Vybhav Kadaba
/
EV-PRO-MW1001_dec12
MWARE-1930 fixed
src/admw_1001.c@5:0728bde67bdb, 2019-06-05 (annotated)
- Committer:
- Vkadaba
- Date:
- Wed Jun 05 05:39:15 2019 +0000
- Revision:
- 5:0728bde67bdb
- Parent:
- src/adi_sense_1000.c@4:2ca06eee5735
- Child:
- 6:9d393a9677f4
Replaced all references to ADISense/ADISENSE1000/adi_sense with ADMW/ADMW1001/admw and the prject builds.
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
ADIJake | 0:85855ecd3257 | 1 | /* |
ADIJake | 0:85855ecd3257 | 2 | Copyright 2018 (c) Analog Devices, Inc. |
ADIJake | 0:85855ecd3257 | 3 | |
ADIJake | 0:85855ecd3257 | 4 | All rights reserved. |
ADIJake | 0:85855ecd3257 | 5 | |
ADIJake | 0:85855ecd3257 | 6 | Redistribution and use in source and binary forms, with or without |
ADIJake | 0:85855ecd3257 | 7 | modification, are permitted provided that the following conditions are met: |
ADIJake | 0:85855ecd3257 | 8 | - Redistributions of source code must retain the above copyright |
ADIJake | 0:85855ecd3257 | 9 | notice, this list of conditions and the following disclaimer. |
ADIJake | 0:85855ecd3257 | 10 | - Redistributions in binary form must reproduce the above copyright |
ADIJake | 0:85855ecd3257 | 11 | notice, this list of conditions and the following disclaimer in |
ADIJake | 0:85855ecd3257 | 12 | the documentation and/or other materials provided with the |
ADIJake | 0:85855ecd3257 | 13 | distribution. |
ADIJake | 0:85855ecd3257 | 14 | - Neither the name of Analog Devices, Inc. nor the names of its |
ADIJake | 0:85855ecd3257 | 15 | contributors may be used to endorse or promote products derived |
ADIJake | 0:85855ecd3257 | 16 | from this software without specific prior written permission. |
ADIJake | 0:85855ecd3257 | 17 | - The use of this software may or may not infringe the patent rights |
ADIJake | 0:85855ecd3257 | 18 | of one or more patent holders. This license does not release you |
ADIJake | 0:85855ecd3257 | 19 | from the requirement that you obtain separate licenses from these |
ADIJake | 0:85855ecd3257 | 20 | patent holders to use this software. |
ADIJake | 0:85855ecd3257 | 21 | - Use of the software either in source or binary form, must be run |
ADIJake | 0:85855ecd3257 | 22 | on or directly connected to an Analog Devices Inc. component. |
ADIJake | 0:85855ecd3257 | 23 | |
ADIJake | 0:85855ecd3257 | 24 | THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR |
ADIJake | 0:85855ecd3257 | 25 | IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, |
ADIJake | 0:85855ecd3257 | 26 | MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
ADIJake | 0:85855ecd3257 | 27 | IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, |
ADIJake | 0:85855ecd3257 | 28 | INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
ADIJake | 0:85855ecd3257 | 29 | LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR |
ADIJake | 0:85855ecd3257 | 30 | SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
ADIJake | 0:85855ecd3257 | 31 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
ADIJake | 0:85855ecd3257 | 32 | OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
ADIJake | 0:85855ecd3257 | 33 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
ADIJake | 0:85855ecd3257 | 34 | */ |
ADIJake | 0:85855ecd3257 | 35 | |
ADIJake | 0:85855ecd3257 | 36 | /****************************************************************************** |
ADIJake | 0:85855ecd3257 | 37 | Copyright 2017 (c) Analog Devices, Inc. |
ADIJake | 0:85855ecd3257 | 38 | |
ADIJake | 0:85855ecd3257 | 39 | All rights reserved. |
ADIJake | 0:85855ecd3257 | 40 | |
ADIJake | 0:85855ecd3257 | 41 | Redistribution and use in source and binary forms, with or without |
ADIJake | 0:85855ecd3257 | 42 | modification, are permitted provided that the following conditions are met: |
ADIJake | 0:85855ecd3257 | 43 | - Redistributions of source code must retain the above copyright |
ADIJake | 0:85855ecd3257 | 44 | notice, this list of conditions and the following disclaimer. |
ADIJake | 0:85855ecd3257 | 45 | - Redistributions in binary form must reproduce the above copyright |
ADIJake | 0:85855ecd3257 | 46 | notice, this list of conditions and the following disclaimer in |
ADIJake | 0:85855ecd3257 | 47 | the documentation and/or other materials provided with the |
ADIJake | 0:85855ecd3257 | 48 | distribution. |
ADIJake | 0:85855ecd3257 | 49 | - Neither the name of Analog Devices, Inc. nor the names of its |
ADIJake | 0:85855ecd3257 | 50 | contributors may be used to endorse or promote products derived |
ADIJake | 0:85855ecd3257 | 51 | from this software without specific prior written permission. |
ADIJake | 0:85855ecd3257 | 52 | - The use of this software may or may not infringe the patent rights |
ADIJake | 0:85855ecd3257 | 53 | of one or more patent holders. This license does not release you |
ADIJake | 0:85855ecd3257 | 54 | from the requirement that you obtain separate licenses from these |
ADIJake | 0:85855ecd3257 | 55 | patent holders to use this software. |
ADIJake | 0:85855ecd3257 | 56 | - Use of the software either in source or binary form, must be run |
ADIJake | 0:85855ecd3257 | 57 | on or directly connected to an Analog Devices Inc. component. |
ADIJake | 0:85855ecd3257 | 58 | |
ADIJake | 0:85855ecd3257 | 59 | THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR |
ADIJake | 0:85855ecd3257 | 60 | IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, |
ADIJake | 0:85855ecd3257 | 61 | MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
ADIJake | 0:85855ecd3257 | 62 | IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, |
ADIJake | 0:85855ecd3257 | 63 | INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
ADIJake | 0:85855ecd3257 | 64 | LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR |
ADIJake | 0:85855ecd3257 | 65 | SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
ADIJake | 0:85855ecd3257 | 66 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
ADIJake | 0:85855ecd3257 | 67 | OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
ADIJake | 0:85855ecd3257 | 68 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
ADIJake | 0:85855ecd3257 | 69 | * |
ADIJake | 0:85855ecd3257 | 70 | *****************************************************************************/ |
ADIJake | 0:85855ecd3257 | 71 | |
ADIJake | 0:85855ecd3257 | 72 | /*! |
ADIJake | 0:85855ecd3257 | 73 | ****************************************************************************** |
ADIJake | 0:85855ecd3257 | 74 | * @file: |
Vkadaba | 5:0728bde67bdb | 75 | * @brief: ADMW API implementation for ADSNS1000 |
ADIJake | 0:85855ecd3257 | 76 | *----------------------------------------------------------------------------- |
ADIJake | 0:85855ecd3257 | 77 | */ |
ADIJake | 0:85855ecd3257 | 78 | |
ADIJake | 0:85855ecd3257 | 79 | #include <float.h> |
ADIJake | 0:85855ecd3257 | 80 | #include <math.h> |
ADIJake | 0:85855ecd3257 | 81 | #include <string.h> |
ADIJake | 0:85855ecd3257 | 82 | |
Vkadaba | 5:0728bde67bdb | 83 | #include "admw_platform.h" |
Vkadaba | 5:0728bde67bdb | 84 | #include "admw_api.h" |
Vkadaba | 5:0728bde67bdb | 85 | #include "admw1001/admw1001_api.h" |
Vkadaba | 5:0728bde67bdb | 86 | |
Vkadaba | 5:0728bde67bdb | 87 | #include "admw1001/ADMW1001_REGISTERS_typedefs.h" |
Vkadaba | 5:0728bde67bdb | 88 | #include "admw1001/ADMW1001_REGISTERS.h" |
Vkadaba | 5:0728bde67bdb | 89 | #include "admw1001/admw1001_lut_data.h" |
Vkadaba | 5:0728bde67bdb | 90 | #include "admw1001/admw1001_host_comms.h" |
ADIJake | 0:85855ecd3257 | 91 | |
ADIJake | 0:85855ecd3257 | 92 | #include "crc16.h" |
ADIJake | 0:85855ecd3257 | 93 | |
ADIJake | 0:85855ecd3257 | 94 | |
ADIJake | 0:85855ecd3257 | 95 | uint32_t getDataCnt = 0; |
ADIJake | 0:85855ecd3257 | 96 | |
ADIJake | 0:85855ecd3257 | 97 | /* |
ADIJake | 0:85855ecd3257 | 98 | * The following macros are used to encapsulate the register access code |
