
Vkadaba 8:2f2775c34640 329 ADMW_CORE_Channel_Alert_Status_t channelAlertStatusReg;
ADIJake 0:85855ecd3257 330 READ_REG_U16(hDevice, channelAlertStatusReg.VALUE16,
ADIJake 0:85855ecd3257 331 CORE_CHANNEL_ALERT_STATUS);
ADIJake 0:85855ecd3257 332
Vkadaba 23:bb685f35b08b 333 for (unsigned i = 0; i < ADMW1001_MAX_CHANNELS; i++) {
Vkadaba 23:bb685f35b08b 334 if (channelAlertStatusReg.VALUE16 & (1 << i)) {
Vkadaba 8:2f2775c34640 335 ADMW_CORE_Alert_Detail_Ch_t alertDetailReg;
ADIJake 0:85855ecd3257 336 READ_REG_U16(hDevice, alertDetailReg.VALUE16,
ADIJake 0:85855ecd3257 337 CORE_ALERT_DETAIL_CHn(i));
ADIJake 0:85855ecd3257 338
Vkadaba 32:52445bef314d 339 if (alertDetailReg.ADC_Near_Overrange)
Vkadaba 32:52445bef314d 340 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_ADC_NEAR_OVERRANGE;
Vkadaba 32:52445bef314d 341 if (alertDetailReg.Sensor_UnderRange)
Vkadaba 32:52445bef314d 342 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_SENSOR_UNDERRANGE;
Vkadaba 32:52445bef314d 343 if (alertDetailReg.Sensor_OverRange)
Vkadaba 32:52445bef314d 344 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_SENSOR_OVERRANGE ;
Vkadaba 32:52445bef314d 345 if (alertDetailReg.CJ_Soft_Fault)
Vkadaba 32:52445bef314d 346 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_CJ_SOFT_FAULT ;
Vkadaba 32:52445bef314d 347 if (alertDetailReg.CJ_Hard_Fault)
Vkadaba 32:52445bef314d 348 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_CJ_HARD_FAULT;
Vkadaba 32:52445bef314d 349 if (alertDetailReg.ADC_Input_OverRange)
Vkadaba 32:52445bef314d 350 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_ADC_INPUT_OVERRANGE ;
Vkadaba 32:52445bef314d 351 if (alertDetailReg.Sensor_HardFault)
Vkadaba 32:52445bef314d 352 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_SENSOR_HARDFAULT;
Vkadaba 32:52445bef314d 353
ADIJake 0:85855ecd3257 354 }
ADIJake 0:85855ecd3257 355 }
ADIJake 0:85855ecd3257 356
Vkadaba 32:52445bef314d 357 if (statusReg.Configuration_Error)
Vkadaba 5:0728bde67bdb 358 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_CONFIG_ERROR;
Vkadaba 32:52445bef314d 359 if (statusReg.LUT_Error)
Vkadaba 5:0728bde67bdb 360 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_LUT_ERROR;
ADIJake 0:85855ecd3257 361 }
ADIJake 0:85855ecd3257 362
Vkadaba 23:bb685f35b08b 363 if (statusReg.Error) {
Vkadaba 5:0728bde67bdb 364 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_ERROR;
Vkadaba 5:0728bde67bdb 365
Vkadaba 8:2f2775c34640 366 ADMW_CORE_Error_Code_t errorCodeReg;
ADIJake 0:85855ecd3257 367 READ_REG_U16(hDevice, errorCodeReg.VALUE16, CORE_ERROR_CODE);
ADIJake 0:85855ecd3257 368 pStatus->errorCode = errorCodeReg.Error_Code;
ADIJake 0:85855ecd3257 369
ADIJake 0:85855ecd3257 370 }
Vkadaba 5:0728bde67bdb 371 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 372 }
ADIJake 0:85855ecd3257 373
Vkadaba 5:0728bde67bdb 374 ADMW_RESULT admw_GetCommandRunningState(
Vkadaba 5:0728bde67bdb 375 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 376 bool *pbCommandRunning)
ADIJake 0:85855ecd3257 377 {
Vkadaba 8:2f2775c34640 378 ADMW_CORE_Status_t statusReg;
ADIJake 0:85855ecd3257 379
ADIJake 0:85855ecd3257 380 READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS);
ADIJake 0:85855ecd3257 381
ADIJake 0:85855ecd3257 382 /* We should never normally see 0xFF here if the module is operational */
ADIJake 0:85855ecd3257 383 if (statusReg.VALUE8 == 0xFF)
Vkadaba 5:0728bde67bdb 384 return ADMW_ERR_NOT_INITIALIZED;
ADIJake 0:85855ecd3257 385
ADIJake 0:85855ecd3257 386 *pbCommandRunning = !statusReg.Cmd_Running; /* Active-low, so invert it */
ADIJake 0:85855ecd3257 387
Vkadaba 5:0728bde67bdb 388 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 389 }
ADIJake 0:85855ecd3257 390
Vkadaba 32:52445bef314d 391 ADMW_RESULT deviceInformation(ADMW_DEVICE_HANDLE hDevice)
Vkadaba 32:52445bef314d 392 {
Vkadaba 32:52445bef314d 393 uint16_t nAddress = REG_CORE_REVISION;
Vkadaba 32:52445bef314d 394 char nData[ADMW_VERSION_REG_VAL_SIZE]; //4 Bytes of version register data
Vkadaba 32:52445bef314d 395 ADMW_RESULT res;
Vkadaba 32:52445bef314d 396 res=admw1001_ReadRegister(hDevice,nAddress,nData,sizeof(nData));
Vkadaba 32:52445bef314d 397 if(res != ADMW_SUCCESS) {
Vkadaba 32:52445bef314d 398 //if reading version register failed, sending 00.00.0000 as ADMW1001 firmware version
Vkadaba 32:52445bef314d 399 //strcat(nData, ADMW1001_FIRMWARE_VERSION_DEFAULT);
Vkadaba 32:52445bef314d 400 ADMW_LOG_INFO("Firmware Version Id is %X.%X",nData[2],nData[0]);
Vkadaba 32:52445bef314d 401 } else {
Vkadaba 32:52445bef314d 402 char buffer[ADMW_FORMATTED_VERSION_SIZE]; //00.00.0000 8 digits + 2 Bytes "." + one null character at the end
Vkadaba 32:52445bef314d 403 strcat(nData, buffer);
Vkadaba 32:52445bef314d 404 ADMW_LOG_INFO("Firmware Version Id is %X.%X",nData[2],nData[0]);
Vkadaba 32:52445bef314d 405 }
Vkadaba 32:52445bef314d 406 return ADMW_SUCCESS;
Vkadaba 32:52445bef314d 407 }
Vkadaba 5:0728bde67bdb 408 static ADMW_RESULT executeCommand(
Vkadaba 5:0728bde67bdb 409 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 8:2f2775c34640 410 ADMW_CORE_Command_Special_Command const command,
ADIJake 0:85855ecd3257 411 bool const bWaitForCompletion)
ADIJake 0:85855ecd3257 412 {
Vkadaba 8:2f2775c34640 413 ADMW_CORE_Command_t commandReg;
ADIJake 0:85855ecd3257 414 bool bCommandRunning;
Vkadaba 5:0728bde67bdb 415 ADMW_RESULT eRet;
ADIJake 0:85855ecd3257 416
ADIJake 0:85855ecd3257 417 /*
ADIJake 0:85855ecd3257 418 * Don't allow another command to be issued if one is already running, but
Vkadaba 6:9d393a9677f4 419 * make an exception for ENUM_CORE_COMMAND_NOP which can be used to
ADIJake 0:85855ecd3257 420 * request a running command to be stopped (e.g. continuous measurement)
ADIJake 0:85855ecd3257 421 */
Vkadaba 23:bb685f35b08b 422 if (command != ENUM_CORE_COMMAND_NOP) {
Vkadaba 5:0728bde67bdb 423 eRet = admw_GetCommandRunningState(hDevice, &bCommandRunning);
ADIJake 0:85855ecd3257 424 if (eRet)
ADIJake 0:85855ecd3257 425 return eRet;
ADIJake 0:85855ecd3257 426
ADIJake 0:85855ecd3257 427 if (bCommandRunning)
Vkadaba 5:0728bde67bdb 428 return ADMW_IN_USE;
ADIJake 0:85855ecd3257 429 }
ADIJake 0:85855ecd3257 430
ADIJake 0:85855ecd3257 431 commandReg.Special_Command = command;
ADIJake 0:85855ecd3257 432 WRITE_REG_U8(hDevice, commandReg.VALUE8, CORE_COMMAND);
ADIJake 0:85855ecd3257 433
Vkadaba 23:bb685f35b08b 434 if (bWaitForCompletion) {
ADIJake 0:85855ecd3257 435 do {
ADIJake 0:85855ecd3257 436 /* Allow a minimum 50usec delay for status update before checking */
Vkadaba 5:0728bde67bdb 437 admw_TimeDelayUsec(50);
Vkadaba 5:0728bde67bdb 438
Vkadaba 5:0728bde67bdb 439 eRet = admw_GetCommandRunningState(hDevice, &bCommandRunning);
ADIJake 0:85855ecd3257 440 if (eRet)
ADIJake 0:85855ecd3257 441 return eRet;
ADIJake 0:85855ecd3257 442 } while (bCommandRunning);
ADIJake 0:85855ecd3257 443 }
ADIJake 0:85855ecd3257 444
Vkadaba 5:0728bde67bdb 445 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 446 }
ADIJake 0:85855ecd3257 447
Vkadaba 5:0728bde67bdb 448 ADMW_RESULT admw_ApplyConfigUpdates(
Vkadaba 5:0728bde67bdb 449 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 450 {
Vkadaba 5:0728bde67bdb 451 return executeCommand(hDevice, CORE_COMMAND_LATCH_CONFIG, true);
ADIJake 0:85855ecd3257 452 }
ADIJake 0:85855ecd3257 453
ADIJake 0:85855ecd3257 454 /*!
ADIJake 0:85855ecd3257 455 * @brief Start a measurement cycle.
ADIJake 0:85855ecd3257 456 *
ADIJake 0:85855ecd3257 457 * @param[out]
ADIJake 0:85855ecd3257 458 *
ADIJake 0:85855ecd3257 459 * @return Status
Vkadaba 5:0728bde67bdb 460 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 5:0728bde67bdb 461 * - #ADMW_FAILURE
ADIJake 0:85855ecd3257 462 *
ADIJake 0:85855ecd3257 463 * @details Sends the latch config command. Configuration for channels in
ADIJake 0:85855ecd3257 464 * conversion cycle should be completed before this function.
ADIJake 0:85855ecd3257 465 * Channel enabled bit should be set before this function.
ADIJake 0:85855ecd3257 466 * Starts a conversion and configures the format of the sample.
ADIJake 0:85855ecd3257 467 *
ADIJake 0:85855ecd3257 468 */
Vkadaba 5:0728bde67bdb 469 ADMW_RESULT admw_StartMeasurement(
Vkadaba 5:0728bde67bdb 470 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 471 ADMW_MEASUREMENT_MODE const eMeasurementMode)
ADIJake 0:85855ecd3257 472 {
Vkadaba 23:bb685f35b08b 473 switch (eMeasurementMode) {
Vkadaba 23:bb685f35b08b 474 case ADMW_MEASUREMENT_MODE_NORMAL:
Vkadaba 23:bb685f35b08b 475 return executeCommand(hDevice, CORE_COMMAND_CONVERT_WITH_RAW, false);
Vkadaba 23:bb685f35b08b 476 case ADMW_MEASUREMENT_MODE_OMIT_RAW:
Vkadaba 23:bb685f35b08b 477 return executeCommand(hDevice, CORE_COMMAND_CONVERT, false);
Vkadaba 23:bb685f35b08b 478 default:
Vkadaba 23:bb685f35b08b 479 ADMW_LOG_ERROR("Invalid measurement mode %d specified",
Vkadaba 23:bb685f35b08b 480 eMeasurementMode);
Vkadaba 23:bb685f35b08b 481 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 482 }
ADIJake 0:85855ecd3257 483 }
ADIJake 0:85855ecd3257 484
ADIJake 0:85855ecd3257 485 /*
ADIJake 0:85855ecd3257 486 * Store the configuration settings to persistent memory on the device.
ADIJake 0:85855ecd3257 487 * The settings can be saved to 4 different flash memory areas (slots).
ADIJake 0:85855ecd3257 488 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 489 * Do not power down the device while this command is running.
ADIJake 0:85855ecd3257 490 */
Vkadaba 5:0728bde67bdb 491 ADMW_RESULT admw_SaveConfig(
Vkadaba 5:0728bde67bdb 492 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 493 ADMW_USER_CONFIG_SLOT const eSlotId)
ADIJake 0:85855ecd3257 494 {
Vkadaba 23:bb685f35b08b 495 switch (eSlotId) {
Vkadaba 5:0728bde67bdb 496 case ADMW_FLASH_CONFIG_1:
Vkadaba 5:0728bde67bdb 497 return executeCommand(hDevice, CORE_COMMAND_SAVE_CONFIG_1, true);
ADIJake 0:85855ecd3257 498 default:
Vkadaba 5:0728bde67bdb 499 ADMW_LOG_ERROR("Invalid user config target slot %d specified",
Vkadaba 23:bb685f35b08b 500 eSlotId);
Vkadaba 5:0728bde67bdb 501 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 502 }
ADIJake 0:85855ecd3257 503 }
ADIJake 0:85855ecd3257 504
ADIJake 0:85855ecd3257 505 /*
ADIJake 0:85855ecd3257 506 * Restore the configuration settings from persistent memory on the device.
ADIJake 0:85855ecd3257 507 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 508 */
Vkadaba 5:0728bde67bdb 509 ADMW_RESULT admw_RestoreConfig(
Vkadaba 5:0728bde67bdb 510 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 511 ADMW_USER_CONFIG_SLOT const eSlotId)
ADIJake 0:85855ecd3257 512 {
Vkadaba 23:bb685f35b08b 513 switch (eSlotId) {
Vkadaba 5:0728bde67bdb 514 case ADMW_FLASH_CONFIG_1:
Vkadaba 5:0728bde67bdb 515 return executeCommand(hDevice, CORE_COMMAND_LOAD_CONFIG_1, true);
ADIJake 0:85855ecd3257 516 default:
Vkadaba 5:0728bde67bdb 517 ADMW_LOG_ERROR("Invalid user config source slot %d specified",
Vkadaba 23:bb685f35b08b 518 eSlotId);
Vkadaba 5:0728bde67bdb 519 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 520 }
ADIJake 0:85855ecd3257 521 }
ADIJake 0:85855ecd3257 522
ADIJake 0:85855ecd3257 523 /*
ADIJake 0:85855ecd3257 524 * Store the LUT data to persistent memory on the device.
ADIJake 0:85855ecd3257 525 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 526 * Do not power down the device while this command is running.
ADIJake 0:85855ecd3257 527 */
Vkadaba 5:0728bde67bdb 528 ADMW_RESULT admw_SaveLutData(
Vkadaba 5:0728bde67bdb 529 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 530 {
Vkadaba 5:0728bde67bdb 531 return executeCommand(hDevice, CORE_COMMAND_SAVE_LUT, true);
ADIJake 0:85855ecd3257 532 }
ADIJake 0:85855ecd3257 533
ADIJake 0:85855ecd3257 534 /*
ADIJake 0:85855ecd3257 535 * Restore the LUT data from persistent memory on the device.
ADIJake 0:85855ecd3257 536 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 537 */
Vkadaba 5:0728bde67bdb 538 ADMW_RESULT admw_RestoreLutData(
Vkadaba 5:0728bde67bdb 539 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 540 {
Vkadaba 5:0728bde67bdb 541 return executeCommand(hDevice, CORE_COMMAND_LOAD_LUT, true);
ADIJake 0:85855ecd3257 542 }
ADIJake 0:85855ecd3257 543
ADIJake 0:85855ecd3257 544 /*
ADIJake 0:85855ecd3257 545 * Stop the measurement cycles on the device.
ADIJake 0:85855ecd3257 546 * To be used only if a measurement command is currently running.
ADIJake 0:85855ecd3257 547 */
Vkadaba 5:0728bde67bdb 548 ADMW_RESULT admw_StopMeasurement(
Vkadaba 5:0728bde67bdb 549 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 550 {
Vkadaba 5:0728bde67bdb 551 return executeCommand(hDevice, CORE_COMMAND_NOP, true);
ADIJake 0:85855ecd3257 552 }
ADIJake 0:85855ecd3257 553
ADIJake 0:85855ecd3257 554 /*
Vkadaba 32:52445bef314d 555 *
Vkadaba 32:52445bef314d 556 */
Vkadaba 32:52445bef314d 557 ADMW_RESULT admw1001_sendRun( ADMW_DEVICE_HANDLE const hDevice)
Vkadaba 32:52445bef314d 558 {
Vkadaba 32:52445bef314d 559 bool bitCommand;
Vkadaba 32:52445bef314d 560 ADMW_RESULT eRet;
Vkadaba 32:52445bef314d 561 uint8_t pinreg = 0x1;
Vkadaba 32:52445bef314d 562
Vkadaba 32:52445bef314d 563 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 32:52445bef314d 564 static uint8_t DataBuffer[SPI_BUFFER_SIZE] = {0};
Vkadaba 32:52445bef314d 565 uint16_t nSize;
Vkadaba 32:52445bef314d 566
Vkadaba 32:52445bef314d 567 //Construct Read Status command
Vkadaba 32:52445bef314d 568 DataBuffer[0] = 0x07;
Vkadaba 32:52445bef314d 569 DataBuffer[1] = 0x0E; //Packet ID
Vkadaba 32:52445bef314d 570
Vkadaba 32:52445bef314d 571 DataBuffer[2] = 0x00;
Vkadaba 32:52445bef314d 572 DataBuffer[3] = 0x00; //Data words
Vkadaba 32:52445bef314d 573
Vkadaba 32:52445bef314d 574 DataBuffer[4] = 0x45;
Vkadaba 32:52445bef314d 575 DataBuffer[5] = 0x00; //Command ID
Vkadaba 32:52445bef314d 576
Vkadaba 32:52445bef314d 577 DataBuffer[6] = 0x00;
Vkadaba 32:52445bef314d 578 DataBuffer[7] = 0x50;
Vkadaba 32:52445bef314d 579 DataBuffer[8] = 0x00;
Vkadaba 32:52445bef314d 580 DataBuffer[9] = 0x00; //Address
Vkadaba 32:52445bef314d 581
Vkadaba 32:52445bef314d 582 DataBuffer[10] = 0x95;
Vkadaba 32:52445bef314d 583 DataBuffer[11] = 0x00;
Vkadaba 32:52445bef314d 584 DataBuffer[12] = 0x00;
Vkadaba 32:52445bef314d 585 DataBuffer[13] = 0x00; //Checksum
Vkadaba 32:52445bef314d 586
Vkadaba 32:52445bef314d 587 nSize = SFL_READ_STATUS_HDR_SIZE;
Vkadaba 32:52445bef314d 588
Vkadaba 32:52445bef314d 589 do {
Vkadaba 32:52445bef314d 590 // Get the SFL command irq pin to check if SFL is ready to receive commands
Vkadaba 32:52445bef314d 591 // Status pin is not checked since SFL is just booted, there should not be any issue with SFL
Vkadaba 32:52445bef314d 592 eRet = admw_GetGpioState( hDevice, ADMW_GPIO_PIN_DATAREADY, &bitCommand );
Vkadaba 32:52445bef314d 593 if( eRet != ADMW_SUCCESS) {
Vkadaba 32:52445bef314d 594 return eRet;
Vkadaba 32:52445bef314d 595 }
Vkadaba 32:52445bef314d 596
Vkadaba 32:52445bef314d 597 // Command IRQ pin should be low and Status IRQ pin should be high for SFL to be in good state and ready to recieve commands
Vkadaba 32:52445bef314d 598 // pinreg == '0x00' - Error occured in SFL
Vkadaba 32:52445bef314d 599 // pinreg == '0x01' - SFL is ready to recieve commands
Vkadaba 32:52445bef314d 600 // pinreg == '0x02' - Error occured in handling any commands in SFL
Vkadaba 32:52445bef314d 601 // pinreg == '0x03' - SFL not booted
Vkadaba 32:52445bef314d 602
Vkadaba 32:52445bef314d 603 pinreg = (bitCommand);
Vkadaba 32:52445bef314d 604
Vkadaba 32:52445bef314d 605 } while(pinreg != 0x0u);
Vkadaba 32:52445bef314d 606
Vkadaba 32:52445bef314d 607 eRet = admw_SpiTransfer(pCtx->hSpi, DataBuffer, NULL,
Vkadaba 32:52445bef314d 608 nSize, false);
Vkadaba 32:52445bef314d 609
Vkadaba 32:52445bef314d 610 return eRet;
Vkadaba 32:52445bef314d 611 }
Vkadaba 32:52445bef314d 612
Vkadaba 32:52445bef314d 613 /*
ADIJake 0:85855ecd3257 614 * Read a set of data samples from the device.