ADIJake | 0:85855ecd3257 | 99 | * to improve readability in the functions further below in this file |
ADIJake | 0:85855ecd3257 | 100 | */ |
ADIJake | 0:85855ecd3257 | 101 | #define STRINGIFY(name) #name |
ADIJake | 0:85855ecd3257 | 102 | |
ADIJake | 0:85855ecd3257 | 103 | /* Expand the full name of the reset value macro for the specified register */ |
Vkadaba | 5:0728bde67bdb | 104 | #define REG_RESET_VAL(_name) REG_##_name##_RESET |
ADIJake | 0:85855ecd3257 | 105 | |
ADIJake | 0:85855ecd3257 | 106 | /* Checks if a value is outside the bounds of the specified register field */ |
ADIJake | 0:85855ecd3257 | 107 | #define CHECK_REG_FIELD_VAL(_field, _val) \ |
ADIJake | 0:85855ecd3257 | 108 | do { \ |
Vkadaba | 5:0728bde67bdb | 109 | uint32_t _mask = BITM_##_field; \ |
Vkadaba | 5:0728bde67bdb | 110 | uint32_t _shift = BITP_##_field; \ |
ADIJake | 0:85855ecd3257 | 111 | if ((((_val) << _shift) & ~(_mask)) != 0) { \ |
Vkadaba | 5:0728bde67bdb | 112 | ADMW_LOG_ERROR("Value 0x%08X invalid for register field %s", \ |
ADIJake | 0:85855ecd3257 | 113 | (uint32_t)(_val), \ |
Vkadaba | 5:0728bde67bdb | 114 | STRINGIFY(ADMW_##_field)); \ |
Vkadaba | 5:0728bde67bdb | 115 | return ADMW_INVALID_PARAM; \ |
ADIJake | 0:85855ecd3257 | 116 | } \ |
ADIJake | 0:85855ecd3257 | 117 | } while(false) |
ADIJake | 0:85855ecd3257 | 118 | |
ADIJake | 0:85855ecd3257 | 119 | /* |
ADIJake | 0:85855ecd3257 | 120 | * Encapsulates the write to a specified register |
ADIJake | 0:85855ecd3257 | 121 | * NOTE - this will cause the calling function to return on error |
ADIJake | 0:85855ecd3257 | 122 | */ |
ADIJake | 0:85855ecd3257 | 123 | #define WRITE_REG(_hdev, _val, _name, _type) \ |
ADIJake | 0:85855ecd3257 | 124 | do { \ |
Vkadaba | 5:0728bde67bdb | 125 | ADMW_RESULT _res; \ |
ADIJake | 0:85855ecd3257 | 126 | _type _regval = _val; \ |
Vkadaba | 5:0728bde67bdb | 127 | _res = admw1001_WriteRegister((_hdev), \ |
Vkadaba | 5:0728bde67bdb | 128 | REG_##_name, \ |
ADIJake | 0:85855ecd3257 | 129 | &_regval, sizeof(_regval)); \ |
Vkadaba | 5:0728bde67bdb | 130 | if (_res != ADMW_SUCCESS) \ |
ADIJake | 0:85855ecd3257 | 131 | return _res; \ |
ADIJake | 0:85855ecd3257 | 132 | } while(false) |
ADIJake | 0:85855ecd3257 | 133 | |
ADIJake | 0:85855ecd3257 | 134 | /* Wrapper macro to write a value to a uint32_t register */ |
ADIJake | 0:85855ecd3257 | 135 | #define WRITE_REG_U32(_hdev, _val, _name) \ |
ADIJake | 0:85855ecd3257 | 136 | WRITE_REG(_hdev, _val, _name, uint32_t) |
ADIJake | 0:85855ecd3257 | 137 | /* Wrapper macro to write a value to a uint16_t register */ |
ADIJake | 0:85855ecd3257 | 138 | #define WRITE_REG_U16(_hdev, _val, _name) \ |
ADIJake | 0:85855ecd3257 | 139 | WRITE_REG(_hdev, _val, _name, uint16_t) |
ADIJake | 0:85855ecd3257 | 140 | /* Wrapper macro to write a value to a uint8_t register */ |
ADIJake | 0:85855ecd3257 | 141 | #define WRITE_REG_U8(_hdev, _val, _name) \ |
ADIJake | 0:85855ecd3257 | 142 | WRITE_REG(_hdev, _val, _name, uint8_t) |
ADIJake | 0:85855ecd3257 | 143 | /* Wrapper macro to write a value to a float32_t register */ |
ADIJake | 0:85855ecd3257 | 144 | #define WRITE_REG_FLOAT(_hdev, _val, _name) \ |
ADIJake | 0:85855ecd3257 | 145 | WRITE_REG(_hdev, _val, _name, float32_t) |
ADIJake | 0:85855ecd3257 | 146 | |
ADIJake | 0:85855ecd3257 | 147 | /* |
ADIJake | 0:85855ecd3257 | 148 | * Encapsulates the read from a specified register |
ADIJake | 0:85855ecd3257 | 149 | * NOTE - this will cause the calling function to return on error |
ADIJake | 0:85855ecd3257 | 150 | */ |
ADIJake | 0:85855ecd3257 | 151 | #define READ_REG(_hdev, _val, _name, _type) \ |
ADIJake | 0:85855ecd3257 | 152 | do { \ |
Vkadaba | 5:0728bde67bdb | 153 | ADMW_RESULT _res; \ |
ADIJake | 0:85855ecd3257 | 154 | _type _regval; \ |
Vkadaba | 5:0728bde67bdb | 155 | _res = admw1001_ReadRegister((_hdev), \ |
Vkadaba | 5:0728bde67bdb | 156 | REG_##_name, \ |
ADIJake | 0:85855ecd3257 | 157 | &_regval, sizeof(_regval)); \ |
Vkadaba | 5:0728bde67bdb | 158 | if (_res != ADMW_SUCCESS) \ |
ADIJake | 0:85855ecd3257 | 159 | return _res; \ |
ADIJake | 0:85855ecd3257 | 160 | _val = _regval; \ |
ADIJake | 0:85855ecd3257 | 161 | } while(false) |
ADIJake | 0:85855ecd3257 | 162 | |
ADIJake | 0:85855ecd3257 | 163 | /* Wrapper macro to read a value from a uint32_t register */ |
ADIJake | 0:85855ecd3257 | 164 | #define READ_REG_U32(_hdev, _val, _name) \ |
ADIJake | 0:85855ecd3257 | 165 | READ_REG(_hdev, _val, _name, uint32_t) |
ADIJake | 0:85855ecd3257 | 166 | /* Wrapper macro to read a value from a uint16_t register */ |
ADIJake | 0:85855ecd3257 | 167 | #define READ_REG_U16(_hdev, _val, _name) \ |
ADIJake | 0:85855ecd3257 | 168 | READ_REG(_hdev, _val, _name, uint16_t) |
ADIJake | 0:85855ecd3257 | 169 | /* Wrapper macro to read a value from a uint8_t register */ |
ADIJake | 0:85855ecd3257 | 170 | #define READ_REG_U8(_hdev, _val, _name) \ |
ADIJake | 0:85855ecd3257 | 171 | READ_REG(_hdev, _val, _name, uint8_t) |
ADIJake | 0:85855ecd3257 | 172 | /* Wrapper macro to read a value from a float32_t register */ |
ADIJake | 0:85855ecd3257 | 173 | #define READ_REG_FLOAT(_hdev, _val, _name) \ |
ADIJake | 0:85855ecd3257 | 174 | READ_REG(_hdev, _val, _name, float32_t) |
ADIJake | 0:85855ecd3257 | 175 | |
ADIJake | 0:85855ecd3257 | 176 | /* |
ADIJake | 0:85855ecd3257 | 177 | * Wrapper macro to write an array of values to a uint8_t register |
ADIJake | 0:85855ecd3257 | 178 | * NOTE - this is intended only for writing to a keyhole data register |
ADIJake | 0:85855ecd3257 | 179 | */ |
ADIJake | 0:85855ecd3257 | 180 | #define WRITE_REG_U8_ARRAY(_hdev, _arr, _len, _name) \ |
ADIJake | 0:85855ecd3257 | 181 | do { \ |
Vkadaba | 5:0728bde67bdb | 182 | ADMW_RESULT _res; \ |
Vkadaba | 5:0728bde67bdb | 183 | _res = admw1001_WriteRegister(_hdev, \ |
Vkadaba | 5:0728bde67bdb | 184 | REG_##_name, \ |
ADIJake | 0:85855ecd3257 | 185 | _arr, _len); \ |
Vkadaba | 5:0728bde67bdb | 186 | if (_res != ADMW_SUCCESS) \ |
ADIJake | 0:85855ecd3257 | 187 | return _res; \ |
ADIJake | 0:85855ecd3257 | 188 | } while(false) |
ADIJake | 0:85855ecd3257 | 189 | |
ADIJake | 0:85855ecd3257 | 190 | /* |
ADIJake | 0:85855ecd3257 | 191 | * Wrapper macro to read an array of values from a uint8_t register |
ADIJake | 0:85855ecd3257 | 192 | * NOTE - this is intended only for reading from a keyhole data register |
ADIJake | 0:85855ecd3257 | 193 | */ |
ADIJake | 0:85855ecd3257 | 194 | #define READ_REG_U8_ARRAY(_hdev, _arr, _len, _name) \ |
ADIJake | 0:85855ecd3257 | 195 | do { \ |
Vkadaba | 5:0728bde67bdb | 196 | ADMW_RESULT _res; \ |
Vkadaba | 5:0728bde67bdb | 197 | _res = admw1001_ReadRegister((_hdev), \ |
Vkadaba | 5:0728bde67bdb | 198 | REG_##_name, \ |
ADIJake | 0:85855ecd3257 | 199 | _arr, _len); \ |
Vkadaba | 5:0728bde67bdb | 200 | if (_res != ADMW_SUCCESS) \ |
ADIJake | 0:85855ecd3257 | 201 | return _res; \ |
ADIJake | 0:85855ecd3257 | 202 | } while(false) |
ADIJake | 0:85855ecd3257 | 203 | |
Vkadaba | 5:0728bde67bdb | 204 | #define ADMW1001_CHANNEL_IS_ADC(c) \ |
Vkadaba | 5:0728bde67bdb | 205 | ((c) >= ADMW1001_CHANNEL_ID_CJC_0 && (c) <= ADMW1001_CHANNEL_ID_CURRENT_0) |
Vkadaba | 5:0728bde67bdb | 206 | |
Vkadaba | 5:0728bde67bdb | 207 | #define ADMW1001_CHANNEL_IS_ADC_CJC(c) \ |
Vkadaba | 5:0728bde67bdb | 208 | ((c) >= ADMW1001_CHANNEL_ID_CJC_0 && (c) <= ADMW1001_CHANNEL_ID_CJC_1) |
Vkadaba | 5:0728bde67bdb | 209 | |
Vkadaba | 5:0728bde67bdb | 210 | #define ADMW1001_CHANNEL_IS_ADC_SENSOR(c) \ |
Vkadaba | 5:0728bde67bdb | 211 | ((c) >= ADMW1001_CHANNEL_ID_SENSOR_0 && (c) <= ADMW1001_CHANNEL_ID_SENSOR_3) |
Vkadaba | 5:0728bde67bdb | 212 | |
Vkadaba | 5:0728bde67bdb | 213 | #define ADMW1001_CHANNEL_IS_ADC_VOLTAGE(c) \ |
Vkadaba | 5:0728bde67bdb | 214 | ((c) == ADMW1001_CHANNEL_ID_VOLTAGE_0) |
Vkadaba | 5:0728bde67bdb | 215 | |
Vkadaba | 5:0728bde67bdb | 216 | #define ADMW1001_CHANNEL_IS_ADC_CURRENT(c) \ |