ADIJake 0:85855ecd3257 615 * This may be called at any time.
ADIJake 0:85855ecd3257 616 */
Vkadaba 32:52445bef314d 617
Vkadaba 5:0728bde67bdb 618 ADMW_RESULT admw_GetData(
Vkadaba 5:0728bde67bdb 619 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 620 ADMW_MEASUREMENT_MODE const eMeasurementMode,
Vkadaba 5:0728bde67bdb 621 ADMW_DATA_SAMPLE * const pSamples,
ADIJake 0:85855ecd3257 622 uint8_t const nBytesPerSample,
ADIJake 0:85855ecd3257 623 uint32_t const nRequested,
ADIJake 0:85855ecd3257 624 uint32_t * const pnReturned)
ADIJake 0:85855ecd3257 625 {
Vkadaba 5:0728bde67bdb 626 ADMW1001_Sensor_Result_t sensorResult;
Vkadaba 5:0728bde67bdb 627 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 628 uint16_t command = ADMW1001_HOST_COMMS_READ_CMD |
Vkadaba 23:bb685f35b08b 629 (REG_CORE_DATA_FIFO & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 630 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 631 command >> 8,
ADIJake 0:85855ecd3257 632 command & 0xFF
ADIJake 0:85855ecd3257 633 };
ADIJake 0:85855ecd3257 634 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 635 unsigned nValidSamples = 0;
Vkadaba 5:0728bde67bdb 636 ADMW_RESULT eRet = ADMW_SUCCESS;
ADIJake 0:85855ecd3257 637
ADIJake 0:85855ecd3257 638 do {
Vkadaba 5:0728bde67bdb 639 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 640 sizeof(command), false);
Vkadaba 23:bb685f35b08b 641 if (eRet) {
Vkadaba 5:0728bde67bdb 642 ADMW_LOG_ERROR("Failed to send read command for FIFO register");
ADIJake 0:85855ecd3257 643 return eRet;
ADIJake 0:85855ecd3257 644 }
Vkadaba 5:0728bde67bdb 645 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 646 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 647 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
ADIJake 0:85855ecd3257 648
Vkadaba 23:bb685f35b08b 649 for (unsigned i = 0; i < nRequested; i++) {
ADIJake 0:85855ecd3257 650 bool bHoldCs = true;
ADIJake 0:85855ecd3257 651
ADIJake 0:85855ecd3257 652 /* Keep the CS signal asserted for all but the last sample */
ADIJake 0:85855ecd3257 653 if ((i + 1) == nRequested)
ADIJake 0:85855ecd3257 654 bHoldCs = false;
ADIJake 0:85855ecd3257 655
ADIJake 0:85855ecd3257 656 getDataCnt++;
ADIJake 0:85855ecd3257 657
Vkadaba 5:0728bde67bdb 658 eRet = admw_SpiTransfer(pCtx->hSpi, NULL, &sensorResult,
Vkadaba 23:bb685f35b08b 659 nBytesPerSample, bHoldCs);
Vkadaba 23:bb685f35b08b 660 if (eRet) {
Vkadaba 5:0728bde67bdb 661 ADMW_LOG_ERROR("Failed to read data from FIFO register");
ADIJake 0:85855ecd3257 662 return eRet;
ADIJake 0:85855ecd3257 663 }
ADIJake 0:85855ecd3257 664
Vkadaba 23:bb685f35b08b 665 if (! sensorResult.Ch_Valid) {
ADIJake 0:85855ecd3257 666 /*
ADIJake 0:85855ecd3257 667 * Reading an invalid sample indicates that there are no
ADIJake 0:85855ecd3257 668 * more samples available or we've lost sync with the device.
ADIJake 0:85855ecd3257 669 * In the latter case, it might be recoverable, but return here
ADIJake 0:85855ecd3257 670 * to let the application check the device status and decide itself.
ADIJake 0:85855ecd3257 671 */
Vkadaba 5:0728bde67bdb 672 eRet = ADMW_INCOMPLETE;
ADIJake 0:85855ecd3257 673 break;
ADIJake 0:85855ecd3257 674 }
ADIJake 0:85855ecd3257 675
Vkadaba 5:0728bde67bdb 676 ADMW_DATA_SAMPLE *pSample = &pSamples[nValidSamples];
Vkadaba 5:0728bde67bdb 677
Vkadaba 5:0728bde67bdb 678 pSample->status = (ADMW_DEVICE_STATUS_FLAGS)0;
ADIJake 0:85855ecd3257 679 if (sensorResult.Ch_Error)
Vkadaba 5:0728bde67bdb 680 pSample->status |= ADMW_DEVICE_STATUS_ERROR;
ADIJake 0:85855ecd3257 681 if (sensorResult.Ch_Alert)
Vkadaba 5:0728bde67bdb 682 pSample->status |= ADMW_DEVICE_STATUS_ALERT;
ADIJake 0:85855ecd3257 683
ADIJake 0:85855ecd3257 684 if (sensorResult.Ch_Raw)
ADIJake 0:85855ecd3257 685 pSample->rawValue = sensorResult.Raw_Sample;
ADIJake 0:85855ecd3257 686 else
ADIJake 0:85855ecd3257 687 pSample->rawValue = 0;
ADIJake 0:85855ecd3257 688
ADIJake 0:85855ecd3257 689 pSample->channelId = sensorResult.Channel_ID;
ADIJake 0:85855ecd3257 690 pSample->processedValue = sensorResult.Sensor_Result;
ADIJake 0:85855ecd3257 691
ADIJake 0:85855ecd3257 692 nValidSamples++;
ADIJake 0:85855ecd3257 693
Vkadaba 5:0728bde67bdb 694 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
ADIJake 0:85855ecd3257 695 }
ADIJake 0:85855ecd3257 696 *pnReturned = nValidSamples;
ADIJake 0:85855ecd3257 697
ADIJake 0:85855ecd3257 698 return eRet;
ADIJake 0:85855ecd3257 699 }
ADIJake 0:85855ecd3257 700
ADIJake 0:85855ecd3257 701 /*
Vkadaba 5:0728bde67bdb 702 * Close the given ADMW device.
ADIJake 0:85855ecd3257 703 */
Vkadaba 5:0728bde67bdb 704 ADMW_RESULT admw_Close(
Vkadaba 5:0728bde67bdb 705 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 706 {
Vkadaba 5:0728bde67bdb 707 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 708
Vkadaba 5:0728bde67bdb 709 admw_GpioClose(pCtx->hGpio);
Vkadaba 5:0728bde67bdb 710 admw_SpiClose(pCtx->hSpi);
Vkadaba 5:0728bde67bdb 711 admw_LogClose();
Vkadaba 5:0728bde67bdb 712
Vkadaba 5:0728bde67bdb 713 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 714 }
ADIJake 0:85855ecd3257 715
Vkadaba 5:0728bde67bdb 716 ADMW_RESULT admw1001_WriteRegister(
Vkadaba 5:0728bde67bdb 717 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 718 uint16_t nAddress,
ADIJake 0:85855ecd3257 719 void *pData,
ADIJake 0:85855ecd3257 720 unsigned nLength)
ADIJake 0:85855ecd3257 721 {
Vkadaba 5:0728bde67bdb 722 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 723 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 724 uint16_t command = ADMW1001_HOST_COMMS_WRITE_CMD |
Vkadaba 23:bb685f35b08b 725 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 726 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 727 command >> 8,
ADIJake 0:85855ecd3257 728 command & 0xFF
ADIJake 0:85855ecd3257 729 };
ADIJake 0:85855ecd3257 730 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 731
ADIJake 0:85855ecd3257 732 do {
Vkadaba 5:0728bde67bdb 733 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 734 sizeof(command), false);
Vkadaba 23:bb685f35b08b 735 if (eRet) {
Vkadaba 5:0728bde67bdb 736 ADMW_LOG_ERROR("Failed to send write command for register %u",
Vkadaba 23:bb685f35b08b 737 nAddress);
ADIJake 0:85855ecd3257 738 return eRet;
ADIJake 0:85855ecd3257 739 }
ADIJake 0:85855ecd3257 740
Vkadaba 5:0728bde67bdb 741 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 742 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 743 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 5:0728bde67bdb 744
Vkadaba 5:0728bde67bdb 745 eRet = admw_SpiTransfer(pCtx->hSpi, pData, NULL, nLength, false);
Vkadaba 23:bb685f35b08b 746 if (eRet) {
Vkadaba 5:0728bde67bdb 747 ADMW_LOG_ERROR("Failed to write data (%dB) to register %u",
Vkadaba 23:bb685f35b08b 748 nLength, nAddress);
ADIJake 0:85855ecd3257 749 return eRet;
ADIJake 0:85855ecd3257 750 }
ADIJake 0:85855ecd3257 751
Vkadaba 5:0728bde67bdb 752 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 753
Vkadaba 5:0728bde67bdb 754 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 755 }
ADIJake 0:85855ecd3257 756
Vkadaba 6:9d393a9677f4 757 ADMW_RESULT admw1001_Write_Debug_Register(
Vkadaba 6:9d393a9677f4 758 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 6:9d393a9677f4 759 uint16_t nAddress,
Vkadaba 6:9d393a9677f4 760 void *pData,
Vkadaba 6:9d393a9677f4 761 unsigned nLength)
Vkadaba 6:9d393a9677f4 762 {
Vkadaba 6:9d393a9677f4 763 ADMW_RESULT eRet;
Vkadaba 6:9d393a9677f4 764 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 6:9d393a9677f4 765 uint16_t command = ADMW1001_HOST_COMMS_DEBUG_WRITE_CMD |
Vkadaba 23:bb685f35b08b 766 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
Vkadaba 6:9d393a9677f4 767 uint8_t commandData[2] = {
Vkadaba 6:9d393a9677f4 768 command >> 8,
Vkadaba 6:9d393a9677f4 769 command & 0xFF
Vkadaba 6:9d393a9677f4 770 };
Vkadaba 6:9d393a9677f4 771 uint8_t commandResponse[2];
Vkadaba 6:9d393a9677f4 772
Vkadaba 6:9d393a9677f4 773 do {
Vkadaba 6:9d393a9677f4 774 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 775 sizeof(command), false);
Vkadaba 23:bb685f35b08b 776 if (eRet) {
Vkadaba 6:9d393a9677f4 777 ADMW_LOG_ERROR("Failed to send write command for register %u",
Vkadaba 23:bb685f35b08b 778 nAddress);
Vkadaba 6:9d393a9677f4 779 return eRet;
Vkadaba 6:9d393a9677f4 780 }
Vkadaba 6:9d393a9677f4 781
Vkadaba 6:9d393a9677f4 782 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 783 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 6:9d393a9677f4 784 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 6:9d393a9677f4 785
Vkadaba 6:9d393a9677f4 786 eRet = admw_SpiTransfer(pCtx->hSpi, pData, NULL, nLength, false);
Vkadaba 23:bb685f35b08b 787 if (eRet) {
Vkadaba 6:9d393a9677f4 788 ADMW_LOG_ERROR("Failed to write data (%dB) to register %u",
Vkadaba 23:bb685f35b08b 789 nLength, nAddress);
Vkadaba 6:9d393a9677f4 790 return eRet;
Vkadaba 6:9d393a9677f4 791 }
Vkadaba 6:9d393a9677f4 792
Vkadaba 6:9d393a9677f4 793 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 794
Vkadaba 6:9d393a9677f4 795 return ADMW_SUCCESS;
Vkadaba 6:9d393a9677f4 796 }
Vkadaba 5:0728bde67bdb 797 ADMW_RESULT admw1001_ReadRegister(
Vkadaba 5:0728bde67bdb 798 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 799 uint16_t nAddress,
ADIJake 0:85855ecd3257 800 void *pData,
ADIJake 0:85855ecd3257 801 unsigned nLength)
ADIJake 0:85855ecd3257 802 {
Vkadaba 5:0728bde67bdb 803 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 804 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 805 uint16_t command = ADMW1001_HOST_COMMS_READ_CMD |
Vkadaba 23:bb685f35b08b 806 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 807 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 808 command >> 8,
ADIJake 0:85855ecd3257 809 command & 0xFF
ADIJake 0:85855ecd3257 810 };
ADIJake 0:85855ecd3257 811 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 812
ADIJake 0:85855ecd3257 813 do {
Vkadaba 5:0728bde67bdb 814 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 815 sizeof(command), false);
Vkadaba 23:bb685f35b08b 816 if (eRet) {
Vkadaba 5:0728bde67bdb 817 ADMW_LOG_ERROR("Failed to send read command for register %u",
Vkadaba 23:bb685f35b08b 818 nAddress);
ADIJake 0:85855ecd3257 819 return eRet;
ADIJake 0:85855ecd3257 820 }
ADIJake 0:85855ecd3257 821
Vkadaba 5:0728bde67bdb 822 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 823 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 824 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 5:0728bde67bdb 825
Vkadaba 5:0728bde67bdb 826 eRet = admw_SpiTransfer(pCtx->hSpi, NULL, pData, nLength, false);
Vkadaba 23:bb685f35b08b 827 if (eRet) {
Vkadaba 5:0728bde67bdb 828 ADMW_LOG_ERROR("Failed to read data (%uB) from register %u",
Vkadaba 23:bb685f35b08b 829 nLength, nAddress);
ADIJake 0:85855ecd3257 830 return eRet;
ADIJake 0:85855ecd3257 831 }
ADIJake 0:85855ecd3257 832
Vkadaba 5:0728bde67bdb 833 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 834
Vkadaba 5:0728bde67bdb 835 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 836 }
ADIJake 0:85855ecd3257 837
Vkadaba 6:9d393a9677f4 838 ADMW_RESULT admw1001_Read_Debug_Register(
Vkadaba 6:9d393a9677f4 839 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 6:9d393a9677f4 840 uint16_t nAddress,
Vkadaba 6:9d393a9677f4 841 void *pData,
Vkadaba 6:9d393a9677f4 842 unsigned nLength)
Vkadaba 6:9d393a9677f4 843 {
Vkadaba 6:9d393a9677f4 844 ADMW_RESULT eRet;
Vkadaba 6:9d393a9677f4 845 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 6:9d393a9677f4 846 uint16_t command = ADMW1001_HOST_COMMS_DEBUG_READ_CMD |
Vkadaba 23:bb685f35b08b 847 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
Vkadaba 6:9d393a9677f4 848 uint8_t commandData[2] = {
Vkadaba 6:9d393a9677f4 849 command >> 8,
Vkadaba 6:9d393a9677f4 850 command & 0xFF
Vkadaba 6:9d393a9677f4 851 };
Vkadaba 6:9d393a9677f4 852 uint8_t commandResponse[2];
Vkadaba 6:9d393a9677f4 853
Vkadaba 6:9d393a9677f4 854 do {
Vkadaba 6:9d393a9677f4 855 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 856 sizeof(command), false);
Vkadaba 23:bb685f35b08b 857 if (eRet) {
Vkadaba 6:9d393a9677f4 858 ADMW_LOG_ERROR("Failed to send read command for register %u",
Vkadaba 23:bb685f35b08b 859 nAddress);
Vkadaba 6:9d393a9677f4 860 return eRet;
Vkadaba 6:9d393a9677f4 861 }
Vkadaba 6:9d393a9677f4 862
Vkadaba 6:9d393a9677f4 863 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 864 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 6:9d393a9677f4 865 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 6:9d393a9677f4 866
Vkadaba 6:9d393a9677f4 867 eRet = admw_SpiTransfer(pCtx->hSpi, NULL, pData, nLength, false);
Vkadaba 23:bb685f35b08b 868 if (eRet) {
Vkadaba 6:9d393a9677f4 869 ADMW_LOG_ERROR("Failed to read data (%uB) from register %u",
Vkadaba 23:bb685f35b08b 870 nLength, nAddress);
Vkadaba 6:9d393a9677f4 871 return eRet;
Vkadaba 6:9d393a9677f4 872 }
Vkadaba 6:9d393a9677f4 873
Vkadaba 6:9d393a9677f4 874 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 875
Vkadaba 6:9d393a9677f4 876 return ADMW_SUCCESS;
Vkadaba 6:9d393a9677f4 877 }
Vkadaba 5:0728bde67bdb 878 ADMW_RESULT admw_GetDeviceReadyState(
Vkadaba 5:0728bde67bdb 879 ADMW_DEVICE_HANDLE const hDevice,
ADIJake 0:85855ecd3257 880 bool * const bReady)
ADIJake 0:85855ecd3257 881 {
Vkadaba 5:0728bde67bdb 882 ADMW_SPI_Chip_Type_t chipTypeReg;
ADIJake 0:85855ecd3257 883
ADIJake 0:85855ecd3257 884 READ_REG_U8(hDevice, chipTypeReg.VALUE8, SPI_CHIP_TYPE);
ADIJake 0:85855ecd3257 885 /* If we read this register successfully, assume the device is ready */
Vkadaba 5:0728bde67bdb 886 *bReady = (chipTypeReg.VALUE8 == REG_SPI_CHIP_TYPE_RESET);
Vkadaba 5:0728bde67bdb 887
Vkadaba 5:0728bde67bdb 888 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 889 }
ADIJake 0:85855ecd3257 890
Vkadaba 5:0728bde67bdb 891 ADMW_RESULT admw1001_GetDataReadyModeInfo(
Vkadaba 8:2f2775c34640 892 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 8:2f2775c34640 893 ADMW_MEASUREMENT_MODE const eMeasurementMode,
Vkadaba 5:0728bde67bdb 894 ADMW1001_OPERATING_MODE * const peOperatingMode,
Vkadaba 5:0728bde67bdb 895 ADMW1001_DATAREADY_MODE * const peDataReadyMode,
Vkadaba 8:2f2775c34640 896 uint32_t * const pnSamplesPerDataready,
Vkadaba 8:2f2775c34640 897 uint32_t * const pnSamplesPerCycle,
Vkadaba 8:2f2775c34640 898 uint8_t * const pnBytesPerSample)
ADIJake 0:85855ecd3257 899 {
ADIJake 0:85855ecd3257 900 unsigned nChannelsEnabled = 0;
ADIJake 0:85855ecd3257 901 unsigned nSamplesPerCycle = 0;
ADIJake 0:85855ecd3257 902
Vkadaba 8:2f2775c34640 903 ADMW_CORE_Mode_t modeReg;
ADIJake 0:85855ecd3257 904 READ_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
ADIJake 0:85855ecd3257 905
Vkadaba 6:9d393a9677f4 906 if (eMeasurementMode == (modeReg.Conversion_Mode == CORE_MODE_SINGLECYCLE))
Vkadaba 5:0728bde67bdb 907 *peOperatingMode = ADMW1001_OPERATING_MODE_SINGLECYCLE;
ADIJake 0:85855ecd3257 908 else
Vkadaba 5:0728bde67bdb 909 *peOperatingMode = ADMW1001_OPERATING_MODE_CONTINUOUS;
ADIJake 0:85855ecd3257 910
Vkadaba 23:bb685f35b08b 911 if (eMeasurementMode == ADMW_MEASUREMENT_MODE_OMIT_RAW) {
Vkadaba 8:2f2775c34640 912 *pnBytesPerSample = 5;
Vkadaba 23:bb685f35b08b 913 } else {
Vkadaba 8:2f2775c34640 914 *pnBytesPerSample = 8;
Vkadaba 6:9d393a9677f4 915 }