Vkadaba | 5:0728bde67bdb | 217 | ((c) == ADMW1001_CHANNEL_ID_CURRENT_0) |
Vkadaba | 5:0728bde67bdb | 218 | |
Vkadaba | 5:0728bde67bdb | 219 | #define ADMW1001_CHANNEL_IS_VIRTUAL(c) \ |
Vkadaba | 5:0728bde67bdb | 220 | ((c) == ADMW1001_CHANNEL_ID_SPI_1 || (c) == ADMW1001_CHANNEL_ID_SPI_2) |
ADIJake | 0:85855ecd3257 | 221 | |
ADIJake | 0:85855ecd3257 | 222 | typedef struct |
ADIJake | 0:85855ecd3257 | 223 | { |
ADIJake | 0:85855ecd3257 | 224 | unsigned nDeviceIndex; |
Vkadaba | 5:0728bde67bdb | 225 | ADMW_SPI_HANDLE hSpi; |
Vkadaba | 5:0728bde67bdb | 226 | ADMW_GPIO_HANDLE hGpio; |
Vkadaba | 5:0728bde67bdb | 227 | } ADMW_DEVICE_CONTEXT; |
Vkadaba | 5:0728bde67bdb | 228 | |
Vkadaba | 5:0728bde67bdb | 229 | static ADMW_DEVICE_CONTEXT gDeviceCtx[ADMW_PLATFORM_MAX_DEVICES]; |
ADIJake | 0:85855ecd3257 | 230 | |
ADIJake | 0:85855ecd3257 | 231 | /* |
Vkadaba | 5:0728bde67bdb | 232 | * Open an ADMW device instance. |
ADIJake | 0:85855ecd3257 | 233 | */ |
Vkadaba | 5:0728bde67bdb | 234 | ADMW_RESULT admw_Open( |
ADIJake | 0:85855ecd3257 | 235 | unsigned const nDeviceIndex, |
Vkadaba | 5:0728bde67bdb | 236 | ADMW_CONNECTION * const pConnectionInfo, |
Vkadaba | 5:0728bde67bdb | 237 | ADMW_DEVICE_HANDLE * const phDevice) |
ADIJake | 0:85855ecd3257 | 238 | { |
Vkadaba | 5:0728bde67bdb | 239 | ADMW_DEVICE_CONTEXT *pCtx; |
Vkadaba | 5:0728bde67bdb | 240 | ADMW_RESULT eRet; |
Vkadaba | 5:0728bde67bdb | 241 | |
Vkadaba | 5:0728bde67bdb | 242 | if (nDeviceIndex >= ADMW_PLATFORM_MAX_DEVICES) |
Vkadaba | 5:0728bde67bdb | 243 | return ADMW_INVALID_DEVICE_NUM; |
ADIJake | 0:85855ecd3257 | 244 | |
ADIJake | 0:85855ecd3257 | 245 | pCtx = &gDeviceCtx[nDeviceIndex]; |
ADIJake | 0:85855ecd3257 | 246 | pCtx->nDeviceIndex = nDeviceIndex; |
ADIJake | 0:85855ecd3257 | 247 | |
Vkadaba | 5:0728bde67bdb | 248 | eRet = admw_LogOpen(&pConnectionInfo->log); |
Vkadaba | 5:0728bde67bdb | 249 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 250 | return eRet; |
ADIJake | 0:85855ecd3257 | 251 | |
Vkadaba | 5:0728bde67bdb | 252 | eRet = admw_GpioOpen(&pConnectionInfo->gpio, &pCtx->hGpio); |
Vkadaba | 5:0728bde67bdb | 253 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 254 | return eRet; |
ADIJake | 0:85855ecd3257 | 255 | |
Vkadaba | 5:0728bde67bdb | 256 | eRet = admw_SpiOpen(&pConnectionInfo->spi, &pCtx->hSpi); |
Vkadaba | 5:0728bde67bdb | 257 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 258 | return eRet; |
ADIJake | 0:85855ecd3257 | 259 | |
ADIJake | 0:85855ecd3257 | 260 | *phDevice = pCtx; |
Vkadaba | 5:0728bde67bdb | 261 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 262 | } |
ADIJake | 0:85855ecd3257 | 263 | |
ADIJake | 0:85855ecd3257 | 264 | /* |
ADIJake | 0:85855ecd3257 | 265 | * Get the current state of the specified GPIO input signal. |
ADIJake | 0:85855ecd3257 | 266 | */ |
Vkadaba | 5:0728bde67bdb | 267 | ADMW_RESULT admw_GetGpioState( |
Vkadaba | 5:0728bde67bdb | 268 | ADMW_DEVICE_HANDLE const hDevice, |
Vkadaba | 5:0728bde67bdb | 269 | ADMW_GPIO_PIN const ePinId, |
ADIJake | 0:85855ecd3257 | 270 | bool * const pbAsserted) |
ADIJake | 0:85855ecd3257 | 271 | { |
Vkadaba | 5:0728bde67bdb | 272 | ADMW_DEVICE_CONTEXT *pCtx = hDevice; |
Vkadaba | 5:0728bde67bdb | 273 | |
Vkadaba | 5:0728bde67bdb | 274 | return admw_GpioGet(pCtx->hGpio, ePinId, pbAsserted); |
ADIJake | 0:85855ecd3257 | 275 | } |
ADIJake | 0:85855ecd3257 | 276 | |
ADIJake | 0:85855ecd3257 | 277 | /* |
ADIJake | 0:85855ecd3257 | 278 | * Register an application-defined callback function for GPIO interrupts. |
ADIJake | 0:85855ecd3257 | 279 | */ |
Vkadaba | 5:0728bde67bdb | 280 | ADMW_RESULT admw_RegisterGpioCallback( |
Vkadaba | 5:0728bde67bdb | 281 | ADMW_DEVICE_HANDLE const hDevice, |
Vkadaba | 5:0728bde67bdb | 282 | ADMW_GPIO_PIN const ePinId, |
Vkadaba | 5:0728bde67bdb | 283 | ADMW_GPIO_CALLBACK const callbackFunction, |
ADIJake | 0:85855ecd3257 | 284 | void * const pCallbackParam) |
ADIJake | 0:85855ecd3257 | 285 | { |
Vkadaba | 5:0728bde67bdb | 286 | ADMW_DEVICE_CONTEXT *pCtx = hDevice; |
ADIJake | 0:85855ecd3257 | 287 | |
ADIJake | 0:85855ecd3257 | 288 | if (callbackFunction) |
ADIJake | 0:85855ecd3257 | 289 | { |
Vkadaba | 5:0728bde67bdb | 290 | return admw_GpioIrqEnable(pCtx->hGpio, ePinId, callbackFunction, |
ADIJake | 0:85855ecd3257 | 291 | pCallbackParam); |
ADIJake | 0:85855ecd3257 | 292 | } |
ADIJake | 0:85855ecd3257 | 293 | else |
ADIJake | 0:85855ecd3257 | 294 | { |
Vkadaba | 5:0728bde67bdb | 295 | return admw_GpioIrqDisable(pCtx->hGpio, ePinId); |
ADIJake | 0:85855ecd3257 | 296 | } |
ADIJake | 0:85855ecd3257 | 297 | } |
ADIJake | 0:85855ecd3257 | 298 | |
ADIJake | 0:85855ecd3257 | 299 | /* |
Vkadaba | 5:0728bde67bdb | 300 | * Reset the specified ADMW device. |
ADIJake | 0:85855ecd3257 | 301 | */ |
Vkadaba | 5:0728bde67bdb | 302 | ADMW_RESULT admw_Reset( |
Vkadaba | 5:0728bde67bdb | 303 | ADMW_DEVICE_HANDLE const hDevice) |
ADIJake | 0:85855ecd3257 | 304 | { |
Vkadaba | 5:0728bde67bdb | 305 | ADMW_DEVICE_CONTEXT *pCtx = hDevice; |
Vkadaba | 5:0728bde67bdb | 306 | ADMW_RESULT eRet; |
ADIJake | 0:85855ecd3257 | 307 | |
ADIJake | 0:85855ecd3257 | 308 | /* Pulse the Reset GPIO pin low for a minimum of 4 microseconds */ |
Vkadaba | 5:0728bde67bdb | 309 | eRet = admw_GpioSet(pCtx->hGpio, ADMW_GPIO_PIN_RESET, false); |
Vkadaba | 5:0728bde67bdb | 310 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 311 | return eRet; |
ADIJake | 0:85855ecd3257 | 312 | |
Vkadaba | 5:0728bde67bdb | 313 | admw_TimeDelayUsec(4); |
Vkadaba | 5:0728bde67bdb | 314 | |
Vkadaba | 5:0728bde67bdb | 315 | eRet = admw_GpioSet(pCtx->hGpio, ADMW_GPIO_PIN_RESET, true); |
Vkadaba | 5:0728bde67bdb | 316 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 317 | return eRet; |
ADIJake | 0:85855ecd3257 | 318 | |
Vkadaba | 5:0728bde67bdb | 319 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 320 | } |
ADIJake | 0:85855ecd3257 | 321 | |
ADIJake | 0:85855ecd3257 | 322 | |
ADIJake | 0:85855ecd3257 | 323 | /*! |
ADIJake | 0:85855ecd3257 | 324 | * @brief Get general status of ADISense module. |
ADIJake | 0:85855ecd3257 | 325 | * |
ADIJake | 0:85855ecd3257 | 326 | * @param[in] |
ADIJake | 0:85855ecd3257 | 327 | * @param[out] pStatus : Pointer to CORE Status struct. |
ADIJake | 0:85855ecd3257 | 328 | * |
ADIJake | 0:85855ecd3257 | 329 | * @return Status |
Vkadaba | 5:0728bde67bdb | 330 | * - #ADMW_SUCCESS Call completed successfully. |
Vkadaba | 5:0728bde67bdb | 331 | * - #ADMW_FAILURE If status register read fails. |
ADIJake | 0:85855ecd3257 | 332 | * |
ADIJake | 0:85855ecd3257 | 333 | * @details Read the general status register for the ADISense |
ADIJake | 0:85855ecd3257 | 334 | * module. Indicates Error, Alert conditions, data ready |
ADIJake | 0:85855ecd3257 | 335 | * and command running. |
ADIJake | 0:85855ecd3257 | 336 | * |
ADIJake | 0:85855ecd3257 | 337 | */ |
Vkadaba | 5:0728bde67bdb | 338 | ADMW_RESULT admw_GetStatus( |
Vkadaba | 5:0728bde67bdb | 339 | ADMW_DEVICE_HANDLE const hDevice, |
Vkadaba | 5:0728bde67bdb | 340 | ADMW_STATUS * const pStatus) |
ADIJake | 0:85855ecd3257 | 341 | { |
Vkadaba | 5:0728bde67bdb | 342 | CORE_Status_t statusReg; |
ADIJake | 0:85855ecd3257 | 343 | READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS); |
ADIJake | 0:85855ecd3257 | 344 | |
Vkadaba | 5:0728bde67bdb | 345 | CORE_Alert_Status_2_t alert2Reg; |
ADIJake | 0:85855ecd3257 | 346 | READ_REG_U16(hDevice, alert2Reg.VALUE16, CORE_ALERT_STATUS_2); |
ADIJake | 0:85855ecd3257 | 347 | |
ADIJake | 0:85855ecd3257 | 348 | memset(pStatus, 0, sizeof(*pStatus)); |
ADIJake | 0:85855ecd3257 | 349 | |
ADIJake | 0:85855ecd3257 | 350 | if (!statusReg.Cmd_Running) /* Active-low, so invert it */ |
Vkadaba | 5:0728bde67bdb | 351 | pStatus->deviceStatus |= ADMW_DEVICE_STATUS_BUSY; |
ADIJake | 0:85855ecd3257 | 352 | if (statusReg.Drdy) |
Vkadaba | 5:0728bde67bdb | 353 | pStatus->deviceStatus |= ADMW_DEVICE_STATUS_DATAREADY; |
ADIJake | 0:85855ecd3257 | 354 | if (statusReg.FIFO_Error) |
Vkadaba | 5:0728bde67bdb | 355 | pStatus->deviceStatus |= ADMW_DEVICE_STATUS_FIFO_ERROR; |
ADIJake | 0:85855ecd3257 | 356 | if (alert2Reg.Ext_Flash_Error) |
Vkadaba | 5:0728bde67bdb | 357 | pStatus->deviceStatus |= ADMW_DEVICE_STATUS_EXT_FLASH_ERROR; |
ADIJake | 0:85855ecd3257 | 358 | if (statusReg.Alert_Active) |
ADIJake | 0:85855ecd3257 | 359 | { |
Vkadaba | 5:0728bde67bdb | 360 | pStatus->deviceStatus |= ADMW_DEVICE_STATUS_ALERT; |
Vkadaba | 5:0728bde67bdb | 361 | |
Vkadaba | 5:0728bde67bdb | 362 | CORE_Alert_Code_t alertCodeReg; |
ADIJake | 0:85855ecd3257 | 363 | READ_REG_U16(hDevice, alertCodeReg.VALUE16, CORE_ALERT_CODE); |
ADIJake | 0:85855ecd3257 | 364 | pStatus->alertCode = alertCodeReg.Alert_Code; |
ADIJake | 0:85855ecd3257 | 365 | |
Vkadaba | 5:0728bde67bdb | 366 | CORE_Channel_Alert_Status_t channelAlertStatusReg; |
ADIJake | 0:85855ecd3257 | 367 | READ_REG_U16(hDevice, channelAlertStatusReg.VALUE16, |
ADIJake | 0:85855ecd3257 | 368 | CORE_CHANNEL_ALERT_STATUS); |
ADIJake | 0:85855ecd3257 | 369 | |
Vkadaba | 5:0728bde67bdb | 370 | for (unsigned i = 0; i < ADMW1001_MAX_CHANNELS; i++) |
ADIJake | 0:85855ecd3257 | 371 | { |
ADIJake | 0:85855ecd3257 | 372 | if (channelAlertStatusReg.VALUE16 & (1 << i)) |
ADIJake | 0:85855ecd3257 | 373 | { |
Vkadaba | 5:0728bde67bdb | 374 | CORE_Alert_Code_Ch_t channelAlertCodeReg; |
ADIJake | 0:85855ecd3257 | 375 | READ_REG_U16(hDevice, channelAlertCodeReg.VALUE16, CORE_ALERT_CODE_CHn(i)); |
ADIJake | 0:85855ecd3257 | 376 | pStatus->channelAlertCodes[i] = channelAlertCodeReg.Alert_Code_Ch; |
ADIJake | 0:85855ecd3257 | 377 | |
Vkadaba | 5:0728bde67bdb | 378 | CORE_Alert_Detail_Ch_t alertDetailReg; |
ADIJake | 0:85855ecd3257 | 379 | READ_REG_U16(hDevice, alertDetailReg.VALUE16, |
ADIJake | 0:85855ecd3257 | 380 | CORE_ALERT_DETAIL_CHn(i)); |
ADIJake | 0:85855ecd3257 | 381 | |
ADIJake | 0:85855ecd3257 | 382 | if (alertDetailReg.Time_Out) |
Vkadaba | 5:0728bde67bdb | 383 | pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_TIMEOUT; |
ADIJake | 0:85855ecd3257 | 384 | if (alertDetailReg.Under_Range) |
Vkadaba | 5:0728bde67bdb | 385 | pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_UNDER_RANGE; |
ADIJake | 0:85855ecd3257 | 386 | if (alertDetailReg.Over_Range) |
Vkadaba | 5:0728bde67bdb | 387 | pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_OVER_RANGE; |
ADIJake | 0:85855ecd3257 | 388 | if (alertDetailReg.Low_Limit) |
Vkadaba | 5:0728bde67bdb | 389 | pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_LOW_LIMIT; |
ADIJake | 0:85855ecd3257 | 390 | if (alertDetailReg.High_Limit) |
Vkadaba | 5:0728bde67bdb | 391 | pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_HIGH_LIMIT; |
ADIJake | 0:85855ecd3257 | 392 | if (alertDetailReg.Sensor_Open) |
Vkadaba | 5:0728bde67bdb | 393 | pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_SENSOR_OPEN; |
ADIJake | 0:85855ecd3257 | 394 | if (alertDetailReg.Ref_Detect) |
Vkadaba | 5:0728bde67bdb | 395 | pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_REF_DETECT; |
ADIJake | 0:85855ecd3257 | 396 | if (alertDetailReg.Config_Err) |
Vkadaba | 5:0728bde67bdb | 397 | pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_CONFIG_ERR; |
ADIJake | 0:85855ecd3257 | 398 | if (alertDetailReg.LUT_Error_Ch) |
Vkadaba | 5:0728bde67bdb | 399 | pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_LUT_ERR; |
ADIJake | 0:85855ecd3257 | 400 | if (alertDetailReg.Sensor_Not_Ready) |
Vkadaba | 5:0728bde67bdb | 401 | pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_SENSOR_NOT_READY; |
ADIJake | 0:85855ecd3257 | 402 | if (alertDetailReg.Comp_Not_Ready) |
Vkadaba | 5:0728bde67bdb | 403 | pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_COMP_NOT_READY; |
ADIJake | 0:85855ecd3257 | 404 | if (alertDetailReg.Correction_UnderRange) |
Vkadaba | 5:0728bde67bdb | 405 | pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_LUT_UNDER_RANGE; |
ADIJake | 0:85855ecd3257 | 406 | if (alertDetailReg.Correction_OverRange) |
Vkadaba | 5:0728bde67bdb | 407 | pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_LUT_OVER_RANGE; |
ADIJake | 0:85855ecd3257 | 408 | } |
ADIJake | 0:85855ecd3257 | 409 | } |
ADIJake | 0:85855ecd3257 | 410 | |
ADIJake | 0:85855ecd3257 | 411 | if (alert2Reg.Configuration_Error) |
Vkadaba | 5:0728bde67bdb | 412 | pStatus->deviceStatus |= ADMW_DEVICE_STATUS_CONFIG_ERROR; |
ADIJake | 0:85855ecd3257 | 413 | if (alert2Reg.LUT_Error) |
Vkadaba | 5:0728bde67bdb | 414 | pStatus->deviceStatus |= ADMW_DEVICE_STATUS_LUT_ERROR; |
ADIJake | 0:85855ecd3257 | 415 | } |
ADIJake | 0:85855ecd3257 | 416 | |
ADIJake | 0:85855ecd3257 | 417 | if (statusReg.Error) |
ADIJake | 0:85855ecd3257 | 418 | { |
Vkadaba | 5:0728bde67bdb | 419 | pStatus->deviceStatus |= ADMW_DEVICE_STATUS_ERROR; |
Vkadaba | 5:0728bde67bdb | 420 | |
Vkadaba | 5:0728bde67bdb | 421 | CORE_Error_Code_t errorCodeReg; |
ADIJake | 0:85855ecd3257 | 422 | READ_REG_U16(hDevice, errorCodeReg.VALUE16, CORE_ERROR_CODE); |
ADIJake | 0:85855ecd3257 | 423 | pStatus->errorCode = errorCodeReg.Error_Code; |
ADIJake | 0:85855ecd3257 | 424 | |
Vkadaba | 5:0728bde67bdb | 425 | CORE_Diagnostics_Status_t diagStatusReg; |
ADIJake | 0:85855ecd3257 | 426 | READ_REG_U16(hDevice, diagStatusReg.VALUE16, CORE_DIAGNOSTICS_STATUS); |
ADIJake | 0:85855ecd3257 | 427 | |
ADIJake | 0:85855ecd3257 | 428 | if (diagStatusReg.Diag_Checksum_Error) |
Vkadaba | 5:0728bde67bdb | 429 | pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_CHECKSUM_ERROR; |
ADIJake | 0:85855ecd3257 | 430 | if (diagStatusReg.Diag_Comms_Error) |
Vkadaba | 5:0728bde67bdb | 431 | pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_COMMS_ERROR; |
ADIJake | 0:85855ecd3257 | 432 | if (diagStatusReg.Diag_Supply_Monitor_Error) |
Vkadaba | 5:0728bde67bdb | 433 | pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_SUPPLY_MONITOR_ERROR; |
ADIJake | 0:85855ecd3257 | 434 | if (diagStatusReg.Diag_Supply_Cap_Error) |
Vkadaba | 5:0728bde67bdb | 435 | pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_SUPPLY_CAP_ERROR; |
ADIJake | 0:85855ecd3257 | 436 | if (diagStatusReg.Diag_Conversion_Error) |
Vkadaba | 5:0728bde67bdb | 437 | pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_CONVERSION_ERROR; |
ADIJake | 0:85855ecd3257 | 438 | if (diagStatusReg.Diag_Calibration_Error) |
Vkadaba | 5:0728bde67bdb | 439 | pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_CALIBRATION_ERROR; |
ADIJake | 0:85855ecd3257 | 440 | } |
ADIJake | 0:85855ecd3257 | 441 | |
ADIJake | 0:85855ecd3257 | 442 | if (statusReg.Alert_Active || statusReg.Error) |
ADIJake | 0:85855ecd3257 | 443 | { |
Vkadaba | 5:0728bde67bdb | 444 | CORE_Debug_Code_t debugCodeReg; |
ADIJake | 0:85855ecd3257 | 445 | READ_REG_U32(hDevice, debugCodeReg.VALUE32, CORE_DEBUG_CODE); |
ADIJake | 0:85855ecd3257 | 446 | pStatus->debugCode = debugCodeReg.Debug_Code; |
ADIJake | 0:85855ecd3257 | 447 | } |
ADIJake | 0:85855ecd3257 | 448 | |
Vkadaba | 5:0728bde67bdb | 449 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 450 | } |
ADIJake | 0:85855ecd3257 | 451 | |
Vkadaba | 5:0728bde67bdb | 452 | ADMW_RESULT admw_GetCommandRunningState( |
Vkadaba | 5:0728bde67bdb | 453 | ADMW_DEVICE_HANDLE hDevice, |
ADIJake | 0:85855ecd3257 | 454 | bool *pbCommandRunning) |
ADIJake | 0:85855ecd3257 | 455 | { |
Vkadaba | 5:0728bde67bdb | 456 | CORE_Status_t statusReg; |
ADIJake | 0:85855ecd3257 | 457 | |
ADIJake | 0:85855ecd3257 | 458 | READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS); |
ADIJake | 0:85855ecd3257 | 459 | |
ADIJake | 0:85855ecd3257 | 460 | /* We should never normally see 0xFF here if the module is operational */ |
ADIJake | 0:85855ecd3257 | 461 | if (statusReg.VALUE8 == 0xFF) |
Vkadaba | 5:0728bde67bdb | 462 | return ADMW_ERR_NOT_INITIALIZED; |
ADIJake | 0:85855ecd3257 | 463 | |