Vkadaba 23:bb685f35b08b 916
Vkadaba 8:2f2775c34640 917 for (ADMW1001_CH_ID chId = ADMW1001_CH_ID_ANLG_1_UNIVERSAL;
Vkadaba 23:bb685f35b08b 918 chId < ADMW1001_MAX_CHANNELS;
Vkadaba 23:bb685f35b08b 919 chId++) {
Vkadaba 8:2f2775c34640 920 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
Vkadaba 8:2f2775c34640 921 ADMW_CORE_Channel_Count_t channelCountReg;
Vkadaba 23:bb685f35b08b 922
Vkadaba 8:2f2775c34640 923 if (ADMW1001_CHANNEL_IS_VIRTUAL(chId))
Vkadaba 8:2f2775c34640 924 continue;
Vkadaba 23:bb685f35b08b 925
Vkadaba 8:2f2775c34640 926 READ_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(chId));
Vkadaba 8:2f2775c34640 927 READ_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(chId));
Vkadaba 23:bb685f35b08b 928
Vkadaba 36:54e2418e7620 929 if (channelCountReg.Channel_Enable && !sensorDetailsReg.Do_Not_Publish)
Vkadaba 36:54e2418e7620 930 {
Vkadaba 8:2f2775c34640 931 unsigned nActualChannels = 1;
Vkadaba 23:bb685f35b08b 932
Vkadaba 36:54e2418e7620 933 if (chId == ADMW1001_CH_ID_DIG_SPI_0)
Vkadaba 36:54e2418e7620 934 {
Vkadaba 23:bb685f35b08b 935 /* Some sensors automatically generate samples on additional
Vkadaba 23:bb685f35b08b 936 * "virtual" channels so these channels must be counted as
Vkadaba 23:bb685f35b08b 937 * active when those sensors are selected and we use the count
Vkadaba 23:bb685f35b08b 938 * from the corresponding "physical" channel
Vkadaba 8:2f2775c34640 939 */
Vkadaba 32:52445bef314d 940 #if 0 /* SPI sensors arent supported at present to be added back once there is
Vkadaba 32:52445bef314d 941 * support for these sensors
Vkadaba 32:52445bef314d 942 */
Vkadaba 36:54e2418e7620 943 ADMW_CORE_Sensor_Type_t sensorTypeReg;
Vkadaba 36:54e2418e7620 944
Vkadaba 36:54e2418e7620 945 READ_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(chId));
Vkadaba 36:54e2418e7620 946
Vkadaba 8:2f2775c34640 947 if ((sensorTypeReg.Sensor_Type >=
Vkadaba 36:54e2418e7620 948 CORE_SENSOR_TYPE_SPI_ACCELEROMETER_A) &&
Vkadaba 36:54e2418e7620 949 (sensorTypeReg.Sensor_Type <=
Vkadaba 36:54e2418e7620 950 CORE_SENSOR_TYPE_SPI_ACCELEROMETER_B))
Vkadaba 36:54e2418e7620 951 {
Vkadaba 8:2f2775c34640 952 nActualChannels += 2;
Vkadaba 8:2f2775c34640 953 }
Vkadaba 32:52445bef314d 954 #endif
Vkadaba 8:2f2775c34640 955 }
Vkadaba 23:bb685f35b08b 956
Vkadaba 8:2f2775c34640 957 nChannelsEnabled += nActualChannels;
Vkadaba 23:bb685f35b08b 958
Vkadaba 8:2f2775c34640 959 nSamplesPerCycle += nActualChannels *
Vkadaba 8:2f2775c34640 960 (channelCountReg.Channel_Count + 1);
ADIJake 0:85855ecd3257 961 }
Vkadaba 6:9d393a9677f4 962 }
Vkadaba 23:bb685f35b08b 963
Vkadaba 23:bb685f35b08b 964 if (nChannelsEnabled == 0) {
Vkadaba 8:2f2775c34640 965 *pnSamplesPerDataready = 0;
Vkadaba 8:2f2775c34640 966 *pnSamplesPerCycle = 0;
Vkadaba 8:2f2775c34640 967 return ADMW_SUCCESS;
Vkadaba 6:9d393a9677f4 968 }
Vkadaba 23:bb685f35b08b 969
Vkadaba 6:9d393a9677f4 970 *pnSamplesPerCycle = nSamplesPerCycle;
Vkadaba 23:bb685f35b08b 971
Vkadaba 23:bb685f35b08b 972 if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CONVERSION) {
Vkadaba 8:2f2775c34640 973 *pnSamplesPerDataready = 1;
Vkadaba 23:bb685f35b08b 974 } else {
Vkadaba 8:2f2775c34640 975 *pnSamplesPerDataready = nSamplesPerCycle;
Vkadaba 6:9d393a9677f4 976 }
Vkadaba 23:bb685f35b08b 977
Vkadaba 23:bb685f35b08b 978 if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CONVERSION) {
Vkadaba 8:2f2775c34640 979 *peDataReadyMode = ADMW1001_DATAREADY_PER_CONVERSION;
Vkadaba 23:bb685f35b08b 980 } else {
Vkadaba 8:2f2775c34640 981 *peDataReadyMode = ADMW1001_DATAREADY_PER_CYCLE;
ADIJake 0:85855ecd3257 982 }
Vkadaba 23:bb685f35b08b 983
Vkadaba 5:0728bde67bdb 984 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 985 }
ADIJake 0:85855ecd3257 986
Vkadaba 5:0728bde67bdb 987 ADMW_RESULT admw_GetProductID(
Vkadaba 5:0728bde67bdb 988 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 989 ADMW_PRODUCT_ID *pProductId)
ADIJake 0:85855ecd3257 990 {
Vkadaba 5:0728bde67bdb 991 ADMW_SPI_Product_ID_L_t productIdLoReg;
Vkadaba 5:0728bde67bdb 992 ADMW_SPI_Product_ID_H_t productIdHiReg;
ADIJake 0:85855ecd3257 993
ADIJake 0:85855ecd3257 994 READ_REG_U8(hDevice, productIdLoReg.VALUE8, SPI_PRODUCT_ID_L);
ADIJake 0:85855ecd3257 995 READ_REG_U8(hDevice, productIdHiReg.VALUE8, SPI_PRODUCT_ID_H);
ADIJake 0:85855ecd3257 996
Vkadaba 23:bb685f35b08b 997 *pProductId = (ADMW_PRODUCT_ID)((productIdHiReg.VALUE8 << 8) |
Vkadaba 8:2f2775c34640 998 productIdLoReg.VALUE8);
Vkadaba 5:0728bde67bdb 999 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1000 }
ADIJake 0:85855ecd3257 1001
Vkadaba 5:0728bde67bdb 1002 static ADMW_RESULT admw_SetPowerMode(
Vkadaba 5:0728bde67bdb 1003 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1004 ADMW1001_POWER_MODE powerMode)
ADIJake 0:85855ecd3257 1005 {
Vkadaba 8:2f2775c34640 1006 ADMW_CORE_Power_Config_t powerConfigReg;
Vkadaba 5:0728bde67bdb 1007
Vkadaba 23:bb685f35b08b 1008 if (powerMode == ADMW1001_POWER_MODE_HIBERNATION) {
Vkadaba 6:9d393a9677f4 1009 powerConfigReg.Power_Mode_MCU = CORE_POWER_CONFIG_HIBERNATION;
Vkadaba 23:bb685f35b08b 1010 } else if (powerMode == ADMW1001_POWER_MODE_ACTIVE) {
Vkadaba 6:9d393a9677f4 1011 powerConfigReg.Power_Mode_MCU = CORE_POWER_CONFIG_ACTIVE_MODE;
Vkadaba 23:bb685f35b08b 1012 } else {
Vkadaba 5:0728bde67bdb 1013 ADMW_LOG_ERROR("Invalid power mode %d specified", powerMode);
Vkadaba 5:0728bde67bdb 1014 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1015 }
ADIJake 0:85855ecd3257 1016
ADIJake 0:85855ecd3257 1017 WRITE_REG_U8(hDevice, powerConfigReg.VALUE8, CORE_POWER_CONFIG);
ADIJake 0:85855ecd3257 1018
Vkadaba 5:0728bde67bdb 1019 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1020 }
ADIJake 0:85855ecd3257 1021
Vkadaba 5:0728bde67bdb 1022 ADMW_RESULT admw1001_SetPowerConfig(
Vkadaba 5:0728bde67bdb 1023 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1024 ADMW1001_POWER_CONFIG *pPowerConfig)
ADIJake 0:85855ecd3257 1025 {
Vkadaba 5:0728bde67bdb 1026 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1027
Vkadaba 5:0728bde67bdb 1028 eRet = admw_SetPowerMode(hDevice, pPowerConfig->powerMode);
Vkadaba 23:bb685f35b08b 1029 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1030 ADMW_LOG_ERROR("Failed to set power mode");
ADIJake 0:85855ecd3257 1031 return eRet;
ADIJake 0:85855ecd3257 1032 }
ADIJake 0:85855ecd3257 1033
Vkadaba 5:0728bde67bdb 1034 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1035 }
ADIJake 0:85855ecd3257 1036
Vkadaba 33:df7a00f1b8e1 1037 static ADMW_RESULT admw_SetRSenseValue(
Vkadaba 33:df7a00f1b8e1 1038 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 33:df7a00f1b8e1 1039 float32_t RSenseValue)
Vkadaba 33:df7a00f1b8e1 1040 {
Vkadaba 33:df7a00f1b8e1 1041 ADMW_CORE_External_Reference_Resistor_t RefResistorConfigReg;
Vkadaba 33:df7a00f1b8e1 1042
Vkadaba 33:df7a00f1b8e1 1043 RefResistorConfigReg.Ext_Refin1_Value = RSenseValue;
Vkadaba 33:df7a00f1b8e1 1044
Vkadaba 33:df7a00f1b8e1 1045 WRITE_REG_FLOAT(hDevice, RefResistorConfigReg.VALUE32, CORE_EXTERNAL_REFERENCE_RESISTOR);
Vkadaba 33:df7a00f1b8e1 1046
Vkadaba 33:df7a00f1b8e1 1047 return ADMW_SUCCESS;
Vkadaba 33:df7a00f1b8e1 1048
Vkadaba 33:df7a00f1b8e1 1049 }
Vkadaba 5:0728bde67bdb 1050 static ADMW_RESULT admw_SetMode(
Vkadaba 5:0728bde67bdb 1051 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1052 ADMW1001_OPERATING_MODE eOperatingMode,
Vkadaba 8:2f2775c34640 1053 ADMW1001_DATAREADY_MODE eDataReadyMode)
ADIJake 0:85855ecd3257 1054 {
Vkadaba 8:2f2775c34640 1055 ADMW_CORE_Mode_t modeReg;
ADIJake 0:85855ecd3257 1056
ADIJake 0:85855ecd3257 1057 modeReg.VALUE8 = REG_RESET_VAL(CORE_MODE);
ADIJake 0:85855ecd3257 1058
Vkadaba 23:bb685f35b08b 1059 if (eOperatingMode == ADMW1001_OPERATING_MODE_SINGLECYCLE) {
Vkadaba 5:0728bde67bdb 1060 modeReg.Conversion_Mode = CORE_MODE_SINGLECYCLE;
Vkadaba 23:bb685f35b08b 1061 } else if (eOperatingMode == ADMW1001_OPERATING_MODE_CONTINUOUS) {
Vkadaba 5:0728bde67bdb 1062 modeReg.Conversion_Mode = CORE_MODE_CONTINUOUS;
Vkadaba 23:bb685f35b08b 1063 } else {
Vkadaba 5:0728bde67bdb 1064 ADMW_LOG_ERROR("Invalid operating mode %d specified",
Vkadaba 23:bb685f35b08b 1065 eOperatingMode);
Vkadaba 5:0728bde67bdb 1066 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1067 }
ADIJake 0:85855ecd3257 1068
Vkadaba 23:bb685f35b08b 1069 if (eDataReadyMode == ADMW1001_DATAREADY_PER_CONVERSION) {
Vkadaba 5:0728bde67bdb 1070 modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_CONVERSION;
Vkadaba 23:bb685f35b08b 1071 } else if (eDataReadyMode == ADMW1001_DATAREADY_PER_CYCLE) {
Vkadaba 5:0728bde67bdb 1072 modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_CYCLE;
Vkadaba 23:bb685f35b08b 1073 } else {
Vkadaba 5:0728bde67bdb 1074 ADMW_LOG_ERROR("Invalid data-ready mode %d specified", eDataReadyMode);
Vkadaba 5:0728bde67bdb 1075 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1076 }
ADIJake 0:85855ecd3257 1077
ADIJake 0:85855ecd3257 1078 WRITE_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
ADIJake 0:85855ecd3257 1079
Vkadaba 5:0728bde67bdb 1080 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1081 }
ADIJake 0:85855ecd3257 1082
Vkadaba 8:2f2775c34640 1083 ADMW_RESULT admw_SetCycleControl(ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1084 uint32_t nCycleInterval,
Vkadaba 8:2f2775c34640 1085 bool vBiasEnable)
ADIJake 0:85855ecd3257 1086 {
Vkadaba 8:2f2775c34640 1087 ADMW_CORE_Cycle_Control_t cycleControlReg;
ADIJake 0:85855ecd3257 1088
ADIJake 0:85855ecd3257 1089 cycleControlReg.VALUE16 = REG_RESET_VAL(CORE_CYCLE_CONTROL);
ADIJake 0:85855ecd3257 1090
Vkadaba 23:bb685f35b08b 1091 if (nCycleInterval < (1000 * (1 << 12))) {
Vkadaba 5:0728bde67bdb 1092 cycleControlReg.Cycle_Time_Units = CORE_CYCLE_CONTROL_MILLISECONDS;
ADIJake 0:85855ecd3257 1093 nCycleInterval /= 1000;
Vkadaba 23:bb685f35b08b 1094 } else {
Vkadaba 5:0728bde67bdb 1095 cycleControlReg.Cycle_Time_Units = CORE_CYCLE_CONTROL_SECONDS;
ADIJake 0:85855ecd3257 1096 nCycleInterval /= 1000000;
ADIJake 0:85855ecd3257 1097 }
ADIJake 0:85855ecd3257 1098
Vkadaba 23:bb685f35b08b 1099 if (vBiasEnable == true) {
Vkadaba 8:2f2775c34640 1100 cycleControlReg.Vbias = 1;
Vkadaba 8:2f2775c34640 1101 }
ADIJake 0:85855ecd3257 1102 CHECK_REG_FIELD_VAL(CORE_CYCLE_CONTROL_CYCLE_TIME, nCycleInterval);
ADIJake 0:85855ecd3257 1103 cycleControlReg.Cycle_Time = nCycleInterval;
ADIJake 0:85855ecd3257 1104
ADIJake 0:85855ecd3257 1105 WRITE_REG_U16(hDevice, cycleControlReg.VALUE16, CORE_CYCLE_CONTROL);
ADIJake 0:85855ecd3257 1106
Vkadaba 5:0728bde67bdb 1107 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1108 }
Vkadaba 36:54e2418e7620 1109 static ADMW_RESULT admw_SetExternalReferenceVoltage(
Vkadaba 36:54e2418e7620 1110 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 36:54e2418e7620 1111 float32_t externalRefVoltage)
Vkadaba 36:54e2418e7620 1112 {
Vkadaba 36:54e2418e7620 1113 WRITE_REG_FLOAT(hDevice, externalRefVoltage, CORE_EXTERNAL_VOLTAGE_REFERENCE);
Vkadaba 36:54e2418e7620 1114
Vkadaba 36:54e2418e7620 1115 return ADMW_SUCCESS;
Vkadaba 36:54e2418e7620 1116 }
ADIJake 0:85855ecd3257 1117
Vkadaba 5:0728bde67bdb 1118 static ADMW_RESULT admw_SetExternalReferenceValues(
Vkadaba 5:0728bde67bdb 1119 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 6:9d393a9677f4 1120 float32_t externalRef1Value)
ADIJake 0:85855ecd3257 1121 {
Vkadaba 6:9d393a9677f4 1122 WRITE_REG_FLOAT(hDevice, externalRef1Value, CORE_EXTERNAL_REFERENCE_RESISTOR);
ADIJake 0:85855ecd3257 1123
Vkadaba 5:0728bde67bdb 1124 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1125 }
ADIJake 0:85855ecd3257 1126
Vkadaba 5:0728bde67bdb 1127 ADMW_RESULT admw1001_SetMeasurementConfig(
Vkadaba 5:0728bde67bdb 1128 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1129 ADMW1001_MEASUREMENT_CONFIG *pMeasConfig)
ADIJake 0:85855ecd3257 1130 {
Vkadaba 5:0728bde67bdb 1131 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1132
Vkadaba 5:0728bde67bdb 1133 eRet = admw_SetMode(hDevice,
Vkadaba 8:2f2775c34640 1134 pMeasConfig->operatingMode,
Vkadaba 8:2f2775c34640 1135 pMeasConfig->dataReadyMode);
Vkadaba 23:bb685f35b08b 1136 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1137 ADMW_LOG_ERROR("Failed to set operating mode");
ADIJake 0:85855ecd3257 1138 return eRet;
ADIJake 0:85855ecd3257 1139 }
ADIJake 0:85855ecd3257 1140
Vkadaba 8:2f2775c34640 1141 eRet = admw_SetCycleControl(hDevice, pMeasConfig->cycleInterval,
Vkadaba 8:2f2775c34640 1142 pMeasConfig->vBiasEnable);
Vkadaba 23:bb685f35b08b 1143 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1144 ADMW_LOG_ERROR("Failed to set cycle control");
ADIJake 0:85855ecd3257 1145 return eRet;
ADIJake 0:85855ecd3257 1146 }
ADIJake 0:85855ecd3257 1147
Vkadaba 23:bb685f35b08b 1148 if(pMeasConfig->externalRef1Value>0) {
Vkadaba 8:2f2775c34640 1149 eRet = admw_SetExternalReferenceValues(hDevice,
Vkadaba 8:2f2775c34640 1150 pMeasConfig->externalRef1Value);
ADIJake 0:85855ecd3257 1151 }
Vkadaba 8:2f2775c34640 1152
Vkadaba 23:bb685f35b08b 1153 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1154 ADMW_LOG_ERROR("Failed to set external reference values");
ADIJake 0:85855ecd3257 1155 return eRet;
ADIJake 0:85855ecd3257 1156 }
ADIJake 0:85855ecd3257 1157
Vkadaba 33:df7a00f1b8e1 1158 eRet = admw_SetRSenseValue(hDevice, pMeasConfig->RSenseValue);
Vkadaba 33:df7a00f1b8e1 1159 if (eRet != ADMW_SUCCESS)
Vkadaba 33:df7a00f1b8e1 1160 {
Vkadaba 33:df7a00f1b8e1 1161 ADMW_LOG_ERROR("Failed to set RSenseValue");
Vkadaba 33:df7a00f1b8e1 1162 return eRet;
Vkadaba 33:df7a00f1b8e1 1163 }
Vkadaba 36:54e2418e7620 1164
Vkadaba 36:54e2418e7620 1165 eRet = admw_SetExternalReferenceVoltage(hDevice, pMeasConfig->externalRefVoltage);
Vkadaba 36:54e2418e7620 1166 if (eRet != ADMW_SUCCESS)
Vkadaba 36:54e2418e7620 1167 {
Vkadaba 36:54e2418e7620 1168 ADMW_LOG_ERROR("Failed to set External reference Voltage");
Vkadaba 36:54e2418e7620 1169 return eRet;
Vkadaba 36:54e2418e7620 1170 }
Vkadaba 36:54e2418e7620 1171
Vkadaba 5:0728bde67bdb 1172 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1173 }
ADIJake 0:85855ecd3257 1174
Vkadaba 36:54e2418e7620 1175 ADMW_RESULT admw1001_SetDiagnosticsConfig(
Vkadaba 36:54e2418e7620 1176 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 36:54e2418e7620 1177 ADMW1001_DIAGNOSTICS_CONFIG *pDiagnosticsConfig)
Vkadaba 36:54e2418e7620 1178 {
Vkadaba 36:54e2418e7620 1179 ADMW_CORE_Diagnostics_Control_t diagnosticsControlReg;
ADIJake 0:85855ecd3257 1180
Vkadaba 36:54e2418e7620 1181 diagnosticsControlReg.VALUE8 = REG_RESET_VAL(CORE_DIAGNOSTICS_CONTROL);
Vkadaba 36:54e2418e7620 1182
Vkadaba 36:54e2418e7620 1183 if (pDiagnosticsConfig->disableMeasurementDiag)
Vkadaba 36:54e2418e7620 1184 diagnosticsControlReg.Diag_Meas_En = 0;
Vkadaba 36:54e2418e7620 1185 else
Vkadaba 36:54e2418e7620 1186 diagnosticsControlReg.Diag_Meas_En = 1;
Vkadaba 36:54e2418e7620 1187
Vkadaba 36:54e2418e7620 1188 switch (pDiagnosticsConfig->osdFrequency)
Vkadaba 36:54e2418e7620 1189 {
Vkadaba 36:54e2418e7620 1190 case ADMW1001_OPEN_SENSOR_DIAGNOSTICS_DISABLED:
Vkadaba 36:54e2418e7620 1191 diagnosticsControlReg.Diag_OSD_Freq = CORE_DIAGNOSTICS_CONTROL_OCD_OFF;
Vkadaba 36:54e2418e7620 1192 break;
Vkadaba 36:54e2418e7620 1193 case ADMW1001_OPEN_SENSOR_DIAGNOSTICS_PER_CYCLE:
Vkadaba 36:54e2418e7620 1194 diagnosticsControlReg.Diag_OSD_Freq = CORE_DIAGNOSTICS_CONTROL_OCD_PER_1_CYCLE;
Vkadaba 36:54e2418e7620 1195 break;
Vkadaba 36:54e2418e7620 1196 case ADMW1001_OPEN_SENSOR_DIAGNOSTICS_PER_100_CYCLES:
Vkadaba 36:54e2418e7620 1197 diagnosticsControlReg.Diag_OSD_Freq = CORE_DIAGNOSTICS_CONTROL_OCD_PER_10_CYCLES;
Vkadaba 36:54e2418e7620 1198 break;
Vkadaba 36:54e2418e7620 1199 case ADMW1001_OPEN_SENSOR_DIAGNOSTICS_PER_1000_CYCLES:
Vkadaba 36:54e2418e7620 1200 diagnosticsControlReg.Diag_OSD_Freq = CORE_DIAGNOSTICS_CONTROL_OCD_PER_100_CYCLES;
Vkadaba 36:54e2418e7620 1201 break;
Vkadaba 36:54e2418e7620 1202 default:
Vkadaba 36:54e2418e7620 1203 ADMW_LOG_ERROR("Invalid open-sensor diagnostic frequency %d specified",
Vkadaba 36:54e2418e7620 1204 pDiagnosticsConfig->osdFrequency);
Vkadaba 36:54e2418e7620 1205 return ADMW_INVALID_PARAM;
Vkadaba 36:54e2418e7620 1206 }
Vkadaba 36:54e2418e7620 1207
Vkadaba 36:54e2418e7620 1208 WRITE_REG_U8(hDevice, diagnosticsControlReg.VALUE8, CORE_DIAGNOSTICS_CONTROL);
Vkadaba 36:54e2418e7620 1209
Vkadaba 36:54e2418e7620 1210 return ADMW_SUCCESS;
Vkadaba 36:54e2418e7620 1211 }
ADIJake 0:85855ecd3257 1212
Vkadaba 5:0728bde67bdb 1213 ADMW_RESULT admw1001_SetChannelCount(
Vkadaba 5:0728bde67bdb 1214 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1215 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1216 uint32_t nMeasurementsPerCycle)
ADIJake 0:85855ecd3257 1217 {
Vkadaba 8:2f2775c34640 1218 ADMW_CORE_Channel_Count_t channelCountReg;
ADIJake 0:85855ecd3257 1219
ADIJake 0:85855ecd3257 1220 channelCountReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_COUNTn);
ADIJake 0:85855ecd3257 1221
Vkadaba 23:bb685f35b08b 1222 if (nMeasurementsPerCycle > 0) {
ADIJake 0:85855ecd3257 1223 nMeasurementsPerCycle -= 1;
ADIJake 0:85855ecd3257 1224
ADIJake 0:85855ecd3257 1225 CHECK_REG_FIELD_VAL(CORE_CHANNEL_COUNT_CHANNEL_COUNT,
ADIJake 0:85855ecd3257 1226 nMeasurementsPerCycle);
ADIJake 0:85855ecd3257 1227
ADIJake 0:85855ecd3257 1228 channelCountReg.Channel_Enable = 1;
ADIJake 0:85855ecd3257 1229 channelCountReg.Channel_Count = nMeasurementsPerCycle;
Vkadaba 23:bb685f35b08b 1230 } else {
ADIJake 0:85855ecd3257 1231 channelCountReg.Channel_Enable = 0;
ADIJake 0:85855ecd3257 1232 }
ADIJake 0:85855ecd3257 1233
ADIJake 0:85855ecd3257 1234 WRITE_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(eChannelId));
ADIJake 0:85855ecd3257 1235
Vkadaba 5:0728bde67bdb 1236 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1237 }
ADIJake 0:85855ecd3257 1238
Vkadaba 5:0728bde67bdb 1239 ADMW_RESULT admw1001_SetChannelOptions(
Vkadaba 5:0728bde67bdb 1240 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1241 ADMW1001_CH_ID eChannelId,
Vkadaba 6:9d393a9677f4 1242 ADMW1001_CHANNEL_PRIORITY ePriority)
ADIJake 0:85855ecd3257 1243 {
Vkadaba 8:2f2775c34640 1244 ADMW_CORE_Channel_Options_t channelOptionsReg;
ADIJake 0:85855ecd3257 1245
ADIJake 0:85855ecd3257 1246 channelOptionsReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_OPTIONSn);
ADIJake 0:85855ecd3257 1247
ADIJake 0:85855ecd3257 1248 CHECK_REG_FIELD_VAL(CORE_CHANNEL_OPTIONS_CHANNEL_PRIORITY, ePriority);
ADIJake 0:85855ecd3257 1249 channelOptionsReg.Channel_Priority = ePriority;
ADIJake 0:85855ecd3257 1250
ADIJake 0:85855ecd3257 1251 WRITE_REG_U8(hDevice, channelOptionsReg.VALUE8, CORE_CHANNEL_OPTIONSn(eChannelId));
ADIJake 0:85855ecd3257 1252
Vkadaba 5:0728bde67bdb 1253 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1254 }
ADIJake 0:85855ecd3257 1255
Vkadaba 5:0728bde67bdb 1256 ADMW_RESULT admw1001_SetChannelSkipCount(
Vkadaba 5:0728bde67bdb 1257 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1258 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1259 uint32_t nCycleSkipCount)
ADIJake 0:85855ecd3257 1260 {
Vkadaba 8:2f2775c34640 1261 ADMW_CORE_Channel_Skip_t channelSkipReg;
ADIJake 0:85855ecd3257 1262
ADIJake 0:85855ecd3257 1263 channelSkipReg.VALUE16 = REG_RESET_VAL(CORE_CHANNEL_SKIPn);
ADIJake 0:85855ecd3257 1264
ADIJake 0:85855ecd3257 1265 CHECK_REG_FIELD_VAL(CORE_CHANNEL_SKIP_CHANNEL_SKIP, nCycleSkipCount);
ADIJake 0:85855ecd3257 1266
ADIJake 0:85855ecd3257 1267 channelSkipReg.Channel_Skip = nCycleSkipCount;
ADIJake 0:85855ecd3257 1268
ADIJake 0:85855ecd3257 1269 WRITE_REG_U16(hDevice, channelSkipReg.VALUE16, CORE_CHANNEL_SKIPn(eChannelId));
ADIJake 0:85855ecd3257 1270
Vkadaba 5:0728bde67bdb 1271 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1272 }
ADIJake 0:85855ecd3257 1273
Vkadaba 5:0728bde67bdb 1274 static ADMW_RESULT admw_SetChannelAdcSensorType(
Vkadaba 8:2f2775c34640 1275 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1276 ADMW1001_CH_ID eChannelId,
Vkadaba 8:2f2775c34640 1277 ADMW1001_ADC_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 1278 {
Vkadaba 8:2f2775c34640 1279 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 1280
ADIJake 0:85855ecd3257 1281 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 1282
ADIJake 0:85855ecd3257 1283 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 1284 switch(sensorType) {
Vkadaba 8:2f2775c34640 1285 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT100:
Vkadaba 8:2f2775c34640 1286 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT1000:
Vkadaba 8:2f2775c34640 1287 case ADMW1001_ADC_SENSOR_RTD_3WIRE_1:
Vkadaba 8:2f2775c34640 1288 case ADMW1001_ADC_SENSOR_RTD_3WIRE_2:
Vkadaba 8:2f2775c34640 1289 case ADMW1001_ADC_SENSOR_RTD_3WIRE_3:
Vkadaba 8:2f2775c34640 1290 case ADMW1001_ADC_SENSOR_RTD_3WIRE_4:
Vkadaba 8:2f2775c34640 1291 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT100:
Vkadaba 8:2f2775c34640 1292 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT1000:
Vkadaba 8:2f2775c34640 1293 case ADMW1001_ADC_SENSOR_RTD_4WIRE_1:
Vkadaba 8:2f2775c34640 1294 case ADMW1001_ADC_SENSOR_RTD_4WIRE_2:
Vkadaba 8:2f2775c34640 1295 case ADMW1001_ADC_SENSOR_RTD_4WIRE_3:
Vkadaba 8:2f2775c34640 1296 case ADMW1001_ADC_SENSOR_RTD_4WIRE_4:
Vkadaba 8:2f2775c34640 1297 case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_1:
Vkadaba 8:2f2775c34640 1298 case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_2:
Vkadaba 8:2f2775c34640 1299 case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_3:
Vkadaba 8:2f2775c34640 1300 case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_4:
Vkadaba 8:2f2775c34640 1301 case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_1:
Vkadaba 8:2f2775c34640 1302 case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_2:
Vkadaba 8:2f2775c34640 1303 case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_3:
Vkadaba 8:2f2775c34640 1304 case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_4:
Vkadaba 8:2f2775c34640 1305 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT100:
Vkadaba 8:2f2775c34640 1306 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT1000:
Vkadaba 8:2f2775c34640 1307 case ADMW1001_ADC_SENSOR_RTD_2WIRE_1:
Vkadaba 8:2f2775c34640 1308 case ADMW1001_ADC_SENSOR_RTD_2WIRE_2:
Vkadaba 8:2f2775c34640 1309 case ADMW1001_ADC_SENSOR_RTD_2WIRE_3:
Vkadaba 8:2f2775c34640 1310 case ADMW1001_ADC_SENSOR_RTD_2WIRE_4:
Vkadaba 8:2f2775c34640 1311 case ADMW1001_ADC_SENSOR_DIODE_2C_TYPEA:
Vkadaba 8:2f2775c34640 1312 case ADMW1001_ADC_SENSOR_DIODE_3C_TYPEA:
Vkadaba 8:2f2775c34640 1313 case ADMW1001_ADC_SENSOR_DIODE_2C_1:
Vkadaba 8:2f2775c34640 1314 case ADMW1001_ADC_SENSOR_DIODE_3C_1:
Vkadaba 8:2f2775c34640 1315 case ADMW1001_ADC_SENSOR_THERMISTOR_A_10K:
Vkadaba 8:2f2775c34640 1316 case ADMW1001_ADC_SENSOR_THERMISTOR_B_10K:
Vkadaba 8:2f2775c34640 1317 case ADMW1001_ADC_SENSOR_THERMISTOR_1:
Vkadaba 8:2f2775c34640 1318 case ADMW1001_ADC_SENSOR_THERMISTOR_2:
Vkadaba 8:2f2775c34640 1319 case ADMW1001_ADC_SENSOR_THERMISTOR_3:
Vkadaba 8:2f2775c34640 1320 case ADMW1001_ADC_SENSOR_THERMISTOR_4:
Vkadaba 36:54e2418e7620 1321 case ADMW1001_ADC_SENSOR_SINGLE_ENDED_ABSOLUTE:
Vkadaba 36:54e2418e7620 1322 case ADMW1001_ADC_SENSOR_DIFFERENTIAL_ABSOLUTE:
Vkadaba 36:54e2418e7620 1323 case ADMW1001_ADC_SENSOR_SINGLE_ENDED_RATIO:
Vkadaba 36:54e2418e7620 1324 case ADMW1001_ADC_SENSOR_DIFFERENTIAL_RATIO:
Vkadaba 6:9d393a9677f4 1325 if (! (ADMW1001_CHANNEL_IS_ADC_SENSOR(eChannelId) ||
Vkadaba 36:54e2418e7620 1326 ADMW1001_CHANNEL_IS_ADC_CJC(eChannelId) || ADMW1001_CHANNEL_IS_ADC(eChannelId) ))
Vkadaba 36:54e2418e7620 1327 {
Vkadaba 6:9d393a9677f4 1328 ADMW_LOG_ERROR(
Vkadaba 6:9d393a9677f4 1329 "Invalid ADC sensor type %d specified for channel %d",
Vkadaba 6:9d393a9677f4 1330 sensorType, eChannelId);
Vkadaba 6:9d393a9677f4 1331 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1332 }
Vkadaba 6:9d393a9677f4 1333 break;
Vkadaba 6:9d393a9677f4 1334 case ADMW1001_ADC_SENSOR_VOLTAGE:
Vkadaba 8:2f2775c34640 1335 case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_A:
Vkadaba 8:2f2775c34640 1336 case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_B:
Vkadaba 8:2f2775c34640 1337 case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_1:
Vkadaba 8:2f2775c34640 1338 case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_2:
Vkadaba 8:2f2775c34640 1339 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_J:
Vkadaba 8:2f2775c34640 1340 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_K:
Vkadaba 8:2f2775c34640 1341 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_T:
Vkadaba 8:2f2775c34640 1342 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_1:
Vkadaba 8:2f2775c34640 1343 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_2:
Vkadaba 8:2f2775c34640 1344 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_3:
Vkadaba 8:2f2775c34640 1345 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_4:
Vkadaba 23:bb685f35b08b 1346 if (! ADMW1001_CHANNEL_IS_ADC_VOLTAGE(eChannelId)) {
Vkadaba 6:9d393a9677f4 1347 ADMW_LOG_ERROR(
Vkadaba 6:9d393a9677f4 1348 "Invalid ADC sensor type %d specified for channel %d",
Vkadaba 6:9d393a9677f4 1349 sensorType, eChannelId);
Vkadaba 6:9d393a9677f4 1350 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1351 }
Vkadaba 6:9d393a9677f4 1352 break;
Vkadaba 6:9d393a9677f4 1353 case ADMW1001_ADC_SENSOR_CURRENT:
Vkadaba 8:2f2775c34640 1354 case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_A:
Vkadaba 8:2f2775c34640 1355 case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_1:
Vkadaba 8:2f2775c34640 1356 case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_2:
Vkadaba 23:bb685f35b08b 1357 if (! ADMW1001_CHANNEL_IS_ADC_CURRENT(eChannelId)) {
Vkadaba 6:9d393a9677f4 1358 ADMW_LOG_ERROR(
Vkadaba 6:9d393a9677f4 1359 "Invalid ADC sensor type %d specified for channel %d",
Vkadaba 6:9d393a9677f4 1360 sensorType, eChannelId);
Vkadaba 6:9d393a9677f4 1361 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1362 }
Vkadaba 6:9d393a9677f4 1363 break;
Vkadaba 6:9d393a9677f4 1364 default:
Vkadaba 6:9d393a9677f4 1365 ADMW_LOG_ERROR("Invalid/unsupported ADC sensor type %d specified",
Vkadaba 23:bb685f35b08b 1366 sensorType);
Vkadaba 5:0728bde67bdb 1367 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1368 }
ADIJake 0:85855ecd3257 1369
ADIJake 0:85855ecd3257 1370 sensorTypeReg.Sensor_Type = sensorType;
ADIJake 0:85855ecd3257 1371
ADIJake 0:85855ecd3257 1372 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 1373
Vkadaba 5:0728bde67bdb 1374 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1375 }
ADIJake 0:85855ecd3257 1376
Vkadaba 5:0728bde67bdb 1377 static ADMW_RESULT admw_SetChannelAdcSensorDetails(
Vkadaba 8:2f2775c34640 1378 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1379 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1380 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1381 /*
ADIJake 0:85855ecd3257 1382 * TODO - it would be nice if the general- vs. ADC-specific sensor details could be split into separate registers
ADIJake 0:85855ecd3257 1383 * General details:
ADIJake 0:85855ecd3257 1384 * - Measurement_Units
ADIJake 0:85855ecd3257 1385 * - Compensation_Channel
ADIJake 0:85855ecd3257 1386 * - CJC_Publish (if "CJC" was removed from the name)
ADIJake 0:85855ecd3257 1387 * ADC-specific details:
ADIJake 0:85855ecd3257 1388 * - PGA_Gain
ADIJake 0:85855ecd3257 1389 * - Reference_Select
ADIJake 0:85855ecd3257 1390 * - Reference_Buffer_Disable
ADIJake 0:85855ecd3257 1391 */
ADIJake 0:85855ecd3257 1392 {
Vkadaba 5:0728bde67bdb 1393 ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig = &pChannelConfig->adcChannelConfig;
Vkadaba 8:2f2775c34640 1394 ADMW1001_ADC_REFERENCE_TYPE refType = pAdcChannelConfig->reference;
Vkadaba 8:2f2775c34640 1395 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
ADIJake 0:85855ecd3257 1396
ADIJake 0:85855ecd3257 1397 sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn);
ADIJake 0:85855ecd3257 1398
Vkadaba 23:bb685f35b08b 1399 switch(pChannelConfig->measurementUnit) {
Vkadaba 8:2f2775c34640 1400 case ADMW1001_MEASUREMENT_UNIT_FAHRENHEIT:
Vkadaba 8:2f2775c34640 1401 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGF;
Vkadaba 8:2f2775c34640 1402 break;
Vkadaba 8:2f2775c34640 1403 case ADMW1001_MEASUREMENT_UNIT_CELSIUS:
Vkadaba 8:2f2775c34640 1404 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGC;
Vkadaba 8:2f2775c34640 1405 break;
Vkadaba 8:2f2775c34640 1406 case ADMW1001_MEASUREMENT_UNIT_UNSPECIFIED:
Vkadaba 8:2f2775c34640 1407 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_UNSPECIFIED;
Vkadaba 8:2f2775c34640 1408 break;
Vkadaba 8:2f2775c34640 1409 default:
Vkadaba 8:2f2775c34640 1410 ADMW_LOG_ERROR("Invalid measurement unit %d specified",
Vkadaba 8:2f2775c34640 1411 pChannelConfig->measurementUnit);
Vkadaba 8:2f2775c34640 1412 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1413 }
ADIJake 0:85855ecd3257 1414
Vkadaba 23:bb685f35b08b 1415 if (pChannelConfig->compensationChannel == ADMW1001_CH_ID_NONE) {
ADIJake 0:85855ecd3257 1416 sensorDetailsReg.Compensation_Disable = 1;
ADIJake 0:85855ecd3257 1417 sensorDetailsReg.Compensation_Channel = 0;
Vkadaba 23:bb685f35b08b 1418 } else {
ADIJake 0:85855ecd3257 1419 sensorDetailsReg.Compensation_Disable = 0;
ADIJake 0:85855ecd3257 1420 sensorDetailsReg.Compensation_Channel = pChannelConfig->compensationChannel;
ADIJake 0:85855ecd3257 1421 }
ADIJake 0:85855ecd3257 1422
Vkadaba 23:bb685f35b08b 1423 switch(refType) {
Vkadaba 8:2f2775c34640 1424 case ADMW1001_ADC_REFERENCE_VOLTAGE_INTERNAL:
Vkadaba 8:2f2775c34640 1425 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_VINT;
Vkadaba 8:2f2775c34640 1426 break;
Vkadaba 8:2f2775c34640 1427 case ADMW1001_ADC_REFERENCE_VOLTAGE_EXTERNAL_1:
Vkadaba 8:2f2775c34640 1428 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_VEXT1;
Vkadaba 8:2f2775c34640 1429 break;
Vkadaba 8:2f2775c34640 1430 case ADMW1001_ADC_REFERENCE_VOLTAGE_AVDD:
Vkadaba 8:2f2775c34640 1431 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_AVDD;
Vkadaba 8:2f2775c34640 1432 break;
Vkadaba 8:2f2775c34640 1433 default:
Vkadaba 8:2f2775c34640 1434 ADMW_LOG_ERROR("Invalid ADC reference type %d specified", refType);
Vkadaba 8:2f2775c34640 1435 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1436 }
Vkadaba 23:bb685f35b08b 1437
Vkadaba 23:bb685f35b08b 1438 switch(pAdcChannelConfig->gain) {
Vkadaba 8:2f2775c34640 1439 case ADMW1001_ADC_GAIN_1X:
Vkadaba 8:2f2775c34640 1440 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_1;