ADIJake | 0:85855ecd3257 | 464 | *pbCommandRunning = !statusReg.Cmd_Running; /* Active-low, so invert it */ |
ADIJake | 0:85855ecd3257 | 465 | |
Vkadaba | 5:0728bde67bdb | 466 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 467 | } |
ADIJake | 0:85855ecd3257 | 468 | |
Vkadaba | 5:0728bde67bdb | 469 | static ADMW_RESULT executeCommand( |
Vkadaba | 5:0728bde67bdb | 470 | ADMW_DEVICE_HANDLE const hDevice, |
Vkadaba | 5:0728bde67bdb | 471 | CORE_Command_Special_Command const command, |
ADIJake | 0:85855ecd3257 | 472 | bool const bWaitForCompletion) |
ADIJake | 0:85855ecd3257 | 473 | { |
Vkadaba | 5:0728bde67bdb | 474 | CORE_Command_t commandReg; |
ADIJake | 0:85855ecd3257 | 475 | bool bCommandRunning; |
Vkadaba | 5:0728bde67bdb | 476 | ADMW_RESULT eRet; |
ADIJake | 0:85855ecd3257 | 477 | |
ADIJake | 0:85855ecd3257 | 478 | /* |
ADIJake | 0:85855ecd3257 | 479 | * Don't allow another command to be issued if one is already running, but |
Vkadaba | 5:0728bde67bdb | 480 | * make an exception for CORE_COMMAND_NOP which can be used to |
ADIJake | 0:85855ecd3257 | 481 | * request a running command to be stopped (e.g. continuous measurement) |
ADIJake | 0:85855ecd3257 | 482 | */ |
Vkadaba | 5:0728bde67bdb | 483 | if (command != CORE_COMMAND_NOP) |
ADIJake | 0:85855ecd3257 | 484 | { |
Vkadaba | 5:0728bde67bdb | 485 | eRet = admw_GetCommandRunningState(hDevice, &bCommandRunning); |
ADIJake | 0:85855ecd3257 | 486 | if (eRet) |
ADIJake | 0:85855ecd3257 | 487 | return eRet; |
ADIJake | 0:85855ecd3257 | 488 | |
ADIJake | 0:85855ecd3257 | 489 | if (bCommandRunning) |
Vkadaba | 5:0728bde67bdb | 490 | return ADMW_IN_USE; |
ADIJake | 0:85855ecd3257 | 491 | } |
ADIJake | 0:85855ecd3257 | 492 | |
ADIJake | 0:85855ecd3257 | 493 | commandReg.Special_Command = command; |
ADIJake | 0:85855ecd3257 | 494 | WRITE_REG_U8(hDevice, commandReg.VALUE8, CORE_COMMAND); |
ADIJake | 0:85855ecd3257 | 495 | |
ADIJake | 0:85855ecd3257 | 496 | if (bWaitForCompletion) |
ADIJake | 0:85855ecd3257 | 497 | { |
ADIJake | 0:85855ecd3257 | 498 | do { |
ADIJake | 0:85855ecd3257 | 499 | /* Allow a minimum 50usec delay for status update before checking */ |
Vkadaba | 5:0728bde67bdb | 500 | admw_TimeDelayUsec(50); |
Vkadaba | 5:0728bde67bdb | 501 | |
Vkadaba | 5:0728bde67bdb | 502 | eRet = admw_GetCommandRunningState(hDevice, &bCommandRunning); |
ADIJake | 0:85855ecd3257 | 503 | if (eRet) |
ADIJake | 0:85855ecd3257 | 504 | return eRet; |
ADIJake | 0:85855ecd3257 | 505 | } while (bCommandRunning); |
ADIJake | 0:85855ecd3257 | 506 | } |
ADIJake | 0:85855ecd3257 | 507 | |
Vkadaba | 5:0728bde67bdb | 508 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 509 | } |
ADIJake | 0:85855ecd3257 | 510 | |
Vkadaba | 5:0728bde67bdb | 511 | ADMW_RESULT admw_Shutdown( |
Vkadaba | 5:0728bde67bdb | 512 | ADMW_DEVICE_HANDLE const hDevice) |
ADIJake | 0:85855ecd3257 | 513 | { |
Vkadaba | 5:0728bde67bdb | 514 | return executeCommand(hDevice, CORE_COMMAND_POWER_DOWN, false); |
ADIJake | 0:85855ecd3257 | 515 | } |
ADIJake | 0:85855ecd3257 | 516 | |
ADIJake | 0:85855ecd3257 | 517 | |
Vkadaba | 5:0728bde67bdb | 518 | ADMW_RESULT admw_ApplyConfigUpdates( |
Vkadaba | 5:0728bde67bdb | 519 | ADMW_DEVICE_HANDLE const hDevice) |
ADIJake | 0:85855ecd3257 | 520 | { |
Vkadaba | 5:0728bde67bdb | 521 | return executeCommand(hDevice, CORE_COMMAND_LATCH_CONFIG, true); |
ADIJake | 0:85855ecd3257 | 522 | } |
ADIJake | 0:85855ecd3257 | 523 | |
ADIJake | 0:85855ecd3257 | 524 | /*! |
ADIJake | 0:85855ecd3257 | 525 | * @brief Start a measurement cycle. |
ADIJake | 0:85855ecd3257 | 526 | * |
ADIJake | 0:85855ecd3257 | 527 | * @param[out] |
ADIJake | 0:85855ecd3257 | 528 | * |
ADIJake | 0:85855ecd3257 | 529 | * @return Status |
Vkadaba | 5:0728bde67bdb | 530 | * - #ADMW_SUCCESS Call completed successfully. |
Vkadaba | 5:0728bde67bdb | 531 | * - #ADMW_FAILURE |
ADIJake | 0:85855ecd3257 | 532 | * |
ADIJake | 0:85855ecd3257 | 533 | * @details Sends the latch config command. Configuration for channels in |
ADIJake | 0:85855ecd3257 | 534 | * conversion cycle should be completed before this function. |
ADIJake | 0:85855ecd3257 | 535 | * Channel enabled bit should be set before this function. |
ADIJake | 0:85855ecd3257 | 536 | * Starts a conversion and configures the format of the sample. |
ADIJake | 0:85855ecd3257 | 537 | * |
ADIJake | 0:85855ecd3257 | 538 | */ |
Vkadaba | 5:0728bde67bdb | 539 | ADMW_RESULT admw_StartMeasurement( |
Vkadaba | 5:0728bde67bdb | 540 | ADMW_DEVICE_HANDLE const hDevice, |
Vkadaba | 5:0728bde67bdb | 541 | ADMW_MEASUREMENT_MODE const eMeasurementMode) |
ADIJake | 0:85855ecd3257 | 542 | { |
ADIJake | 0:85855ecd3257 | 543 | switch (eMeasurementMode) |
ADIJake | 0:85855ecd3257 | 544 | { |
Vkadaba | 5:0728bde67bdb | 545 | case ADMW_MEASUREMENT_MODE_HEALTHCHECK: |
Vkadaba | 5:0728bde67bdb | 546 | return executeCommand(hDevice, CORE_COMMAND_SYSTEM_CHECK, false); |
Vkadaba | 5:0728bde67bdb | 547 | case ADMW_MEASUREMENT_MODE_NORMAL: |
Vkadaba | 5:0728bde67bdb | 548 | return executeCommand(hDevice, CORE_COMMAND_CONVERT_WITH_RAW, false); |
Vkadaba | 5:0728bde67bdb | 549 | case ADMW_MEASUREMENT_MODE_OMIT_RAW: |
Vkadaba | 5:0728bde67bdb | 550 | return executeCommand(hDevice, CORE_COMMAND_CONVERT, false); |
Vkadaba | 5:0728bde67bdb | 551 | case ADMW_MEASUREMENT_MODE_FFT: |
Vkadaba | 5:0728bde67bdb | 552 | return executeCommand(hDevice, CORE_COMMAND_CONVERT_FFT, false); |
ADIJake | 0:85855ecd3257 | 553 | default: |
Vkadaba | 5:0728bde67bdb | 554 | ADMW_LOG_ERROR("Invalid measurement mode %d specified", |
ADIJake | 0:85855ecd3257 | 555 | eMeasurementMode); |
Vkadaba | 5:0728bde67bdb | 556 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 557 | } |
ADIJake | 0:85855ecd3257 | 558 | } |
ADIJake | 0:85855ecd3257 | 559 | |
ADIJake | 0:85855ecd3257 | 560 | /* |
ADIJake | 0:85855ecd3257 | 561 | * Store the configuration settings to persistent memory on the device. |
ADIJake | 0:85855ecd3257 | 562 | * The settings can be saved to 4 different flash memory areas (slots). |
ADIJake | 0:85855ecd3257 | 563 | * No other command must be running when this is called. |
ADIJake | 0:85855ecd3257 | 564 | * Do not power down the device while this command is running. |
ADIJake | 0:85855ecd3257 | 565 | */ |
Vkadaba | 5:0728bde67bdb | 566 | ADMW_RESULT admw_SaveConfig( |
Vkadaba | 5:0728bde67bdb | 567 | ADMW_DEVICE_HANDLE const hDevice, |
Vkadaba | 5:0728bde67bdb | 568 | ADMW_USER_CONFIG_SLOT const eSlotId) |
ADIJake | 0:85855ecd3257 | 569 | { |
ADIJake | 0:85855ecd3257 | 570 | switch (eSlotId) |
ADIJake | 0:85855ecd3257 | 571 | { |
Vkadaba | 5:0728bde67bdb | 572 | case ADMW_FLASH_CONFIG_1: |
Vkadaba | 5:0728bde67bdb | 573 | return executeCommand(hDevice, CORE_COMMAND_SAVE_CONFIG_1, true); |
Vkadaba | 5:0728bde67bdb | 574 | case ADMW_FLASH_CONFIG_2: |
Vkadaba | 5:0728bde67bdb | 575 | return executeCommand(hDevice, CORE_COMMAND_SAVE_CONFIG_2, true); |
Vkadaba | 5:0728bde67bdb | 576 | case ADMW_FLASH_CONFIG_3: |
Vkadaba | 5:0728bde67bdb | 577 | return executeCommand(hDevice, CORE_COMMAND_SAVE_CONFIG_3, true); |
Vkadaba | 5:0728bde67bdb | 578 | case ADMW_FLASH_CONFIG_4: |
Vkadaba | 5:0728bde67bdb | 579 | return executeCommand(hDevice, CORE_COMMAND_SAVE_CONFIG_4, true); |
ADIJake | 0:85855ecd3257 | 580 | default: |
Vkadaba | 5:0728bde67bdb | 581 | ADMW_LOG_ERROR("Invalid user config target slot %d specified", |
ADIJake | 0:85855ecd3257 | 582 | eSlotId); |
Vkadaba | 5:0728bde67bdb | 583 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 584 | } |
ADIJake | 0:85855ecd3257 | 585 | } |
ADIJake | 0:85855ecd3257 | 586 | |
ADIJake | 0:85855ecd3257 | 587 | /* |
ADIJake | 0:85855ecd3257 | 588 | * Restore the configuration settings from persistent memory on the device. |
ADIJake | 0:85855ecd3257 | 589 | * No other command must be running when this is called. |
ADIJake | 0:85855ecd3257 | 590 | */ |
Vkadaba | 5:0728bde67bdb | 591 | ADMW_RESULT admw_RestoreConfig( |