Vkadaba 8:2f2775c34640 1441 break;
Vkadaba 8:2f2775c34640 1442 case ADMW1001_ADC_GAIN_2X:
Vkadaba 8:2f2775c34640 1443 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_2;
Vkadaba 8:2f2775c34640 1444 break;
Vkadaba 8:2f2775c34640 1445 case ADMW1001_ADC_GAIN_4X:
Vkadaba 8:2f2775c34640 1446 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_4;
Vkadaba 8:2f2775c34640 1447 break;
Vkadaba 8:2f2775c34640 1448 case ADMW1001_ADC_GAIN_8X:
Vkadaba 8:2f2775c34640 1449 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_8;
Vkadaba 8:2f2775c34640 1450 break;
Vkadaba 8:2f2775c34640 1451 case ADMW1001_ADC_GAIN_16X:
Vkadaba 8:2f2775c34640 1452 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_16;
Vkadaba 8:2f2775c34640 1453 break;
Vkadaba 8:2f2775c34640 1454 case ADMW1001_ADC_GAIN_32X:
Vkadaba 8:2f2775c34640 1455 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_32;
Vkadaba 8:2f2775c34640 1456 break;
Vkadaba 8:2f2775c34640 1457 case ADMW1001_ADC_GAIN_64X:
Vkadaba 8:2f2775c34640 1458 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_64;
Vkadaba 8:2f2775c34640 1459 break;
Vkadaba 8:2f2775c34640 1460 case ADMW1001_ADC_GAIN_128X:
Vkadaba 8:2f2775c34640 1461 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_128;
Vkadaba 8:2f2775c34640 1462 break;
Vkadaba 8:2f2775c34640 1463 default:
Vkadaba 8:2f2775c34640 1464 ADMW_LOG_ERROR("Invalid ADC gain %d specified",
Vkadaba 23:bb685f35b08b 1465 pAdcChannelConfig->gain);
Vkadaba 8:2f2775c34640 1466 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1467 }
ADIJake 0:85855ecd3257 1468
Vkadaba 23:bb685f35b08b 1469 switch(pAdcChannelConfig->rtdCurve) {
Vkadaba 8:2f2775c34640 1470 case ADMW1001_ADC_RTD_CURVE_EUROPEAN:
Vkadaba 8:2f2775c34640 1471 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_EUROPEAN_CURVE;
Vkadaba 8:2f2775c34640 1472 break;
Vkadaba 8:2f2775c34640 1473 case ADMW1001_ADC_RTD_CURVE_AMERICAN:
Vkadaba 8:2f2775c34640 1474 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_AMERICAN_CURVE;
Vkadaba 8:2f2775c34640 1475 break;
Vkadaba 8:2f2775c34640 1476 case ADMW1001_ADC_RTD_CURVE_JAPANESE:
Vkadaba 8:2f2775c34640 1477 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_JAPANESE_CURVE;
Vkadaba 8:2f2775c34640 1478 break;
Vkadaba 8:2f2775c34640 1479 case ADMW1001_ADC_RTD_CURVE_ITS90:
Vkadaba 8:2f2775c34640 1480 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_ITS90_CURVE;
Vkadaba 8:2f2775c34640 1481 break;
Vkadaba 8:2f2775c34640 1482 default:
Vkadaba 8:2f2775c34640 1483 ADMW_LOG_ERROR("Invalid RTD Curve %d specified",
Vkadaba 23:bb685f35b08b 1484 pAdcChannelConfig->rtdCurve);
Vkadaba 8:2f2775c34640 1485 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1486 }
Vkadaba 6:9d393a9677f4 1487
Vkadaba 23:bb685f35b08b 1488 if (pChannelConfig->disablePublishing) {
ADIJake 0:85855ecd3257 1489 sensorDetailsReg.Do_Not_Publish = 1;
Vkadaba 23:bb685f35b08b 1490 } else {
ADIJake 0:85855ecd3257 1491 sensorDetailsReg.Do_Not_Publish = 0;
Vkadaba 8:2f2775c34640 1492 }
Vkadaba 23:bb685f35b08b 1493
Vkadaba 23:bb685f35b08b 1494 switch (pChannelConfig->lutSelect) {
Vkadaba 8:2f2775c34640 1495 case ADMW1001_LUT_DEFAULT:
Vkadaba 8:2f2775c34640 1496 case ADMW1001_LUT_UNITY:
Vkadaba 8:2f2775c34640 1497 case ADMW1001_LUT_CUSTOM:
Vkadaba 8:2f2775c34640 1498 sensorDetailsReg.LUT_Select = pChannelConfig->lutSelect;
Vkadaba 8:2f2775c34640 1499 break;
Vkadaba 8:2f2775c34640 1500 default:
Vkadaba 8:2f2775c34640 1501 ADMW_LOG_ERROR("Invalid LUT selection %d specified",
Vkadaba 23:bb685f35b08b 1502 pChannelConfig->lutSelect);
Vkadaba 23:bb685f35b08b 1503 return ADMW_INVALID_PARAM;
Vkadaba 8:2f2775c34640 1504 }
Vkadaba 23:bb685f35b08b 1505
ADIJake 0:85855ecd3257 1506 WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId));
ADIJake 0:85855ecd3257 1507
Vkadaba 5:0728bde67bdb 1508 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1509 }
ADIJake 0:85855ecd3257 1510
Vkadaba 33:df7a00f1b8e1 1511 static ADMW_RESULT admw_SetChannelAdcMeasurementSetup(
Vkadaba 5:0728bde67bdb 1512 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1513 ADMW1001_CH_ID eChannelId,
Vkadaba 33:df7a00f1b8e1 1514 ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig)
ADIJake 0:85855ecd3257 1515 {
Vkadaba 8:2f2775c34640 1516 ADMW_CORE_Measurement_Setup_t MeasSetupReg;
Vkadaba 33:df7a00f1b8e1 1517 ADMW1001_ADC_FILTER_CONFIG *pFilterConfig = &pAdcChannelConfig->filter;
Vkadaba 6:9d393a9677f4 1518 MeasSetupReg.VALUE32 = REG_RESET_VAL(CORE_MEASUREMENT_SETUPn);
Vkadaba 33:df7a00f1b8e1 1519 MeasSetupReg.PST_MEAS_EXC_CTRL = pAdcChannelConfig->current.excitationState;
Vkadaba 33:df7a00f1b8e1 1520 MeasSetupReg.Buffer_Bypass = pAdcChannelConfig->bufferBypass;
Vkadaba 33:df7a00f1b8e1 1521
Vkadaba 23:bb685f35b08b 1522 if (pFilterConfig->type == ADMW1001_ADC_FILTER_SINC4) {
Vkadaba 6:9d393a9677f4 1523 MeasSetupReg.ADC_Filter_Type = CORE_MEASUREMENT_SETUP_ENABLE_SINC4;
Vkadaba 6:9d393a9677f4 1524 MeasSetupReg.ADC_SF = pFilterConfig->sf;
Vkadaba 23:bb685f35b08b 1525 } else if (pFilterConfig->type == ADMW1001_ADC_FILTER_SINC3) {
Vkadaba 6:9d393a9677f4 1526 MeasSetupReg.ADC_Filter_Type = CORE_MEASUREMENT_SETUP_ENABLE_SINC3;
Vkadaba 23:bb685f35b08b 1527 MeasSetupReg.ADC_SF = pFilterConfig->sf;
Vkadaba 23:bb685f35b08b 1528 } else {
Vkadaba 5:0728bde67bdb 1529 ADMW_LOG_ERROR("Invalid ADC filter type %d specified",
Vkadaba 23:bb685f35b08b 1530 pFilterConfig->type);
Vkadaba 5:0728bde67bdb 1531 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1532 }
Vkadaba 23:bb685f35b08b 1533
Vkadaba 8:2f2775c34640 1534 /* chop mod ecan be 0 (none), 1 (HW, 2 (SW, 3 (HW+SW). */
Vkadaba 17:2f0028880874 1535 MeasSetupReg.Chop_Mode = pFilterConfig->chopMode;
Vkadaba 23:bb685f35b08b 1536
Vkadaba 6:9d393a9677f4 1537 if(pFilterConfig->notch1p2)
Vkadaba 6:9d393a9677f4 1538 MeasSetupReg.NOTCH_EN_2 = 1;
Vkadaba 6:9d393a9677f4 1539 else
Vkadaba 6:9d393a9677f4 1540 MeasSetupReg.NOTCH_EN_2 = 0;
Vkadaba 23:bb685f35b08b 1541
Vkadaba 23:bb685f35b08b 1542 switch(pFilterConfig->groundSwitch) {
Vkadaba 23:bb685f35b08b 1543 case ADMW1001_ADC_GND_SW_OPEN:
Vkadaba 23:bb685f35b08b 1544 MeasSetupReg.GND_SW = CORE_MEASUREMENT_SETUP_GND_SW_OPEN;
Vkadaba 23:bb685f35b08b 1545 break;
Vkadaba 23:bb685f35b08b 1546 case ADMW1001_ADC_GND_SW_CLOSED:
Vkadaba 23:bb685f35b08b 1547 MeasSetupReg.GND_SW = CORE_MEASUREMENT_SETUP_GND_SW_CLOSED;
Vkadaba 23:bb685f35b08b 1548 break;
Vkadaba 23:bb685f35b08b 1549 default:
Vkadaba 23:bb685f35b08b 1550 ADMW_LOG_ERROR("Invalid ground switch state %d specified",
Vkadaba 23:bb685f35b08b 1551 pFilterConfig->groundSwitch);
Vkadaba 23:bb685f35b08b 1552 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1553 }
Vkadaba 23:bb685f35b08b 1554
Vkadaba 6:9d393a9677f4 1555 WRITE_REG_U32(hDevice, MeasSetupReg.VALUE32, CORE_MEASUREMENT_SETUPn(eChannelId));
ADIJake 0:85855ecd3257 1556
Vkadaba 5:0728bde67bdb 1557 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1558 }
ADIJake 0:85855ecd3257 1559
Vkadaba 5:0728bde67bdb 1560 static ADMW_RESULT admw_SetChannelAdcCurrentConfig(
Vkadaba 5:0728bde67bdb 1561 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1562 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1563 ADMW1001_ADC_EXC_CURRENT_CONFIG *pCurrentConfig)
ADIJake 0:85855ecd3257 1564 {
Vkadaba 8:2f2775c34640 1565 ADMW_CORE_Channel_Excitation_t channelExcitationReg;
ADIJake 0:85855ecd3257 1566
Vkadaba 6:9d393a9677f4 1567 channelExcitationReg.VALUE16 = REG_RESET_VAL(CORE_CHANNEL_EXCITATIONn);
Vkadaba 6:9d393a9677f4 1568
Vkadaba 18:cbf514cce921 1569 if (pCurrentConfig->outputLevel == ADMW1001_ADC_NO_EXTERNAL_EXC_CURRENT)
Vkadaba 18:cbf514cce921 1570 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_NONE;
Vkadaba 18:cbf514cce921 1571 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_EXTERNAL)
Vkadaba 6:9d393a9677f4 1572 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_EXTERNAL;
Vkadaba 18:cbf514cce921 1573 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_50uA)
Vkadaba 6:9d393a9677f4 1574 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_50UA;
Vkadaba 6:9d393a9677f4 1575 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_100uA)
Vkadaba 6:9d393a9677f4 1576 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_100UA;
Vkadaba 6:9d393a9677f4 1577 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_250uA)
Vkadaba 6:9d393a9677f4 1578 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_250UA;
Vkadaba 6:9d393a9677f4 1579 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_500uA)
Vkadaba 6:9d393a9677f4 1580 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_500UA;
Vkadaba 6:9d393a9677f4 1581 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_1000uA)
Vkadaba 6:9d393a9677f4 1582 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_1000UA;
Vkadaba 23:bb685f35b08b 1583 else {
Vkadaba 6:9d393a9677f4 1584 ADMW_LOG_ERROR("Invalid ADC excitation current %d specified",
Vkadaba 6:9d393a9677f4 1585 pCurrentConfig->outputLevel);
Vkadaba 6:9d393a9677f4 1586 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1587 }
ADIJake 0:85855ecd3257 1588
Vkadaba 6:9d393a9677f4 1589 WRITE_REG_U16(hDevice, channelExcitationReg.VALUE16, CORE_CHANNEL_EXCITATIONn(eChannelId));
ADIJake 0:85855ecd3257 1590
Vkadaba 5:0728bde67bdb 1591 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1592 }
ADIJake 0:85855ecd3257 1593
Vkadaba 5:0728bde67bdb 1594 ADMW_RESULT admw_SetAdcChannelConfig(
Vkadaba 5:0728bde67bdb 1595 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1596 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1597 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1598 {
Vkadaba 5:0728bde67bdb 1599 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1600 ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig =
ADIJake 0:85855ecd3257 1601 &pChannelConfig->adcChannelConfig;
ADIJake 0:85855ecd3257 1602
Vkadaba 5:0728bde67bdb 1603 eRet = admw_SetChannelAdcSensorType(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1604 pAdcChannelConfig->sensor);
Vkadaba 23:bb685f35b08b 1605 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1606 ADMW_LOG_ERROR("Failed to set ADC sensor type for channel %d",
Vkadaba 23:bb685f35b08b 1607 eChannelId);
ADIJake 0:85855ecd3257 1608 return eRet;
ADIJake 0:85855ecd3257 1609 }
ADIJake 0:85855ecd3257 1610
Vkadaba 5:0728bde67bdb 1611 eRet = admw_SetChannelAdcSensorDetails(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1612 pChannelConfig);
Vkadaba 23:bb685f35b08b 1613 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1614 ADMW_LOG_ERROR("Failed to set ADC sensor details for channel %d",
Vkadaba 23:bb685f35b08b 1615 eChannelId);
ADIJake 0:85855ecd3257 1616 return eRet;
ADIJake 0:85855ecd3257 1617 }
ADIJake 0:85855ecd3257 1618
Vkadaba 33:df7a00f1b8e1 1619 eRet = admw_SetChannelAdcMeasurementSetup(hDevice, eChannelId,
Vkadaba 33:df7a00f1b8e1 1620 pAdcChannelConfig);
Vkadaba 23:bb685f35b08b 1621 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1622 ADMW_LOG_ERROR("Failed to set ADC filter for channel %d",
Vkadaba 23:bb685f35b08b 1623 eChannelId);
ADIJake 0:85855ecd3257 1624 return eRet;
ADIJake 0:85855ecd3257 1625 }
ADIJake 0:85855ecd3257 1626
Vkadaba 5:0728bde67bdb 1627 eRet = admw_SetChannelAdcCurrentConfig(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1628 &pAdcChannelConfig->current);
Vkadaba 23:bb685f35b08b 1629 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1630 ADMW_LOG_ERROR("Failed to set ADC current for channel %d",
Vkadaba 23:bb685f35b08b 1631 eChannelId);
ADIJake 0:85855ecd3257 1632 return eRet;
ADIJake 0:85855ecd3257 1633 }
ADIJake 0:85855ecd3257 1634
Vkadaba 5:0728bde67bdb 1635 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1636 }
ADIJake 0:85855ecd3257 1637
Vkadaba 5:0728bde67bdb 1638 static ADMW_RESULT admw_SetChannelDigitalSensorDetails(
Vkadaba 5:0728bde67bdb 1639 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1640 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1641 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1642 {
Vkadaba 8:2f2775c34640 1643 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
ADIJake 0:85855ecd3257 1644
ADIJake 0:85855ecd3257 1645 sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn);
ADIJake 0:85855ecd3257 1646
Vkadaba 23:bb685f35b08b 1647 if (pChannelConfig->compensationChannel == ADMW1001_CH_ID_NONE) {
ADIJake 0:85855ecd3257 1648 sensorDetailsReg.Compensation_Disable = 1;
ADIJake 0:85855ecd3257 1649 sensorDetailsReg.Compensation_Channel = 0;
Vkadaba 23:bb685f35b08b 1650 } else {
Vkadaba 5:0728bde67bdb 1651 ADMW_LOG_ERROR("Invalid compensation channel specified for digital sensor");
Vkadaba 5:0728bde67bdb 1652 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1653 }
ADIJake 0:85855ecd3257 1654
Vkadaba 23:bb685f35b08b 1655 if (pChannelConfig->measurementUnit == ADMW1001_MEASUREMENT_UNIT_UNSPECIFIED) {
Vkadaba 5:0728bde67bdb 1656 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_UNSPECIFIED;
Vkadaba 23:bb685f35b08b 1657 } else {
Vkadaba 5:0728bde67bdb 1658 ADMW_LOG_ERROR("Invalid measurement unit specified for digital channel");
Vkadaba 5:0728bde67bdb 1659 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1660 }
ADIJake 0:85855ecd3257 1661
ADIJake 0:85855ecd3257 1662 if (pChannelConfig->disablePublishing)
ADIJake 0:85855ecd3257 1663 sensorDetailsReg.Do_Not_Publish = 1;
ADIJake 0:85855ecd3257 1664 else
ADIJake 0:85855ecd3257 1665 sensorDetailsReg.Do_Not_Publish = 0;
ADIJake 0:85855ecd3257 1666
ADIJake 0:85855ecd3257 1667 WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId));
ADIJake 0:85855ecd3257 1668
Vkadaba 5:0728bde67bdb 1669 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1670 }
ADIJake 0:85855ecd3257 1671
Vkadaba 5:0728bde67bdb 1672 static ADMW_RESULT admw_SetDigitalSensorFormat(
Vkadaba 5:0728bde67bdb 1673 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1674 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1675 ADMW1001_DIGITAL_SENSOR_DATA_FORMAT *pDataFormat)
ADIJake 0:85855ecd3257 1676 {
Vkadaba 8:2f2775c34640 1677 ADMW_CORE_Digital_Sensor_Config_t sensorConfigReg;
ADIJake 0:85855ecd3257 1678
ADIJake 0:85855ecd3257 1679 sensorConfigReg.VALUE16 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_CONFIGn);
ADIJake 0:85855ecd3257 1680
Vkadaba 23:bb685f35b08b 1681 if (pDataFormat->coding != ADMW1001_DIGITAL_SENSOR_DATA_CODING_NONE) {
Vkadaba 23:bb685f35b08b 1682 if (pDataFormat->frameLength == 0) {
Vkadaba 5:0728bde67bdb 1683 ADMW_LOG_ERROR("Invalid frame length specified for digital sensor data format");
Vkadaba 5:0728bde67bdb 1684 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1685 }
Vkadaba 23:bb685f35b08b 1686 if (pDataFormat->numDataBits == 0) {
Vkadaba 5:0728bde67bdb 1687 ADMW_LOG_ERROR("Invalid frame length specified for digital sensor data format");
Vkadaba 5:0728bde67bdb 1688 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1689 }
ADIJake 0:85855ecd3257 1690
ADIJake 0:85855ecd3257 1691 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_READ_BYTES,
ADIJake 0:85855ecd3257 1692 pDataFormat->frameLength - 1);
ADIJake 0:85855ecd3257 1693 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_DATA_BITS,
ADIJake 0:85855ecd3257 1694 pDataFormat->numDataBits - 1);
ADIJake 0:85855ecd3257 1695 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_BIT_OFFSET,
ADIJake 0:85855ecd3257 1696 pDataFormat->bitOffset);
ADIJake 0:85855ecd3257 1697
ADIJake 0:85855ecd3257 1698 sensorConfigReg.Digital_Sensor_Read_Bytes = pDataFormat->frameLength - 1;
ADIJake 0:85855ecd3257 1699 sensorConfigReg.Digital_Sensor_Data_Bits = pDataFormat->numDataBits - 1;
ADIJake 0:85855ecd3257 1700 sensorConfigReg.Digital_Sensor_Bit_Offset = pDataFormat->bitOffset;
ADIJake 0:85855ecd3257 1701 sensorConfigReg.Digital_Sensor_Left_Aligned = pDataFormat->leftJustified ? 1 : 0;
ADIJake 0:85855ecd3257 1702 sensorConfigReg.Digital_Sensor_Little_Endian = pDataFormat->littleEndian ? 1 : 0;
ADIJake 0:85855ecd3257 1703
Vkadaba 23:bb685f35b08b 1704 switch (pDataFormat->coding) {
Vkadaba 23:bb685f35b08b 1705 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_UNIPOLAR:
Vkadaba 23:bb685f35b08b 1706 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_UNIPOLAR;
Vkadaba 23:bb685f35b08b 1707 break;
Vkadaba 23:bb685f35b08b 1708 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_TWOS_COMPLEMENT:
Vkadaba 23:bb685f35b08b 1709 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_TWOS_COMPL;
Vkadaba 23:bb685f35b08b 1710 break;
Vkadaba 23:bb685f35b08b 1711 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_OFFSET_BINARY:
Vkadaba 23:bb685f35b08b 1712 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_OFFSET_BINARY;
Vkadaba 23:bb685f35b08b 1713 break;
Vkadaba 23:bb685f35b08b 1714 default:
Vkadaba 23:bb685f35b08b 1715 ADMW_LOG_ERROR("Invalid coding specified for digital sensor data format");
Vkadaba 23:bb685f35b08b 1716 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1717 }
Vkadaba 23:bb685f35b08b 1718 } else {
Vkadaba 5:0728bde67bdb 1719 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_NONE;
ADIJake 0:85855ecd3257 1720 }
ADIJake 0:85855ecd3257 1721
ADIJake 0:85855ecd3257 1722 WRITE_REG_U16(hDevice, sensorConfigReg.VALUE16,
ADIJake 0:85855ecd3257 1723 CORE_DIGITAL_SENSOR_CONFIGn(eChannelId));
ADIJake 0:85855ecd3257 1724
ADIJake 0:85855ecd3257 1725
Vkadaba 5:0728bde67bdb 1726 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1727 }
ADIJake 0:85855ecd3257 1728
Vkadaba 5:0728bde67bdb 1729 static ADMW_RESULT admw_SetDigitalCalibrationParam(
Vkadaba 23:bb685f35b08b 1730 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 23:bb685f35b08b 1731 ADMW1001_CH_ID eChannelId,
Vkadaba 23:bb685f35b08b 1732 ADMW1001_DIGITAL_CALIBRATION_COMMAND *pCalibrationParam)
ADIJake 0:85855ecd3257 1733 {
Vkadaba 32:52445bef314d 1734 // ADMW_CORE_Calibration_Parameter_t calibrationParamReg;
Vkadaba 32:52445bef314d 1735 //
Vkadaba 32:52445bef314d 1736 // calibrationParamReg.VALUE32 = REG_RESET_VAL(CORE_CALIBRATION_PARAMETERn);
Vkadaba 32:52445bef314d 1737 //
Vkadaba 32:52445bef314d 1738 // if (pCalibrationParam->enableCalibrationParam == false)
Vkadaba 32:52445bef314d 1739 // calibrationParamReg.Calibration_Parameter_Enable = 0;
Vkadaba 32:52445bef314d 1740 // else
Vkadaba 32:52445bef314d 1741 // calibrationParamReg.Calibration_Parameter_Enable = 1;
Vkadaba 32:52445bef314d 1742 //
Vkadaba 32:52445bef314d 1743 // CHECK_REG_FIELD_VAL(CORE_CALIBRATION_PARAMETER_CALIBRATION_PARAMETER,
Vkadaba 32:52445bef314d 1744 // pCalibrationParam->calibrationParam);
Vkadaba 32:52445bef314d 1745 //
Vkadaba 32:52445bef314d 1746 // calibrationParamReg.Calibration_Parameter = pCalibrationParam->calibrationParam;
Vkadaba 32:52445bef314d 1747 //
Vkadaba 32:52445bef314d 1748 // WRITE_REG_U32(hDevice, calibrationParamReg.VALUE32,
Vkadaba 32:52445bef314d 1749 // CORE_CALIBRATION_PARAMETERn(eChannelId));
Vkadaba 32:52445bef314d 1750 //
Vkadaba 5:0728bde67bdb 1751 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1752 }
ADIJake 0:85855ecd3257 1753
Vkadaba 5:0728bde67bdb 1754 static ADMW_RESULT admw_SetChannelI2cSensorType(
Vkadaba 5:0728bde67bdb 1755 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1756 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1757 ADMW1001_I2C_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 1758 {
Vkadaba 8:2f2775c34640 1759 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 1760
ADIJake 0:85855ecd3257 1761 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 1762
ADIJake 0:85855ecd3257 1763 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 1764 switch(sensorType) {
Vkadaba 8:2f2775c34640 1765 case ADMW1001_I2C_SENSOR_HUMIDITY_A:
Vkadaba 8:2f2775c34640 1766 case ADMW1001_I2C_SENSOR_HUMIDITY_B:
Vkadaba 8:2f2775c34640 1767 sensorTypeReg.Sensor_Type = sensorType;
Vkadaba 8:2f2775c34640 1768 break;
Vkadaba 8:2f2775c34640 1769 default:
Vkadaba 8:2f2775c34640 1770 ADMW_LOG_ERROR("Unsupported I2C sensor type %d specified", sensorType);
Vkadaba 8:2f2775c34640 1771 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1772 }
ADIJake 0:85855ecd3257 1773
ADIJake 0:85855ecd3257 1774 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 1775
Vkadaba 5:0728bde67bdb 1776 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1777 }
ADIJake 0:85855ecd3257 1778
Vkadaba 5:0728bde67bdb 1779 static ADMW_RESULT admw_SetChannelI2cSensorAddress(
Vkadaba 5:0728bde67bdb 1780 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1781 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1782 uint32_t deviceAddress)
ADIJake 0:85855ecd3257 1783 {
ADIJake 0:85855ecd3257 1784 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_ADDRESS_DIGITAL_SENSOR_ADDRESS, deviceAddress);
ADIJake 0:85855ecd3257 1785 WRITE_REG_U8(hDevice, deviceAddress, CORE_DIGITAL_SENSOR_ADDRESSn(eChannelId));
ADIJake 0:85855ecd3257 1786
Vkadaba 5:0728bde67bdb 1787 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1788 }
ADIJake 0:85855ecd3257 1789
Vkadaba 5:0728bde67bdb 1790 static ADMW_RESULT admw_SetDigitalChannelComms(
Vkadaba 5:0728bde67bdb 1791 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1792 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1793 ADMW1001_DIGITAL_SENSOR_COMMS *pDigitalComms)
ADIJake 0:85855ecd3257 1794 {
Vkadaba 8:2f2775c34640 1795 ADMW_CORE_Digital_Sensor_Comms_t digitalSensorComms;
ADIJake 0:85855ecd3257 1796
ADIJake 0:85855ecd3257 1797 digitalSensorComms.VALUE16 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_COMMSn);
ADIJake 0:85855ecd3257 1798
Vkadaba 23:bb685f35b08b 1799 if(pDigitalComms->useCustomCommsConfig) {
ADIJake 0:85855ecd3257 1800 digitalSensorComms.Digital_Sensor_Comms_En = 1;
ADIJake 0:85855ecd3257 1801
Vkadaba 23:bb685f35b08b 1802 if(pDigitalComms->i2cClockSpeed == ADMW1001_DIGITAL_SENSOR_COMMS_I2C_CLOCK_SPEED_100K) {
Vkadaba 5:0728bde67bdb 1803 digitalSensorComms.I2C_Clock = CORE_DIGITAL_SENSOR_COMMS_I2C_100K;
Vkadaba 23:bb685f35b08b 1804 } else if(pDigitalComms->i2cClockSpeed == ADMW1001_DIGITAL_SENSOR_COMMS_I2C_CLOCK_SPEED_400K) {
Vkadaba 5:0728bde67bdb 1805 digitalSensorComms.I2C_Clock = CORE_DIGITAL_SENSOR_COMMS_I2C_400K;
Vkadaba 23:bb685f35b08b 1806 } else {
Vkadaba 5:0728bde67bdb 1807 ADMW_LOG_ERROR("Invalid I2C clock speed %d specified",
Vkadaba 23:bb685f35b08b 1808 pDigitalComms->i2cClockSpeed);
Vkadaba 5:0728bde67bdb 1809 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1810 }
ADIJake 0:85855ecd3257 1811
Vkadaba 23:bb685f35b08b 1812 if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_0) {
Vkadaba 5:0728bde67bdb 1813 digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_0;
Vkadaba 23:bb685f35b08b 1814 } else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_1) {
Vkadaba 5:0728bde67bdb 1815 digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_1;
Vkadaba 23:bb685f35b08b 1816 } else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_2) {
Vkadaba 5:0728bde67bdb 1817 digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_2;
Vkadaba 23:bb685f35b08b 1818 } else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_3) {
Vkadaba 5:0728bde67bdb 1819 digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_3;
Vkadaba 23:bb685f35b08b 1820 } else {
Vkadaba 5:0728bde67bdb 1821 ADMW_LOG_ERROR("Invalid SPI mode %d specified",
Vkadaba 23:bb685f35b08b 1822 pDigitalComms->spiMode);
Vkadaba 5:0728bde67bdb 1823 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1824 }
ADIJake 0:85855ecd3257 1825
Vkadaba 23:bb685f35b08b 1826 switch (pDigitalComms->spiClock) {
Vkadaba 23:bb685f35b08b 1827 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_8MHZ:
Vkadaba 23:bb685f35b08b 1828 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_8MHZ;
Vkadaba 23:bb685f35b08b 1829 break;
Vkadaba 23:bb685f35b08b 1830 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_4MHZ:
Vkadaba 23:bb685f35b08b 1831 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_4MHZ;
Vkadaba 23:bb685f35b08b 1832 break;
Vkadaba 23:bb685f35b08b 1833 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_2MHZ:
Vkadaba 23:bb685f35b08b 1834 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_2MHZ;
Vkadaba 23:bb685f35b08b 1835 break;
Vkadaba 23:bb685f35b08b 1836 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_1MHZ:
Vkadaba 23:bb685f35b08b 1837 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_1MHZ;
Vkadaba 23:bb685f35b08b 1838 break;
Vkadaba 23:bb685f35b08b 1839 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_500KHZ:
Vkadaba 23:bb685f35b08b 1840 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_500KHZ;
Vkadaba 23:bb685f35b08b 1841 break;
Vkadaba 23:bb685f35b08b 1842 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_250KHZ:
Vkadaba 23:bb685f35b08b 1843 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_250KHZ;
Vkadaba 23:bb685f35b08b 1844 break;
Vkadaba 23:bb685f35b08b 1845 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_125KHZ:
Vkadaba 23:bb685f35b08b 1846 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_125KHZ;
Vkadaba 23:bb685f35b08b 1847 break;
Vkadaba 23:bb685f35b08b 1848 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_62P5KHZ:
Vkadaba 23:bb685f35b08b 1849 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_62P5KHZ;
Vkadaba 23:bb685f35b08b 1850 break;
Vkadaba 23:bb685f35b08b 1851 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_31P3KHZ:
Vkadaba 23:bb685f35b08b 1852 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_31P3KHZ;
Vkadaba 23:bb685f35b08b 1853 break;
Vkadaba 23:bb685f35b08b 1854 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_15P6KHZ:
Vkadaba 23:bb685f35b08b 1855 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_15P6KHZ;
Vkadaba 23:bb685f35b08b 1856 break;
Vkadaba 23:bb685f35b08b 1857 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_7P8KHZ:
Vkadaba 23:bb685f35b08b 1858 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_7P8KHZ;
Vkadaba 23:bb685f35b08b 1859 break;
Vkadaba 23:bb685f35b08b 1860 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_3P9KHZ:
Vkadaba 23:bb685f35b08b 1861 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_3P9KHZ;
Vkadaba 23:bb685f35b08b 1862 break;
Vkadaba 23:bb685f35b08b 1863 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_1P9KHZ:
Vkadaba 23:bb685f35b08b 1864 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_1P9KHZ;
Vkadaba 23:bb685f35b08b 1865 break;
Vkadaba 23:bb685f35b08b 1866 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_977HZ:
Vkadaba 23:bb685f35b08b 1867 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_977HZ;
Vkadaba 23:bb685f35b08b 1868 break;
Vkadaba 23:bb685f35b08b 1869 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_488HZ:
Vkadaba 23:bb685f35b08b 1870 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_488HZ;
Vkadaba 23:bb685f35b08b 1871 break;
Vkadaba 23:bb685f35b08b 1872 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_244HZ:
Vkadaba 23:bb685f35b08b 1873 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_244HZ;
Vkadaba 23:bb685f35b08b 1874 break;
Vkadaba 23:bb685f35b08b 1875 default:
Vkadaba 23:bb685f35b08b 1876 ADMW_LOG_ERROR("Invalid SPI clock %d specified",
Vkadaba 23:bb685f35b08b 1877 pDigitalComms->spiClock);
Vkadaba 23:bb685f35b08b 1878 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1879 }
Vkadaba 23:bb685f35b08b 1880 } else {
ADIJake 0:85855ecd3257 1881 digitalSensorComms.Digital_Sensor_Comms_En = 0;
ADIJake 0:85855ecd3257 1882 }
ADIJake 0:85855ecd3257 1883
ADIJake 0:85855ecd3257 1884 WRITE_REG_U16(hDevice, digitalSensorComms.VALUE16, CORE_DIGITAL_SENSOR_COMMSn(eChannelId));
ADIJake 0:85855ecd3257 1885
Vkadaba 5:0728bde67bdb 1886 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1887 }
ADIJake 0:85855ecd3257 1888
Vkadaba 5:0728bde67bdb 1889 ADMW_RESULT admw_SetI2cChannelConfig(
Vkadaba 5:0728bde67bdb 1890 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1891 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1892 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1893 {
Vkadaba 5:0728bde67bdb 1894 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1895 ADMW1001_I2C_CHANNEL_CONFIG *pI2cChannelConfig =
ADIJake 0:85855ecd3257 1896 &pChannelConfig->i2cChannelConfig;
ADIJake 0:85855ecd3257 1897
Vkadaba 5:0728bde67bdb 1898 eRet = admw_SetChannelI2cSensorType(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1899 pI2cChannelConfig->sensor);
Vkadaba 23:bb685f35b08b 1900 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1901 ADMW_LOG_ERROR("Failed to set I2C sensor type for channel %d",
Vkadaba 23:bb685f35b08b 1902 eChannelId);
ADIJake 0:85855ecd3257 1903 return eRet;
ADIJake 0:85855ecd3257 1904 }
ADIJake 0:85855ecd3257 1905
Vkadaba 5:0728bde67bdb 1906 eRet = admw_SetChannelI2cSensorAddress(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1907 pI2cChannelConfig->deviceAddress);
Vkadaba 23:bb685f35b08b 1908 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1909 ADMW_LOG_ERROR("Failed to set I2C sensor address for channel %d",
Vkadaba 23:bb685f35b08b 1910 eChannelId);
ADIJake 0:85855ecd3257 1911 return eRet;
ADIJake 0:85855ecd3257 1912 }
ADIJake 0:85855ecd3257 1913
Vkadaba 5:0728bde67bdb 1914 eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1915 pChannelConfig);
Vkadaba 23:bb685f35b08b 1916 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1917 ADMW_LOG_ERROR("Failed to set I2C sensor details for channel %d",
Vkadaba 23:bb685f35b08b 1918 eChannelId);
ADIJake 0:85855ecd3257 1919 return eRet;
ADIJake 0:85855ecd3257 1920 }
ADIJake 0:85855ecd3257 1921
Vkadaba 5:0728bde67bdb 1922 eRet = admw_SetDigitalSensorFormat(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1923 &pI2cChannelConfig->dataFormat);
Vkadaba 23:bb685f35b08b 1924 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1925 ADMW_LOG_ERROR("Failed to set I2C sensor data format for channel %d",
Vkadaba 23:bb685f35b08b 1926 eChannelId);
ADIJake 0:85855ecd3257 1927 return eRet;
ADIJake 0:85855ecd3257 1928 }
ADIJake 0:85855ecd3257 1929
Vkadaba 5:0728bde67bdb 1930 eRet = admw_SetDigitalCalibrationParam(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1931 &pI2cChannelConfig->digitalCalibrationParam);
Vkadaba 23:bb685f35b08b 1932 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1933 ADMW_LOG_ERROR("Failed to set I2C digital calibration param for channel %d",
Vkadaba 23:bb685f35b08b 1934 eChannelId);
ADIJake 0:85855ecd3257 1935 return eRet;
ADIJake 0:85855ecd3257 1936 }
ADIJake 0:85855ecd3257 1937
Vkadaba 5:0728bde67bdb 1938 eRet = admw_SetDigitalChannelComms(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1939 &pI2cChannelConfig->configureComms);