Vkadaba | 5:0728bde67bdb | 592 | ADMW_DEVICE_HANDLE const hDevice, |
Vkadaba | 5:0728bde67bdb | 593 | ADMW_USER_CONFIG_SLOT const eSlotId) |
ADIJake | 0:85855ecd3257 | 594 | { |
ADIJake | 0:85855ecd3257 | 595 | switch (eSlotId) |
ADIJake | 0:85855ecd3257 | 596 | { |
Vkadaba | 5:0728bde67bdb | 597 | case ADMW_FLASH_CONFIG_1: |
Vkadaba | 5:0728bde67bdb | 598 | return executeCommand(hDevice, CORE_COMMAND_LOAD_CONFIG_1, true); |
Vkadaba | 5:0728bde67bdb | 599 | case ADMW_FLASH_CONFIG_2: |
Vkadaba | 5:0728bde67bdb | 600 | return executeCommand(hDevice, CORE_COMMAND_LOAD_CONFIG_2, true); |
Vkadaba | 5:0728bde67bdb | 601 | case ADMW_FLASH_CONFIG_3: |
Vkadaba | 5:0728bde67bdb | 602 | return executeCommand(hDevice, CORE_COMMAND_LOAD_CONFIG_3, true); |
Vkadaba | 5:0728bde67bdb | 603 | case ADMW_FLASH_CONFIG_4: |
Vkadaba | 5:0728bde67bdb | 604 | return executeCommand(hDevice, CORE_COMMAND_LOAD_CONFIG_4, true); |
ADIJake | 0:85855ecd3257 | 605 | default: |
Vkadaba | 5:0728bde67bdb | 606 | ADMW_LOG_ERROR("Invalid user config source slot %d specified", |
ADIJake | 0:85855ecd3257 | 607 | eSlotId); |
Vkadaba | 5:0728bde67bdb | 608 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 609 | } |
ADIJake | 0:85855ecd3257 | 610 | } |
ADIJake | 0:85855ecd3257 | 611 | |
ADIJake | 0:85855ecd3257 | 612 | /* |
ADIJake | 0:85855ecd3257 | 613 | * Erase the entire external flash memory. |
ADIJake | 0:85855ecd3257 | 614 | * No other command must be running when this is called. |
ADIJake | 0:85855ecd3257 | 615 | */ |
Vkadaba | 5:0728bde67bdb | 616 | ADMW_RESULT admw_EraseExternalFlash( |
Vkadaba | 5:0728bde67bdb | 617 | ADMW_DEVICE_HANDLE const hDevice) |
ADIJake | 0:85855ecd3257 | 618 | { |
Vkadaba | 5:0728bde67bdb | 619 | return executeCommand(hDevice, CORE_COMMAND_ERASE_EXTERNAL_FLASH, true); |
ADIJake | 0:85855ecd3257 | 620 | } |
ADIJake | 0:85855ecd3257 | 621 | |
ADIJake | 0:85855ecd3257 | 622 | /* |
ADIJake | 0:85855ecd3257 | 623 | * Read the number of samples stored in external flash memory. |
ADIJake | 0:85855ecd3257 | 624 | * No other command must be running when this is called. |
ADIJake | 0:85855ecd3257 | 625 | */ |
Vkadaba | 5:0728bde67bdb | 626 | ADMW_RESULT admw_GetExternalFlashSampleCount( |
Vkadaba | 5:0728bde67bdb | 627 | ADMW_DEVICE_HANDLE const hDevice, |
ADIJake | 0:85855ecd3257 | 628 | uint32_t * nSampleCount) |
ADIJake | 0:85855ecd3257 | 629 | { |
Vkadaba | 5:0728bde67bdb | 630 | CORE_Ext_Flash_Sample_Count_t nCount; |
ADIJake | 0:85855ecd3257 | 631 | |
ADIJake | 0:85855ecd3257 | 632 | READ_REG_U32(hDevice, nCount.VALUE32, CORE_EXT_FLASH_SAMPLE_COUNT); |
ADIJake | 0:85855ecd3257 | 633 | |
ADIJake | 0:85855ecd3257 | 634 | *nSampleCount = nCount.VALUE32; |
ADIJake | 0:85855ecd3257 | 635 | |
Vkadaba | 5:0728bde67bdb | 636 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 637 | } |
ADIJake | 0:85855ecd3257 | 638 | |
ADIJake | 0:85855ecd3257 | 639 | // DEBUG - TO BE DELETED |
Vkadaba | 5:0728bde67bdb | 640 | ADMW_RESULT admw_SetExternalFlashIndex( |
Vkadaba | 5:0728bde67bdb | 641 | ADMW_DEVICE_HANDLE const hDevice, |
ADIJake | 0:85855ecd3257 | 642 | uint32_t nStartIndex) |
ADIJake | 0:85855ecd3257 | 643 | { |
ADIJake | 0:85855ecd3257 | 644 | WRITE_REG_U32(hDevice, nStartIndex, CORE_EXT_FLASH_INDEX); |
ADIJake | 0:85855ecd3257 | 645 | |
Vkadaba | 5:0728bde67bdb | 646 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 647 | } |
ADIJake | 0:85855ecd3257 | 648 | |
ADIJake | 0:85855ecd3257 | 649 | /* |
ADIJake | 0:85855ecd3257 | 650 | * Read a set of data samples stored in the device external flash memory. |
ADIJake | 0:85855ecd3257 | 651 | * This may be called at any time. |
ADIJake | 0:85855ecd3257 | 652 | */ |
Vkadaba | 5:0728bde67bdb | 653 | ADMW_RESULT admw_GetExternalFlashData( |
Vkadaba | 5:0728bde67bdb | 654 | ADMW_DEVICE_HANDLE const hDevice, |
Vkadaba | 5:0728bde67bdb | 655 | ADMW_DATA_SAMPLE * const pSamples, |
ADIJake | 0:85855ecd3257 | 656 | uint32_t const nStartIndex, |
ADIJake | 0:85855ecd3257 | 657 | uint32_t const nRequested, |
ADIJake | 0:85855ecd3257 | 658 | uint32_t * const pnReturned) |
ADIJake | 0:85855ecd3257 | 659 | { |
Vkadaba | 5:0728bde67bdb | 660 | ADMW_DEVICE_CONTEXT *pCtx = hDevice; |
Vkadaba | 5:0728bde67bdb | 661 | uint16_t command = ADMW1001_HOST_COMMS_READ_CMD | |
Vkadaba | 5:0728bde67bdb | 662 | (REG_CORE_EXT_FLASH_DATA & ADMW1001_HOST_COMMS_ADR_MASK); |
ADIJake | 0:85855ecd3257 | 663 | uint8_t commandData[2] = { |
ADIJake | 0:85855ecd3257 | 664 | command >> 8, |
ADIJake | 0:85855ecd3257 | 665 | command & 0xFF |
ADIJake | 0:85855ecd3257 | 666 | }; |
ADIJake | 0:85855ecd3257 | 667 | uint8_t commandResponse[2]; |
ADIJake | 0:85855ecd3257 | 668 | unsigned nValidSamples = 0; |
Vkadaba | 5:0728bde67bdb | 669 | ADMW_RESULT eRet = ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 670 | |
ADIJake | 0:85855ecd3257 | 671 | /* Setup initial sample */ |
ADIJake | 0:85855ecd3257 | 672 | WRITE_REG_U32(hDevice, nStartIndex, CORE_EXT_FLASH_INDEX); |
ADIJake | 0:85855ecd3257 | 673 | |
ADIJake | 0:85855ecd3257 | 674 | /* Send flash read command */ |
ADIJake | 0:85855ecd3257 | 675 | do { |
Vkadaba | 5:0728bde67bdb | 676 | eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse, |
ADIJake | 0:85855ecd3257 | 677 | sizeof(command), false); |
ADIJake | 0:85855ecd3257 | 678 | if (eRet) |
ADIJake | 0:85855ecd3257 | 679 | { |
Vkadaba | 5:0728bde67bdb | 680 | ADMW_LOG_ERROR("Failed to send read command for external flash"); |
ADIJake | 0:85855ecd3257 | 681 | return eRet; |
ADIJake | 0:85855ecd3257 | 682 | } |
ADIJake | 0:85855ecd3257 | 683 | |
Vkadaba | 5:0728bde67bdb | 684 | admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY); |
Vkadaba | 5:0728bde67bdb | 685 | } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) || |
Vkadaba | 5:0728bde67bdb | 686 | (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1)); |
ADIJake | 0:85855ecd3257 | 687 | |
ADIJake | 0:85855ecd3257 | 688 | /* Read samples from external flash memory */ |
ADIJake | 0:85855ecd3257 | 689 | for (unsigned i = 0; i < nRequested; i++) |
ADIJake | 0:85855ecd3257 | 690 | { |
Vkadaba | 5:0728bde67bdb | 691 | ADMW1001_Sensor_Result_t sensorResult; |
ADIJake | 0:85855ecd3257 | 692 | bool bHoldCs = true; |
ADIJake | 0:85855ecd3257 | 693 | |
ADIJake | 0:85855ecd3257 | 694 | /* Keep the CS signal asserted for all but the last sample */ |
ADIJake | 0:85855ecd3257 | 695 | if ((i + 1) == nRequested) |
ADIJake | 0:85855ecd3257 | 696 | bHoldCs = false; |
ADIJake | 0:85855ecd3257 | 697 | |
Vkadaba | 5:0728bde67bdb | 698 | eRet = admw_SpiTransfer(pCtx->hSpi, NULL, (uint8_t *) (&sensorResult), |
ADIJake | 0:85855ecd3257 | 699 | 8, bHoldCs); |
ADIJake | 0:85855ecd3257 | 700 | if (eRet) |
ADIJake | 0:85855ecd3257 | 701 | { |
Vkadaba | 5:0728bde67bdb | 702 | ADMW_LOG_ERROR("Failed to read data from external flash"); |
ADIJake | 0:85855ecd3257 | 703 | return eRet; |
ADIJake | 0:85855ecd3257 | 704 | } |
ADIJake | 0:85855ecd3257 | 705 | |
Vkadaba | 5:0728bde67bdb | 706 | ADMW_DATA_SAMPLE *pSample = &pSamples[nValidSamples]; |
Vkadaba | 5:0728bde67bdb | 707 | |
Vkadaba | 5:0728bde67bdb | 708 | pSample->status = (ADMW_DEVICE_STATUS_FLAGS)0; |
ADIJake | 0:85855ecd3257 | 709 | if (sensorResult.Ch_Error) |
Vkadaba | 5:0728bde67bdb | 710 | pSample->status |= ADMW_DEVICE_STATUS_ERROR; |
ADIJake | 0:85855ecd3257 | 711 | if (sensorResult.Ch_Alert) |
Vkadaba | 5:0728bde67bdb | 712 | pSample->status |= ADMW_DEVICE_STATUS_ALERT; |
ADIJake | 0:85855ecd3257 | 713 | |
ADIJake | 0:85855ecd3257 | 714 | if (sensorResult.Ch_Raw) |
ADIJake | 0:85855ecd3257 | 715 | pSample->rawValue = sensorResult.Raw_Sample; |
ADIJake | 0:85855ecd3257 | 716 | else |
ADIJake | 0:85855ecd3257 | 717 | pSample->rawValue = 0; |
ADIJake | 0:85855ecd3257 | 718 | |
ADIJake | 0:85855ecd3257 | 719 | pSample->channelId = sensorResult.Channel_ID; |