Vkadaba 23:bb685f35b08b 1940 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1941 ADMW_LOG_ERROR("Failed to set I2C comms for channel %d",
Vkadaba 23:bb685f35b08b 1942 eChannelId);
ADIJake 0:85855ecd3257 1943 return eRet;
ADIJake 0:85855ecd3257 1944 }
ADIJake 0:85855ecd3257 1945
Vkadaba 5:0728bde67bdb 1946 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1947 }
ADIJake 0:85855ecd3257 1948
Vkadaba 5:0728bde67bdb 1949 static ADMW_RESULT admw_SetChannelSpiSensorType(
Vkadaba 5:0728bde67bdb 1950 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1951 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1952 ADMW1001_SPI_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 1953 {
Vkadaba 8:2f2775c34640 1954 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 1955
ADIJake 0:85855ecd3257 1956 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 1957
ADIJake 0:85855ecd3257 1958 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 1959 switch(sensorType) {
Vkadaba 23:bb685f35b08b 1960 case ADMW1001_SPI_SENSOR_PRESSURE_A:
Vkadaba 23:bb685f35b08b 1961 case ADMW1001_SPI_SENSOR_ACCELEROMETER_A:
Vkadaba 23:bb685f35b08b 1962 case ADMW1001_SPI_SENSOR_ACCELEROMETER_B:
Vkadaba 23:bb685f35b08b 1963
Vkadaba 23:bb685f35b08b 1964 sensorTypeReg.Sensor_Type = sensorType;
Vkadaba 23:bb685f35b08b 1965 break;
Vkadaba 23:bb685f35b08b 1966 default:
Vkadaba 23:bb685f35b08b 1967 ADMW_LOG_ERROR("Unsupported SPI sensor type %d specified", sensorType);
Vkadaba 23:bb685f35b08b 1968 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1969 }
ADIJake 0:85855ecd3257 1970
ADIJake 0:85855ecd3257 1971 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 1972
Vkadaba 5:0728bde67bdb 1973 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1974 }
ADIJake 0:85855ecd3257 1975
Vkadaba 5:0728bde67bdb 1976 ADMW_RESULT admw_SetSpiChannelConfig(
Vkadaba 5:0728bde67bdb 1977 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1978 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1979 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1980 {
Vkadaba 5:0728bde67bdb 1981 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1982 ADMW1001_SPI_CHANNEL_CONFIG *pSpiChannelConfig =
ADIJake 0:85855ecd3257 1983 &pChannelConfig->spiChannelConfig;
ADIJake 0:85855ecd3257 1984
Vkadaba 5:0728bde67bdb 1985 eRet = admw_SetChannelSpiSensorType(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1986 pSpiChannelConfig->sensor);
Vkadaba 23:bb685f35b08b 1987 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1988 ADMW_LOG_ERROR("Failed to set SPI sensor type for channel %d",
Vkadaba 23:bb685f35b08b 1989 eChannelId);
ADIJake 0:85855ecd3257 1990 return eRet;
ADIJake 0:85855ecd3257 1991 }
ADIJake 0:85855ecd3257 1992
Vkadaba 5:0728bde67bdb 1993 eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1994 pChannelConfig);
Vkadaba 23:bb685f35b08b 1995 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1996 ADMW_LOG_ERROR("Failed to set SPI sensor details for channel %d",
Vkadaba 23:bb685f35b08b 1997 eChannelId);
ADIJake 0:85855ecd3257 1998 return eRet;
ADIJake 0:85855ecd3257 1999 }
ADIJake 0:85855ecd3257 2000
Vkadaba 5:0728bde67bdb 2001 eRet = admw_SetDigitalSensorFormat(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2002 &pSpiChannelConfig->dataFormat);
Vkadaba 23:bb685f35b08b 2003 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2004 ADMW_LOG_ERROR("Failed to set SPI sensor data format for channel %d",
Vkadaba 23:bb685f35b08b 2005 eChannelId);
ADIJake 0:85855ecd3257 2006 return eRet;
ADIJake 0:85855ecd3257 2007 }
ADIJake 0:85855ecd3257 2008
Vkadaba 5:0728bde67bdb 2009 eRet = admw_SetDigitalCalibrationParam(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2010 &pSpiChannelConfig->digitalCalibrationParam);
Vkadaba 23:bb685f35b08b 2011 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2012 ADMW_LOG_ERROR("Failed to set SPI digital calibration param for channel %d",
Vkadaba 23:bb685f35b08b 2013 eChannelId);
ADIJake 0:85855ecd3257 2014 return eRet;
ADIJake 0:85855ecd3257 2015 }
ADIJake 0:85855ecd3257 2016
Vkadaba 5:0728bde67bdb 2017 eRet = admw_SetDigitalChannelComms(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2018 &pSpiChannelConfig->configureComms);
Vkadaba 23:bb685f35b08b 2019 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2020 ADMW_LOG_ERROR("Failed to set SPI comms for channel %d",
Vkadaba 23:bb685f35b08b 2021 eChannelId);
ADIJake 0:85855ecd3257 2022 return eRet;
ADIJake 0:85855ecd3257 2023 }
ADIJake 0:85855ecd3257 2024
Vkadaba 5:0728bde67bdb 2025 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2026 }
ADIJake 0:85855ecd3257 2027
Vkadaba 5:0728bde67bdb 2028 ADMW_RESULT admw1001_SetChannelThresholdLimits(
Vkadaba 5:0728bde67bdb 2029 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2030 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 2031 float32_t fHighThresholdLimit,
ADIJake 0:85855ecd3257 2032 float32_t fLowThresholdLimit)
ADIJake 0:85855ecd3257 2033 {
ADIJake 0:85855ecd3257 2034 /*
ADIJake 0:85855ecd3257 2035 * If the low/high limits are *both* set to 0 in memory, or NaNs, assume
ADIJake 0:85855ecd3257 2036 * that they are unset, or not required, and use infinity defaults instead
ADIJake 0:85855ecd3257 2037 */
Vkadaba 23:bb685f35b08b 2038 if (fHighThresholdLimit == 0.0f && fLowThresholdLimit == 0.0f) {
ADIJake 0:85855ecd3257 2039 fHighThresholdLimit = INFINITY;
ADIJake 0:85855ecd3257 2040 fLowThresholdLimit = -INFINITY;
Vkadaba 23:bb685f35b08b 2041 } else {
ADIJake 0:85855ecd3257 2042 if (isnan(fHighThresholdLimit))
ADIJake 0:85855ecd3257 2043 fHighThresholdLimit = INFINITY;
ADIJake 0:85855ecd3257 2044 if (isnan(fLowThresholdLimit))
ADIJake 0:85855ecd3257 2045 fLowThresholdLimit = -INFINITY;
ADIJake 0:85855ecd3257 2046 }
ADIJake 0:85855ecd3257 2047
ADIJake 0:85855ecd3257 2048 WRITE_REG_FLOAT(hDevice, fHighThresholdLimit,
ADIJake 0:85855ecd3257 2049 CORE_HIGH_THRESHOLD_LIMITn(eChannelId));
ADIJake 0:85855ecd3257 2050 WRITE_REG_FLOAT(hDevice, fLowThresholdLimit,
ADIJake 0:85855ecd3257 2051 CORE_LOW_THRESHOLD_LIMITn(eChannelId));
ADIJake 0:85855ecd3257 2052
Vkadaba 5:0728bde67bdb 2053 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2054 }
ADIJake 0:85855ecd3257 2055
Vkadaba 5:0728bde67bdb 2056 ADMW_RESULT admw1001_SetOffsetGain(
Vkadaba 5:0728bde67bdb 2057 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2058 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 2059 float32_t fOffsetAdjustment,
ADIJake 0:85855ecd3257 2060 float32_t fGainAdjustment)
ADIJake 0:85855ecd3257 2061 {
ADIJake 0:85855ecd3257 2062 /* Replace with default values if NaNs are specified (or 0.0 for gain) */
ADIJake 0:85855ecd3257 2063 if (isnan(fGainAdjustment) || (fGainAdjustment == 0.0f))
ADIJake 0:85855ecd3257 2064 fGainAdjustment = 1.0f;
ADIJake 0:85855ecd3257 2065 if (isnan(fOffsetAdjustment))
ADIJake 0:85855ecd3257 2066 fOffsetAdjustment = 0.0f;
ADIJake 0:85855ecd3257 2067
ADIJake 0:85855ecd3257 2068 WRITE_REG_FLOAT(hDevice, fGainAdjustment, CORE_SENSOR_GAINn(eChannelId));
ADIJake 0:85855ecd3257 2069 WRITE_REG_FLOAT(hDevice, fOffsetAdjustment, CORE_SENSOR_OFFSETn(eChannelId));
ADIJake 0:85855ecd3257 2070
Vkadaba 5:0728bde67bdb 2071 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2072 }
ADIJake 0:85855ecd3257 2073
Vkadaba 5:0728bde67bdb 2074 ADMW_RESULT admw1001_SetSensorParameter(
Vkadaba 5:0728bde67bdb 2075 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2076 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 2077 float32_t fSensorParam)
ADIJake 0:85855ecd3257 2078 {
ADIJake 0:85855ecd3257 2079 if (fSensorParam == 0.0f)
ADIJake 0:85855ecd3257 2080 fSensorParam = NAN;
ADIJake 0:85855ecd3257 2081
Vkadaba 32:52445bef314d 2082 //WRITE_REG_FLOAT(hDevice, fSensorParam, CORE_SENSOR_PARAMETERn(eChannelId));
ADIJake 0:85855ecd3257 2083
Vkadaba 5:0728bde67bdb 2084 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2085 }
ADIJake 0:85855ecd3257 2086
Vkadaba 5:0728bde67bdb 2087 ADMW_RESULT admw1001_SetChannelSettlingTime(
Vkadaba 5:0728bde67bdb 2088 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2089 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 2090 uint32_t nSettlingTime)
ADIJake 0:85855ecd3257 2091 {
Vkadaba 8:2f2775c34640 2092 ADMW_CORE_Settling_Time_t settlingTimeReg;
ADIJake 0:85855ecd3257 2093
Vkadaba 23:bb685f35b08b 2094 if (nSettlingTime < (1 << 12)) {
Vkadaba 5:0728bde67bdb 2095 settlingTimeReg.Settling_Time_Units = CORE_SETTLING_TIME_MICROSECONDS;
Vkadaba 23:bb685f35b08b 2096 } else if (nSettlingTime < (1000 * (1 << 12))) {
Vkadaba 5:0728bde67bdb 2097 settlingTimeReg.Settling_Time_Units = CORE_SETTLING_TIME_MILLISECONDS;
ADIJake 0:85855ecd3257 2098 nSettlingTime /= 1000;
Vkadaba 23:bb685f35b08b 2099 } else {
Vkadaba 5:0728bde67bdb 2100 settlingTimeReg.Settling_Time_Units = CORE_SETTLING_TIME_SECONDS;
ADIJake 0:85855ecd3257 2101 nSettlingTime /= 1000000;
ADIJake 0:85855ecd3257 2102 }
ADIJake 0:85855ecd3257 2103
ADIJake 0:85855ecd3257 2104 CHECK_REG_FIELD_VAL(CORE_SETTLING_TIME_SETTLING_TIME, nSettlingTime);
ADIJake 0:85855ecd3257 2105 settlingTimeReg.Settling_Time = nSettlingTime;
ADIJake 0:85855ecd3257 2106
ADIJake 0:85855ecd3257 2107 WRITE_REG_U16(hDevice, settlingTimeReg.VALUE16, CORE_SETTLING_TIMEn(eChannelId));
ADIJake 0:85855ecd3257 2108
Vkadaba 5:0728bde67bdb 2109 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2110 }
ADIJake 0:85855ecd3257 2111
Vkadaba 5:0728bde67bdb 2112 ADMW_RESULT admw1001_SetChannelConfig(
Vkadaba 5:0728bde67bdb 2113 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2114 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 2115 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 2116 {
Vkadaba 5:0728bde67bdb 2117 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 2118
Vkadaba 23:bb685f35b08b 2119 if (! ADMW1001_CHANNEL_IS_VIRTUAL(eChannelId)) {
Vkadaba 5:0728bde67bdb 2120 eRet = admw1001_SetChannelCount(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2121 pChannelConfig->enableChannel ?
Vkadaba 23:bb685f35b08b 2122 pChannelConfig->measurementsPerCycle : 0);
Vkadaba 23:bb685f35b08b 2123 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2124 ADMW_LOG_ERROR("Failed to set measurement count for channel %d",
Vkadaba 23:bb685f35b08b 2125 eChannelId);
ADIJake 0:85855ecd3257 2126 return eRet;
ADIJake 0:85855ecd3257 2127 }
ADIJake 0:85855ecd3257 2128
Vkadaba 5:0728bde67bdb 2129 eRet = admw1001_SetChannelOptions(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2130 pChannelConfig->priority);
Vkadaba 23:bb685f35b08b 2131 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2132 ADMW_LOG_ERROR("Failed to set priority for channel %d",
Vkadaba 23:bb685f35b08b 2133 eChannelId);
ADIJake 0:85855ecd3257 2134 return eRet;
ADIJake 0:85855ecd3257 2135 }
ADIJake 0:85855ecd3257 2136
ADIJake 0:85855ecd3257 2137 /* If the channel is not enabled, we can skip the following steps */
Vkadaba 23:bb685f35b08b 2138 if (pChannelConfig->enableChannel) {
Vkadaba 5:0728bde67bdb 2139 eRet = admw1001_SetChannelSkipCount(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2140 pChannelConfig->cycleSkipCount);
Vkadaba 23:bb685f35b08b 2141 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2142 ADMW_LOG_ERROR("Failed to set cycle skip count for channel %d",
Vkadaba 23:bb685f35b08b 2143 eChannelId);
ADIJake 0:85855ecd3257 2144 return eRet;
ADIJake 0:85855ecd3257 2145 }
ADIJake 0:85855ecd3257 2146
Vkadaba 23:bb685f35b08b 2147 switch (eChannelId) {
Vkadaba 23:bb685f35b08b 2148 case ADMW1001_CH_ID_ANLG_1_UNIVERSAL:
Vkadaba 23:bb685f35b08b 2149 case ADMW1001_CH_ID_ANLG_2_UNIVERSAL:
Vkadaba 23:bb685f35b08b 2150 case ADMW1001_CH_ID_ANLG_1_DIFFERENTIAL:
Vkadaba 23:bb685f35b08b 2151 case ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL:
Vkadaba 23:bb685f35b08b 2152 eRet = admw_SetAdcChannelConfig(hDevice, eChannelId, pChannelConfig);
Vkadaba 23:bb685f35b08b 2153 break;
Vkadaba 23:bb685f35b08b 2154 case ADMW1001_CH_ID_DIG_I2C_0:
Vkadaba 23:bb685f35b08b 2155 case ADMW1001_CH_ID_DIG_I2C_1:
Vkadaba 23:bb685f35b08b 2156 eRet = admw_SetI2cChannelConfig(hDevice, eChannelId, pChannelConfig);
Vkadaba 23:bb685f35b08b 2157 break;
Vkadaba 23:bb685f35b08b 2158 case ADMW1001_CH_ID_DIG_SPI_0:
Vkadaba 23:bb685f35b08b 2159 eRet = admw_SetSpiChannelConfig(hDevice, eChannelId, pChannelConfig);
Vkadaba 23:bb685f35b08b 2160 break;
Vkadaba 23:bb685f35b08b 2161 default:
Vkadaba 23:bb685f35b08b 2162 ADMW_LOG_ERROR("Invalid channel ID %d specified", eChannelId);
Vkadaba 32:52445bef314d 2163 eRet = ADMW_INVALID_PARAM;
Vkadaba 32:52445bef314d 2164 #if 0
Vkadaba 32:52445bef314d 2165 /* when using i2c sensors there is an error ( dataformat->length=0)
Vkadaba 32:52445bef314d 2166 the code below catches this error and this causes further problems.*/
Vkadaba 32:52445bef314d 2167 break;
Vkadaba 32:52445bef314d 2168 }
Vkadaba 32:52445bef314d 2169 if (eRet != ADMW_SUCCESS) {
Vkadaba 32:52445bef314d 2170 ADMW_LOG_ERROR("Failed to set config for channel %d",
Vkadaba 32:52445bef314d 2171 eChannelId);
Vkadaba 32:52445bef314d 2172 return eRet;
Vkadaba 32:52445bef314d 2173 #endif
ADIJake 0:85855ecd3257 2174 }
ADIJake 0:85855ecd3257 2175
Vkadaba 5:0728bde67bdb 2176 eRet = admw1001_SetChannelSettlingTime(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2177 pChannelConfig->extraSettlingTime);
Vkadaba 23:bb685f35b08b 2178 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2179 ADMW_LOG_ERROR("Failed to set settling time for channel %d",
Vkadaba 23:bb685f35b08b 2180 eChannelId);
ADIJake 0:85855ecd3257 2181 return eRet;
ADIJake 0:85855ecd3257 2182 }
ADIJake 0:85855ecd3257 2183 }
ADIJake 0:85855ecd3257 2184 }
ADIJake 0:85855ecd3257 2185
Vkadaba 23:bb685f35b08b 2186 if (pChannelConfig->enableChannel) {
ADIJake 0:85855ecd3257 2187 /* Threshold limits can be configured individually for virtual channels */
Vkadaba 5:0728bde67bdb 2188 eRet = admw1001_SetChannelThresholdLimits(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2189 pChannelConfig->highThreshold,
Vkadaba 23:bb685f35b08b 2190 pChannelConfig->lowThreshold);
Vkadaba 23:bb685f35b08b 2191 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2192 ADMW_LOG_ERROR("Failed to set threshold limits for channel %d",
Vkadaba 23:bb685f35b08b 2193 eChannelId);
ADIJake 0:85855ecd3257 2194 return eRet;
ADIJake 0:85855ecd3257 2195 }
ADIJake 0:85855ecd3257 2196
ADIJake 0:85855ecd3257 2197 /* Offset and gain can be configured individually for virtual channels */
Vkadaba 5:0728bde67bdb 2198 eRet = admw1001_SetOffsetGain(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2199 pChannelConfig->offsetAdjustment,
Vkadaba 23:bb685f35b08b 2200 pChannelConfig->gainAdjustment);
Vkadaba 23:bb685f35b08b 2201 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2202 ADMW_LOG_ERROR("Failed to set offset/gain for channel %d",
Vkadaba 23:bb685f35b08b 2203 eChannelId);
ADIJake 0:85855ecd3257 2204 return eRet;
ADIJake 0:85855ecd3257 2205 }
ADIJake 0:85855ecd3257 2206
ADIJake 0:85855ecd3257 2207 /* Set sensor specific parameter */
Vkadaba 5:0728bde67bdb 2208 eRet = admw1001_SetSensorParameter(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2209 pChannelConfig->sensorParameter);
Vkadaba 23:bb685f35b08b 2210 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2211 ADMW_LOG_ERROR("Failed to set sensor parameter for channel %d",
Vkadaba 23:bb685f35b08b 2212 eChannelId);
ADIJake 0:85855ecd3257 2213 return eRet;
ADIJake 0:85855ecd3257 2214 }
ADIJake 0:85855ecd3257 2215 }
ADIJake 0:85855ecd3257 2216
Vkadaba 5:0728bde67bdb 2217 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2218 }
ADIJake 0:85855ecd3257 2219
Vkadaba 5:0728bde67bdb 2220 ADMW_RESULT admw_SetConfig(
Vkadaba 5:0728bde67bdb 2221 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 2222 ADMW_CONFIG * const pConfig)
ADIJake 0:85855ecd3257 2223 {
Vkadaba 5:0728bde67bdb 2224 ADMW1001_CONFIG *pDeviceConfig;
Vkadaba 5:0728bde67bdb 2225 ADMW_PRODUCT_ID productId;
Vkadaba 5:0728bde67bdb 2226 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 2227
Vkadaba 23:bb685f35b08b 2228 if (pConfig->productId != ADMW_PRODUCT_ID_ADMW1001) {
Vkadaba 5:0728bde67bdb 2229 ADMW_LOG_ERROR("Configuration Product ID (0x%X) is not supported (0x%0X)",
Vkadaba 23:bb685f35b08b 2230 pConfig->productId, ADMW_PRODUCT_ID_ADMW1001);
Vkadaba 5:0728bde67bdb 2231 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2232 }
Vkadaba 23:bb685f35b08b 2233
Vkadaba 23:bb685f35b08b 2234 if (!((pConfig->versionId.major==VERSIONID_MAJOR) &&
Vkadaba 23:bb685f35b08b 2235 (pConfig->versionId.minor==VERSIONID_MINOR))) {
Vkadaba 23:bb685f35b08b 2236 ADMW_LOG_ERROR("Configuration Version ID (0x%X) is not supported",
Vkadaba 23:bb685f35b08b 2237 pConfig->versionId);
Vkadaba 6:9d393a9677f4 2238 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 2239 }
Vkadaba 23:bb685f35b08b 2240
Vkadaba 23:bb685f35b08b 2241
ADIJake 0:85855ecd3257 2242 /* Check that the actual Product ID is a match? */
Vkadaba 5:0728bde67bdb 2243 eRet = admw_GetProductID(hDevice, &productId);
Vkadaba 23:bb685f35b08b 2244 if (eRet) {
Vkadaba 5:0728bde67bdb 2245 ADMW_LOG_ERROR("Failed to read device Product ID register");
ADIJake 0:85855ecd3257 2246 return eRet;
ADIJake 0:85855ecd3257 2247 }
Vkadaba 23:bb685f35b08b 2248 if (pConfig->productId != productId) {
Vkadaba 5:0728bde67bdb 2249 ADMW_LOG_ERROR("Configuration Product ID (0x%X) does not match device (0x%0X)",
Vkadaba 8:2f2775c34640 2250 pConfig->productId, productId);
Vkadaba 5:0728bde67bdb 2251 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2252 }
ADIJake 0:85855ecd3257 2253
Vkadaba 5:0728bde67bdb 2254 pDeviceConfig = &pConfig->admw1001;
Vkadaba 5:0728bde67bdb 2255
Vkadaba 5:0728bde67bdb 2256 eRet = admw1001_SetPowerConfig(hDevice, &pDeviceConfig->power);
Vkadaba 23:bb685f35b08b 2257 if (eRet) {
Vkadaba 5:0728bde67bdb 2258 ADMW_LOG_ERROR("Failed to set power configuration");
ADIJake 0:85855ecd3257 2259 return eRet;
ADIJake 0:85855ecd3257 2260 }
ADIJake 0:85855ecd3257 2261
Vkadaba 5:0728bde67bdb 2262 eRet = admw1001_SetMeasurementConfig(hDevice, &pDeviceConfig->measurement);
Vkadaba 23:bb685f35b08b 2263 if (eRet) {
Vkadaba 5:0728bde67bdb 2264 ADMW_LOG_ERROR("Failed to set measurement configuration");
ADIJake 0:85855ecd3257 2265 return eRet;
ADIJake 0:85855ecd3257 2266 }
ADIJake 0:85855ecd3257 2267
Vkadaba 36:54e2418e7620 2268 eRet = admw1001_SetDiagnosticsConfig(hDevice, &pDeviceConfig->diagnostics);
Vkadaba 36:54e2418e7620 2269 if (eRet)
Vkadaba 36:54e2418e7620 2270 {
Vkadaba 36:54e2418e7620 2271 ADMW_LOG_ERROR("Failed to set diagnostics configuration");
Vkadaba 36:54e2418e7620 2272 return eRet;
Vkadaba 36:54e2418e7620 2273 }
ADIJake 0:85855ecd3257 2274
Vkadaba 8:2f2775c34640 2275 for (ADMW1001_CH_ID id = ADMW1001_CH_ID_ANLG_1_UNIVERSAL;
Vkadaba 23:bb685f35b08b 2276 id < ADMW1001_MAX_CHANNELS;
Vkadaba 23:bb685f35b08b 2277 id++) {
Vkadaba 5:0728bde67bdb 2278 eRet = admw1001_SetChannelConfig(hDevice, id,
Vkadaba 23:bb685f35b08b 2279 &pDeviceConfig->channels[id]);
Vkadaba 23:bb685f35b08b 2280 if (eRet) {
Vkadaba 5:0728bde67bdb 2281 ADMW_LOG_ERROR("Failed to set channel %d configuration", id);
ADIJake 0:85855ecd3257 2282 return eRet;
ADIJake 0:85855ecd3257 2283 }
ADIJake 0:85855ecd3257 2284 }
ADIJake 0:85855ecd3257 2285
Vkadaba 5:0728bde67bdb 2286 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2287 }
ADIJake 0:85855ecd3257 2288
Vkadaba 5:0728bde67bdb 2289 ADMW_RESULT admw1001_SetLutData(
Vkadaba 8:2f2775c34640 2290 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 2291 ADMW1001_LUT * const pLutData)
ADIJake 0:85855ecd3257 2292 {
Vkadaba 5:0728bde67bdb 2293 ADMW1001_LUT_HEADER *pLutHeader = &pLutData->header;
Vkadaba 8:2f2775c34640 2294 ADMW1001_LUT_TABLE *pLutTable = pLutData->tables;
ADIJake 0:85855ecd3257 2295 unsigned actualLength = 0;
ADIJake 0:85855ecd3257 2296
Vkadaba 23:bb685f35b08b 2297 if (pLutData->header.signature != ADMW_LUT_SIGNATURE) {
Vkadaba 5:0728bde67bdb 2298 ADMW_LOG_ERROR("LUT signature incorrect (expected 0x%X, actual 0x%X)",
Vkadaba 23:bb685f35b08b 2299 ADMW_LUT_SIGNATURE, pLutHeader->signature);
Vkadaba 5:0728bde67bdb 2300 return ADMW_INVALID_SIGNATURE;
ADIJake 0:85855ecd3257 2301 }
ADIJake 0:85855ecd3257 2302
Vkadaba 23:bb685f35b08b 2303 for (unsigned i = 0; i < pLutHeader->numTables; i++) {
Vkadaba 5:0728bde67bdb 2304 ADMW1001_LUT_DESCRIPTOR *pDesc = &pLutTable->descriptor;
Vkadaba 5:0728bde67bdb 2305 ADMW1001_LUT_TABLE_DATA *pData = &pLutTable->data;
ADIJake 0:85855ecd3257 2306 unsigned short calculatedCrc;
ADIJake 0:85855ecd3257 2307
Vkadaba 23:bb685f35b08b 2308 switch (pDesc->geometry) {
Vkadaba 23:bb685f35b08b 2309 case ADMW1001_LUT_GEOMETRY_COEFFS:
Vkadaba 23:bb685f35b08b 2310 switch (pDesc->equation) {
Vkadaba 23:bb685f35b08b 2311 case ADMW1001_LUT_EQUATION_POLYN:
Vkadaba 23:bb685f35b08b 2312 case ADMW1001_LUT_EQUATION_POLYNEXP:
Vkadaba 23:bb685f35b08b 2313 case ADMW1001_LUT_EQUATION_QUADRATIC:
Vkadaba 23:bb685f35b08b 2314 case ADMW1001_LUT_EQUATION_STEINHART:
Vkadaba 23:bb685f35b08b 2315 case ADMW1001_LUT_EQUATION_LOGARITHMIC:
Vkadaba 23:bb685f35b08b 2316 case ADMW1001_LUT_EQUATION_BIVARIATE_POLYN:
Vkadaba 23:bb685f35b08b 2317 break;
Vkadaba 23:bb685f35b08b 2318 default:
Vkadaba 23:bb685f35b08b 2319 ADMW_LOG_ERROR("Invalid equation %u specified for LUT table %u",
Vkadaba 23:bb685f35b08b 2320 pDesc->equation, i);
Vkadaba 23:bb685f35b08b 2321 return ADMW_INVALID_PARAM;
Vkadaba 23:bb685f35b08b 2322 }
ADIJake 0:85855ecd3257 2323 break;
Vkadaba 23:bb685f35b08b 2324 case ADMW1001_LUT_GEOMETRY_NES_1D:
Vkadaba 23:bb685f35b08b 2325 case ADMW1001_LUT_GEOMETRY_NES_2D:
Vkadaba 23:bb685f35b08b 2326 case ADMW1001_LUT_GEOMETRY_ES_1D:
Vkadaba 23:bb685f35b08b 2327 case ADMW1001_LUT_GEOMETRY_ES_2D:
Vkadaba 23:bb685f35b08b 2328 if (pDesc->equation != ADMW1001_LUT_EQUATION_LUT) {
Vkadaba 5:0728bde67bdb 2329 ADMW_LOG_ERROR("Invalid equation %u specified for LUT table %u",
Vkadaba 23:bb685f35b08b 2330 pDesc->equation, i);
Vkadaba 5:0728bde67bdb 2331 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2332 }
Vkadaba 23:bb685f35b08b 2333 break;
Vkadaba 23:bb685f35b08b 2334 default:
Vkadaba 23:bb685f35b08b 2335 ADMW_LOG_ERROR("Invalid geometry %u specified for LUT table %u",
Vkadaba 23:bb685f35b08b 2336 pDesc->geometry, i);
Vkadaba 23:bb685f35b08b 2337 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2338 }
ADIJake 0:85855ecd3257 2339
Vkadaba 23:bb685f35b08b 2340 switch (pDesc->dataType) {
Vkadaba 23:bb685f35b08b 2341 case ADMW1001_LUT_DATA_TYPE_FLOAT32:
Vkadaba 23:bb685f35b08b 2342 case ADMW1001_LUT_DATA_TYPE_FLOAT64:
Vkadaba 23:bb685f35b08b 2343 break;
Vkadaba 23:bb685f35b08b 2344 default:
Vkadaba 23:bb685f35b08b 2345 ADMW_LOG_ERROR("Invalid vector format %u specified for LUT table %u",
Vkadaba 23:bb685f35b08b 2346 pDesc->dataType, i);
Vkadaba 23:bb685f35b08b 2347 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2348 }
ADIJake 0:85855ecd3257 2349
Vkadaba 5:0728bde67bdb 2350 calculatedCrc = admw_crc16_ccitt(pData, pDesc->length);
Vkadaba 23:bb685f35b08b 2351 if (calculatedCrc != pDesc->crc16) {
Vkadaba 5:0728bde67bdb 2352 ADMW_LOG_ERROR("CRC validation failed on LUT table %u (expected 0x%04X, actual 0x%04X)",
Vkadaba 23:bb685f35b08b 2353 i, pDesc->crc16, calculatedCrc);
Vkadaba 5:0728bde67bdb 2354 return ADMW_CRC_ERROR;
ADIJake 0:85855ecd3257 2355 }
ADIJake 0:85855ecd3257 2356
ADIJake 0:85855ecd3257 2357 actualLength += sizeof(*pDesc) + pDesc->length;
ADIJake 0:85855ecd3257 2358
ADIJake 0:85855ecd3257 2359 /* Move to the next look-up table */
Vkadaba 5:0728bde67bdb 2360 pLutTable = (ADMW1001_LUT_TABLE *)((uint8_t *)pLutTable + sizeof(*pDesc) + pDesc->length);
ADIJake 0:85855ecd3257 2361 }
ADIJake 0:85855ecd3257 2362
Vkadaba 23:bb685f35b08b 2363 if (actualLength != pLutHeader->totalLength) {
Vkadaba 5:0728bde67bdb 2364 ADMW_LOG_ERROR("LUT table length mismatch (expected %u, actual %u)",
Vkadaba 23:bb685f35b08b 2365 pLutHeader->totalLength, actualLength);
Vkadaba 5:0728bde67bdb 2366 return ADMW_WRONG_SIZE;
ADIJake 0:85855ecd3257 2367 }
ADIJake 0:85855ecd3257 2368
Vkadaba 23:bb685f35b08b 2369 if (sizeof(*pLutHeader) + pLutHeader->totalLength > ADMW_LUT_MAX_SIZE) {
Vkadaba 5:0728bde67bdb 2370 ADMW_LOG_ERROR("Maximum LUT table length (%u bytes) exceeded",
Vkadaba 23:bb685f35b08b 2371 ADMW_LUT_MAX_SIZE);
Vkadaba 5:0728bde67bdb 2372 return ADMW_WRONG_SIZE;
ADIJake 0:85855ecd3257 2373 }
ADIJake 0:85855ecd3257 2374
ADIJake 0:85855ecd3257 2375 /* Write the LUT data to the device */
ADIJake 0:85855ecd3257 2376 unsigned lutSize = sizeof(*pLutHeader) + pLutHeader->totalLength;
ADIJake 0:85855ecd3257 2377 WRITE_REG_U16(hDevice, 0, CORE_LUT_OFFSET);
ADIJake 0:85855ecd3257 2378 WRITE_REG_U8_ARRAY(hDevice, (uint8_t *)pLutData, lutSize, CORE_LUT_DATA);
ADIJake 0:85855ecd3257 2379
Vkadaba 5:0728bde67bdb 2380 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2381 }
ADIJake 0:85855ecd3257 2382
Vkadaba 5:0728bde67bdb 2383 ADMW_RESULT admw1001_SetLutDataRaw(
Vkadaba 5:0728bde67bdb 2384 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 2385 ADMW1001_LUT_RAW * const pLutData)
ADIJake 0:85855ecd3257 2386 {
Vkadaba 5:0728bde67bdb 2387 return admw1001_SetLutData(hDevice,
Vkadaba 23:bb685f35b08b 2388 (ADMW1001_LUT *)pLutData);
ADIJake 0:85855ecd3257 2389 }
ADIJake 0:85855ecd3257 2390
Vkadaba 5:0728bde67bdb 2391 static ADMW_RESULT getLutTableSize(
Vkadaba 5:0728bde67bdb 2392 ADMW1001_LUT_DESCRIPTOR * const pDesc,
Vkadaba 5:0728bde67bdb 2393 ADMW1001_LUT_TABLE_DATA * const pData,
ADIJake 0:85855ecd3257 2394 unsigned *pLength)
ADIJake 0:85855ecd3257 2395 {
Vkadaba 23:bb685f35b08b 2396 switch (pDesc->geometry) {
Vkadaba 23:bb685f35b08b 2397 case ADMW1001_LUT_GEOMETRY_COEFFS:
Vkadaba 23:bb685f35b08b 2398 if (pDesc->equation == ADMW1001_LUT_EQUATION_BIVARIATE_POLYN)
Vkadaba 23:bb685f35b08b 2399 *pLength = ADMW1001_LUT_2D_POLYN_COEFF_LIST_SIZE(pData->coeffList2d);
Vkadaba 23:bb685f35b08b 2400 else
Vkadaba 23:bb685f35b08b 2401 *pLength = ADMW1001_LUT_COEFF_LIST_SIZE(pData->coeffList);
Vkadaba 23:bb685f35b08b 2402 break;
Vkadaba 23:bb685f35b08b 2403 case ADMW1001_LUT_GEOMETRY_NES_1D:
Vkadaba 23:bb685f35b08b 2404 *pLength = ADMW1001_LUT_1D_NES_SIZE(pData->lut1dNes);
Vkadaba 23:bb685f35b08b 2405 break;
Vkadaba 23:bb685f35b08b 2406 case ADMW1001_LUT_GEOMETRY_NES_2D:
Vkadaba 23:bb685f35b08b 2407 *pLength = ADMW1001_LUT_2D_NES_SIZE(pData->lut2dNes);
Vkadaba 23:bb685f35b08b 2408 break;
Vkadaba 23:bb685f35b08b 2409 case ADMW1001_LUT_GEOMETRY_ES_1D:
Vkadaba 23:bb685f35b08b 2410 *pLength = ADMW1001_LUT_1D_ES_SIZE(pData->lut1dEs);
Vkadaba 23:bb685f35b08b 2411 break;
Vkadaba 23:bb685f35b08b 2412 case ADMW1001_LUT_GEOMETRY_ES_2D:
Vkadaba 23:bb685f35b08b 2413 *pLength = ADMW1001_LUT_2D_ES_SIZE(pData->lut2dEs);
Vkadaba 23:bb685f35b08b 2414 break;
Vkadaba 23:bb685f35b08b 2415 default:
Vkadaba 23:bb685f35b08b 2416 ADMW_LOG_ERROR("Invalid LUT table geometry %d specified\r\n",
Vkadaba 23:bb685f35b08b 2417 pDesc->geometry);
Vkadaba 23:bb685f35b08b 2418 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2419 }
ADIJake 0:85855ecd3257 2420
Vkadaba 5:0728bde67bdb 2421 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2422 }
ADIJake 0:85855ecd3257 2423
Vkadaba 5:0728bde67bdb 2424 ADMW_RESULT admw1001_AssembleLutData(
Vkadaba 5:0728bde67bdb 2425 ADMW1001_LUT * pLutBuffer,
ADIJake 0:85855ecd3257 2426 unsigned nLutBufferSize,
ADIJake 0:85855ecd3257 2427 unsigned const nNumTables,
Vkadaba 5:0728bde67bdb 2428 ADMW1001_LUT_DESCRIPTOR * const ppDesc[],
Vkadaba 5:0728bde67bdb 2429 ADMW1001_LUT_TABLE_DATA * const ppData[])
ADIJake 0:85855ecd3257 2430 {
Vkadaba 5:0728bde67bdb 2431 ADMW1001_LUT_HEADER *pHdr = &pLutBuffer->header;
ADIJake 0:85855ecd3257 2432 uint8_t *pLutTableData = (uint8_t *)pLutBuffer + sizeof(*pHdr);
ADIJake 0:85855ecd3257 2433
Vkadaba 23:bb685f35b08b 2434 if (sizeof(*pHdr) > nLutBufferSize) {
Vkadaba 5:0728bde67bdb 2435 ADMW_LOG_ERROR("Insufficient LUT buffer size provided");
Vkadaba 5:0728bde67bdb 2436 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2437 }
ADIJake 0:85855ecd3257 2438
ADIJake 0:85855ecd3257 2439 /* First initialise the top-level header */
Vkadaba 5:0728bde67bdb 2440 pHdr->signature = ADMW_LUT_SIGNATURE;
ADIJake 0:85855ecd3257 2441 pHdr->version.major = 1;
ADIJake 0:85855ecd3257 2442 pHdr->version.minor = 0;
ADIJake 0:85855ecd3257 2443 pHdr->numTables = 0;
ADIJake 0:85855ecd3257 2444 pHdr->totalLength = 0;
ADIJake 0:85855ecd3257 2445
ADIJake 0:85855ecd3257 2446 /*
ADIJake 0:85855ecd3257 2447 * Walk through the list of table pointers provided, appending the table
ADIJake 0:85855ecd3257 2448 * descriptor+data from each one to the provided LUT buffer
ADIJake 0:85855ecd3257 2449 */
Vkadaba 23:bb685f35b08b 2450 for (unsigned i = 0; i < nNumTables; i++) {
Vkadaba 5:0728bde67bdb 2451 ADMW1001_LUT_DESCRIPTOR * const pDesc = ppDesc[i];
Vkadaba 5:0728bde67bdb 2452 ADMW1001_LUT_TABLE_DATA * const pData = ppData[i];
Vkadaba 5:0728bde67bdb 2453 ADMW_RESULT res;
ADIJake 0:85855ecd3257 2454 unsigned dataLength = 0;
ADIJake 0:85855ecd3257 2455
ADIJake 0:85855ecd3257 2456 /* Calculate the length of the table data */
ADIJake 0:85855ecd3257 2457 res = getLutTableSize(pDesc, pData, &dataLength);
Vkadaba 5:0728bde67bdb 2458 if (res != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 2459 return res;
ADIJake 0:85855ecd3257 2460
ADIJake 0:85855ecd3257 2461 /* Fill in the table descriptor length and CRC fields */
ADIJake 0:85855ecd3257 2462 pDesc->length = dataLength;
Vkadaba 5:0728bde67bdb 2463 pDesc->crc16 = admw_crc16_ccitt(pData, dataLength);
ADIJake 0:85855ecd3257 2464
Vkadaba 23:bb685f35b08b 2465 if ((sizeof(*pHdr) + pHdr->totalLength + sizeof(*pDesc) + dataLength) > nLutBufferSize) {
Vkadaba 5:0728bde67bdb 2466 ADMW_LOG_ERROR("Insufficient LUT buffer size provided");
Vkadaba 5:0728bde67bdb 2467 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2468 }
ADIJake 0:85855ecd3257 2469
ADIJake 0:85855ecd3257 2470 /* Append the table to the LUT buffer (desc + data) */
ADIJake 0:85855ecd3257 2471 memcpy(pLutTableData + pHdr->totalLength, pDesc, sizeof(*pDesc));
ADIJake 0:85855ecd3257 2472 pHdr->totalLength += sizeof(*pDesc);
ADIJake 0:85855ecd3257 2473 memcpy(pLutTableData + pHdr->totalLength, pData, dataLength);
ADIJake 0:85855ecd3257 2474 pHdr->totalLength += dataLength;
ADIJake 0:85855ecd3257 2475
ADIJake 0:85855ecd3257 2476 pHdr->numTables++;
ADIJake 0:85855ecd3257 2477 }
ADIJake 0:85855ecd3257 2478
Vkadaba 5:0728bde67bdb 2479 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2480 }