ADIJake | 0:85855ecd3257 | 720 | pSample->processedValue = sensorResult.Sensor_Result; |
ADIJake | 0:85855ecd3257 | 721 | |
ADIJake | 0:85855ecd3257 | 722 | nValidSamples++; |
ADIJake | 0:85855ecd3257 | 723 | } |
ADIJake | 0:85855ecd3257 | 724 | *pnReturned = nValidSamples; |
ADIJake | 0:85855ecd3257 | 725 | |
Vkadaba | 5:0728bde67bdb | 726 | admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY); |
ADIJake | 0:85855ecd3257 | 727 | |
ADIJake | 0:85855ecd3257 | 728 | return eRet; |
ADIJake | 0:85855ecd3257 | 729 | } |
ADIJake | 0:85855ecd3257 | 730 | |
ADIJake | 0:85855ecd3257 | 731 | |
ADIJake | 0:85855ecd3257 | 732 | /* |
ADIJake | 0:85855ecd3257 | 733 | * Store the LUT data to persistent memory on the device. |
ADIJake | 0:85855ecd3257 | 734 | * No other command must be running when this is called. |
ADIJake | 0:85855ecd3257 | 735 | * Do not power down the device while this command is running. |
ADIJake | 0:85855ecd3257 | 736 | */ |
Vkadaba | 5:0728bde67bdb | 737 | ADMW_RESULT admw_SaveLutData( |
Vkadaba | 5:0728bde67bdb | 738 | ADMW_DEVICE_HANDLE const hDevice) |
ADIJake | 0:85855ecd3257 | 739 | { |
Vkadaba | 5:0728bde67bdb | 740 | return executeCommand(hDevice, CORE_COMMAND_SAVE_LUT, true); |
ADIJake | 0:85855ecd3257 | 741 | } |
ADIJake | 0:85855ecd3257 | 742 | |
ADIJake | 0:85855ecd3257 | 743 | /* |
ADIJake | 0:85855ecd3257 | 744 | * Restore the LUT data from persistent memory on the device. |
ADIJake | 0:85855ecd3257 | 745 | * No other command must be running when this is called. |
ADIJake | 0:85855ecd3257 | 746 | */ |
Vkadaba | 5:0728bde67bdb | 747 | ADMW_RESULT admw_RestoreLutData( |
Vkadaba | 5:0728bde67bdb | 748 | ADMW_DEVICE_HANDLE const hDevice) |
ADIJake | 0:85855ecd3257 | 749 | { |
Vkadaba | 5:0728bde67bdb | 750 | return executeCommand(hDevice, CORE_COMMAND_LOAD_LUT, true); |
ADIJake | 0:85855ecd3257 | 751 | } |
ADIJake | 0:85855ecd3257 | 752 | |
ADIJake | 0:85855ecd3257 | 753 | /* |
ADIJake | 0:85855ecd3257 | 754 | * Stop the measurement cycles on the device. |
ADIJake | 0:85855ecd3257 | 755 | * To be used only if a measurement command is currently running. |
ADIJake | 0:85855ecd3257 | 756 | */ |
Vkadaba | 5:0728bde67bdb | 757 | ADMW_RESULT admw_StopMeasurement( |
Vkadaba | 5:0728bde67bdb | 758 | ADMW_DEVICE_HANDLE const hDevice) |
ADIJake | 0:85855ecd3257 | 759 | { |
Vkadaba | 5:0728bde67bdb | 760 | return executeCommand(hDevice, CORE_COMMAND_NOP, true); |
ADIJake | 0:85855ecd3257 | 761 | } |
ADIJake | 0:85855ecd3257 | 762 | |
ADIJake | 0:85855ecd3257 | 763 | /* |
ADIJake | 0:85855ecd3257 | 764 | * Run built-in diagnostic checks on the device. |
ADIJake | 0:85855ecd3257 | 765 | * Diagnostics are executed according to the current applied settings. |
ADIJake | 0:85855ecd3257 | 766 | * No other command must be running when this is called. |
ADIJake | 0:85855ecd3257 | 767 | */ |
Vkadaba | 5:0728bde67bdb | 768 | ADMW_RESULT admw_RunDiagnostics( |
Vkadaba | 5:0728bde67bdb | 769 | ADMW_DEVICE_HANDLE const hDevice) |
ADIJake | 0:85855ecd3257 | 770 | { |
Vkadaba | 5:0728bde67bdb | 771 | return executeCommand(hDevice, CORE_COMMAND_RUN_DIAGNOSTICS, true); |
ADIJake | 0:85855ecd3257 | 772 | } |
ADIJake | 0:85855ecd3257 | 773 | |
ADIJake | 0:85855ecd3257 | 774 | /* |
ADIJake | 0:85855ecd3257 | 775 | * Run self-calibration routines on the device. |
ADIJake | 0:85855ecd3257 | 776 | * Calibration is executed according to the current applied settings. |
ADIJake | 0:85855ecd3257 | 777 | * No other command must be running when this is called. |
ADIJake | 0:85855ecd3257 | 778 | */ |
Vkadaba | 5:0728bde67bdb | 779 | ADMW_RESULT admw_RunCalibration( |
Vkadaba | 5:0728bde67bdb | 780 | ADMW_DEVICE_HANDLE const hDevice) |
ADIJake | 0:85855ecd3257 | 781 | { |
Vkadaba | 5:0728bde67bdb | 782 | return executeCommand(hDevice, CORE_COMMAND_SELF_CALIBRATION, true); |
ADIJake | 0:85855ecd3257 | 783 | } |
ADIJake | 0:85855ecd3257 | 784 | |
ADIJake | 0:85855ecd3257 | 785 | /* |
ADIJake | 0:85855ecd3257 | 786 | * Run digital calibration routines on the device. |
ADIJake | 0:85855ecd3257 | 787 | * Calibration is executed according to the current applied settings. |
ADIJake | 0:85855ecd3257 | 788 | * No other command must be running when this is called. |
ADIJake | 0:85855ecd3257 | 789 | */ |
Vkadaba | 5:0728bde67bdb | 790 | ADMW_RESULT admw_RunDigitalCalibration( |
Vkadaba | 5:0728bde67bdb | 791 | ADMW_DEVICE_HANDLE const hDevice) |
ADIJake | 0:85855ecd3257 | 792 | { |
Vkadaba | 5:0728bde67bdb | 793 | return executeCommand(hDevice, CORE_COMMAND_CALIBRATE_DIGITAL, true); |
ADIJake | 0:85855ecd3257 | 794 | } |
ADIJake | 0:85855ecd3257 | 795 | |
ADIJake | 0:85855ecd3257 | 796 | /* |
ADIJake | 0:85855ecd3257 | 797 | * Read a set of data samples from the device. |
ADIJake | 0:85855ecd3257 | 798 | * This may be called at any time. |
ADIJake | 0:85855ecd3257 | 799 | */ |
Vkadaba | 5:0728bde67bdb | 800 | ADMW_RESULT admw_GetData( |
Vkadaba | 5:0728bde67bdb | 801 | ADMW_DEVICE_HANDLE const hDevice, |
Vkadaba | 5:0728bde67bdb | 802 | ADMW_MEASUREMENT_MODE const eMeasurementMode, |
Vkadaba | 5:0728bde67bdb | 803 | ADMW_DATA_SAMPLE * const pSamples, |
ADIJake | 0:85855ecd3257 | 804 | uint8_t const nBytesPerSample, |
ADIJake | 0:85855ecd3257 | 805 | uint32_t const nRequested, |
ADIJake | 0:85855ecd3257 | 806 | uint32_t * const pnReturned) |
ADIJake | 0:85855ecd3257 | 807 | { |
Vkadaba | 5:0728bde67bdb | 808 | ADMW1001_Sensor_Result_t sensorResult; |
Vkadaba | 5:0728bde67bdb | 809 | ADMW_DEVICE_CONTEXT *pCtx = hDevice; |
Vkadaba | 5:0728bde67bdb | 810 | uint16_t command = ADMW1001_HOST_COMMS_READ_CMD | |
Vkadaba | 5:0728bde67bdb | 811 | (REG_CORE_DATA_FIFO & ADMW1001_HOST_COMMS_ADR_MASK); |
ADIJake | 0:85855ecd3257 | 812 | uint8_t commandData[2] = { |
ADIJake | 0:85855ecd3257 | 813 | command >> 8, |
ADIJake | 0:85855ecd3257 | 814 | command & 0xFF |
ADIJake | 0:85855ecd3257 | 815 | }; |
ADIJake | 0:85855ecd3257 | 816 | uint8_t commandResponse[2]; |
ADIJake | 0:85855ecd3257 | 817 | unsigned nValidSamples = 0; |
Vkadaba | 5:0728bde67bdb | 818 | ADMW_RESULT eRet = ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 819 | |
ADIJake | 0:85855ecd3257 | 820 | do { |
Vkadaba | 5:0728bde67bdb | 821 | eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse, |
ADIJake | 0:85855ecd3257 | 822 | sizeof(command), false); |
ADIJake | 0:85855ecd3257 | 823 | if (eRet) |
ADIJake | 0:85855ecd3257 | 824 | { |
Vkadaba | 5:0728bde67bdb | 825 | ADMW_LOG_ERROR("Failed to send read command for FIFO register"); |
ADIJake | 0:85855ecd3257 | 826 | return eRet; |
ADIJake | 0:85855ecd3257 | 827 | } |
Vkadaba | 5:0728bde67bdb | 828 | admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY); |
Vkadaba | 5:0728bde67bdb | 829 | } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) || |
Vkadaba | 5:0728bde67bdb | 830 | (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1)); |
ADIJake | 0:85855ecd3257 | 831 | |
ADIJake | 0:85855ecd3257 | 832 | for (unsigned i = 0; i < nRequested; i++) |
ADIJake | 0:85855ecd3257 | 833 | { |
ADIJake | 0:85855ecd3257 | 834 | bool bHoldCs = true; |
ADIJake | 0:85855ecd3257 | 835 | |
ADIJake | 0:85855ecd3257 | 836 | /* Keep the CS signal asserted for all but the last sample */ |
ADIJake | 0:85855ecd3257 | 837 | if ((i + 1) == nRequested) |
ADIJake | 0:85855ecd3257 | 838 | bHoldCs = false; |
ADIJake | 0:85855ecd3257 | 839 | |
ADIJake | 0:85855ecd3257 | 840 | getDataCnt++; |
ADIJake | 0:85855ecd3257 | 841 | |
Vkadaba | 5:0728bde67bdb | 842 | eRet = admw_SpiTransfer(pCtx->hSpi, NULL, &sensorResult, |
ADIJake | 0:85855ecd3257 | 843 | nBytesPerSample, bHoldCs); |
ADIJake | 0:85855ecd3257 | 844 | if (eRet) |
ADIJake | 0:85855ecd3257 | 845 | { |
Vkadaba | 5:0728bde67bdb | 846 | ADMW_LOG_ERROR("Failed to read data from FIFO register"); |
ADIJake | 0:85855ecd3257 | 847 | return eRet; |
ADIJake | 0:85855ecd3257 | 848 | } |
ADIJake | 0:85855ecd3257 | 849 | |
ADIJake | 0:85855ecd3257 | 850 | if (! sensorResult.Ch_Valid) |
ADIJake | 0:85855ecd3257 | 851 | { |
ADIJake | 0:85855ecd3257 | 852 | /* |
ADIJake | 0:85855ecd3257 | 853 | * Reading an invalid sample indicates that there are no |
ADIJake | 0:85855ecd3257 | 854 | * more samples available or we've lost sync with the device. |
ADIJake | 0:85855ecd3257 | 855 | * In the latter case, it might be recoverable, but return here |
ADIJake | 0:85855ecd3257 | 856 | * to let the application check the device status and decide itself. |
ADIJake | 0:85855ecd3257 | 857 | */ |
Vkadaba | 5:0728bde67bdb | 858 | eRet = ADMW_INCOMPLETE; |
ADIJake | 0:85855ecd3257 | 859 | break; |
ADIJake | 0:85855ecd3257 | 860 | } |
ADIJake | 0:85855ecd3257 | 861 | |
Vkadaba | 5:0728bde67bdb | 862 | ADMW_DATA_SAMPLE *pSample = &pSamples[nValidSamples]; |
Vkadaba | 5:0728bde67bdb | 863 | |
Vkadaba | 5:0728bde67bdb | 864 | pSample->status = (ADMW_DEVICE_STATUS_FLAGS)0; |
ADIJake | 0:85855ecd3257 | 865 | if (sensorResult.Ch_Error) |
Vkadaba | 5:0728bde67bdb | 866 | pSample->status |= ADMW_DEVICE_STATUS_ERROR; |
ADIJake | 0:85855ecd3257 | 867 | if (sensorResult.Ch_Alert) |
Vkadaba | 5:0728bde67bdb | 868 | pSample->status |= ADMW_DEVICE_STATUS_ALERT; |
ADIJake | 0:85855ecd3257 | 869 | |
ADIJake | 0:85855ecd3257 | 870 | if (sensorResult.Ch_Raw) |
ADIJake | 0:85855ecd3257 | 871 | pSample->rawValue = sensorResult.Raw_Sample; |
ADIJake | 0:85855ecd3257 | 872 | else |
ADIJake | 0:85855ecd3257 | 873 | pSample->rawValue = 0; |
ADIJake | 0:85855ecd3257 | 874 | |
ADIJake | 0:85855ecd3257 | 875 | pSample->channelId = sensorResult.Channel_ID; |
ADIJake | 0:85855ecd3257 | 876 | pSample->processedValue = sensorResult.Sensor_Result; |
ADIJake | 0:85855ecd3257 | 877 | |
ADIJake | 0:85855ecd3257 | 878 | nValidSamples++; |
ADIJake | 0:85855ecd3257 | 879 | |
Vkadaba | 5:0728bde67bdb | 880 | admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY); |
ADIJake | 0:85855ecd3257 | 881 | } |
ADIJake | 0:85855ecd3257 | 882 | *pnReturned = nValidSamples; |
ADIJake | 0:85855ecd3257 | 883 | |
ADIJake | 0:85855ecd3257 | 884 | return eRet; |
ADIJake | 0:85855ecd3257 | 885 | } |
ADIJake | 0:85855ecd3257 | 886 | |
ADIJake | 0:85855ecd3257 | 887 | /* |
Vkadaba | 5:0728bde67bdb | 888 | * Close the given ADMW device. |
ADIJake | 0:85855ecd3257 | 889 | */ |
Vkadaba | 5:0728bde67bdb | 890 | ADMW_RESULT admw_Close( |
Vkadaba | 5:0728bde67bdb | 891 | ADMW_DEVICE_HANDLE const hDevice) |
ADIJake | 0:85855ecd3257 | 892 | { |
Vkadaba | 5:0728bde67bdb | 893 | ADMW_DEVICE_CONTEXT *pCtx = hDevice; |
Vkadaba | 5:0728bde67bdb | 894 | |
Vkadaba | 5:0728bde67bdb | 895 | admw_GpioClose(pCtx->hGpio); |
Vkadaba | 5:0728bde67bdb | 896 | admw_SpiClose(pCtx->hSpi); |
Vkadaba | 5:0728bde67bdb | 897 | admw_LogClose(); |
Vkadaba | 5:0728bde67bdb | 898 | |
Vkadaba | 5:0728bde67bdb | 899 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 900 | } |
ADIJake | 0:85855ecd3257 | 901 | |
Vkadaba | 5:0728bde67bdb | 902 | ADMW_RESULT admw1001_WriteRegister( |
Vkadaba | 5:0728bde67bdb | 903 | ADMW_DEVICE_HANDLE hDevice, |
ADIJake | 0:85855ecd3257 | 904 | uint16_t nAddress, |
ADIJake | 0:85855ecd3257 | 905 | void *pData, |
ADIJake | 0:85855ecd3257 | 906 | unsigned nLength) |
ADIJake | 0:85855ecd3257 | 907 | { |
Vkadaba | 5:0728bde67bdb | 908 | ADMW_RESULT eRet; |
Vkadaba | 5:0728bde67bdb | 909 | ADMW_DEVICE_CONTEXT *pCtx = hDevice; |
Vkadaba | 5:0728bde67bdb | 910 | uint16_t command = ADMW1001_HOST_COMMS_WRITE_CMD | |
Vkadaba | 5:0728bde67bdb | 911 | (nAddress & ADMW1001_HOST_COMMS_ADR_MASK); |
ADIJake | 0:85855ecd3257 | 912 | uint8_t commandData[2] = { |
ADIJake | 0:85855ecd3257 | 913 | command >> 8, |
ADIJake | 0:85855ecd3257 | 914 | command & 0xFF |
ADIJake | 0:85855ecd3257 | 915 | }; |
ADIJake | 0:85855ecd3257 | 916 | uint8_t commandResponse[2]; |
ADIJake | 0:85855ecd3257 | 917 | |
ADIJake | 0:85855ecd3257 | 918 | do { |
Vkadaba | 5:0728bde67bdb | 919 | eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse, |
ADIJake | 0:85855ecd3257 | 920 | sizeof(command), false); |
ADIJake | 0:85855ecd3257 | 921 | if (eRet) |
ADIJake | 0:85855ecd3257 | 922 | { |
Vkadaba | 5:0728bde67bdb | 923 | ADMW_LOG_ERROR("Failed to send write command for register %u", |
ADIJake | 0:85855ecd3257 | 924 | nAddress); |
ADIJake | 0:85855ecd3257 | 925 | return eRet; |
ADIJake | 0:85855ecd3257 | 926 | } |
ADIJake | 0:85855ecd3257 | 927 | |
Vkadaba | 5:0728bde67bdb | 928 | admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY); |
Vkadaba | 5:0728bde67bdb | 929 | } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) || |
Vkadaba | 5:0728bde67bdb | 930 | (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1)); |
Vkadaba | 5:0728bde67bdb | 931 | |
Vkadaba | 5:0728bde67bdb | 932 | eRet = admw_SpiTransfer(pCtx->hSpi, pData, NULL, nLength, false); |
ADIJake | 0:85855ecd3257 | 933 | if (eRet) |
ADIJake | 0:85855ecd3257 | 934 | { |
Vkadaba | 5:0728bde67bdb | 935 | ADMW_LOG_ERROR("Failed to write data (%dB) to register %u", |
ADIJake | 0:85855ecd3257 | 936 | nLength, nAddress); |
ADIJake | 0:85855ecd3257 | 937 | return eRet; |
ADIJake | 0:85855ecd3257 | 938 | } |
ADIJake | 0:85855ecd3257 | 939 | |
Vkadaba | 5:0728bde67bdb | 940 | admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY); |
Vkadaba | 5:0728bde67bdb | 941 | |
Vkadaba | 5:0728bde67bdb | 942 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 943 | } |
ADIJake | 0:85855ecd3257 | 944 | |
Vkadaba | 5:0728bde67bdb | 945 | ADMW_RESULT admw1001_ReadRegister( |
Vkadaba | 5:0728bde67bdb | 946 | ADMW_DEVICE_HANDLE hDevice, |
ADIJake | 0:85855ecd3257 | 947 | uint16_t nAddress, |
ADIJake | 0:85855ecd3257 | 948 | void *pData, |
ADIJake | 0:85855ecd3257 | 949 | unsigned nLength) |
ADIJake | 0:85855ecd3257 | 950 | { |
Vkadaba | 5:0728bde67bdb | 951 | ADMW_RESULT eRet; |
Vkadaba | 5:0728bde67bdb | 952 | ADMW_DEVICE_CONTEXT *pCtx = hDevice; |
Vkadaba | 5:0728bde67bdb | 953 | uint16_t command = ADMW1001_HOST_COMMS_READ_CMD | |
Vkadaba | 5:0728bde67bdb | 954 | (nAddress & ADMW1001_HOST_COMMS_ADR_MASK); |
ADIJake | 0:85855ecd3257 | 955 | uint8_t commandData[2] = { |
ADIJake | 0:85855ecd3257 | 956 | command >> 8, |
ADIJake | 0:85855ecd3257 | 957 | command & 0xFF |
ADIJake | 0:85855ecd3257 | 958 | }; |
ADIJake | 0:85855ecd3257 | 959 | uint8_t commandResponse[2]; |
ADIJake | 0:85855ecd3257 | 960 | |
ADIJake | 0:85855ecd3257 | 961 | do { |
Vkadaba | 5:0728bde67bdb | 962 | eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse, |
ADIJake | 0:85855ecd3257 | 963 | sizeof(command), false); |
ADIJake | 0:85855ecd3257 | 964 | if (eRet) |
ADIJake | 0:85855ecd3257 | 965 | { |
Vkadaba | 5:0728bde67bdb | 966 | ADMW_LOG_ERROR("Failed to send read command for register %u", |
ADIJake | 0:85855ecd3257 | 967 | nAddress); |
ADIJake | 0:85855ecd3257 | 968 | return eRet; |
ADIJake | 0:85855ecd3257 | 969 | } |
ADIJake | 0:85855ecd3257 | 970 | |
Vkadaba | 5:0728bde67bdb | 971 | admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY); |
Vkadaba | 5:0728bde67bdb | 972 | } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) || |
Vkadaba | 5:0728bde67bdb | 973 | (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1)); |
Vkadaba | 5:0728bde67bdb | 974 | |
Vkadaba | 5:0728bde67bdb | 975 | eRet = admw_SpiTransfer(pCtx->hSpi, NULL, pData, nLength, false); |
ADIJake | 0:85855ecd3257 | 976 | if (eRet) |
ADIJake | 0:85855ecd3257 | 977 | { |
Vkadaba | 5:0728bde67bdb | 978 | ADMW_LOG_ERROR("Failed to read data (%uB) from register %u", |
ADIJake | 0:85855ecd3257 | 979 | nLength, nAddress); |
ADIJake | 0:85855ecd3257 | 980 | return eRet; |
ADIJake | 0:85855ecd3257 | 981 | } |
ADIJake | 0:85855ecd3257 | 982 | |
Vkadaba | 5:0728bde67bdb | 983 | admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY); |
Vkadaba | 5:0728bde67bdb | 984 | |
Vkadaba | 5:0728bde67bdb | 985 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 986 | } |
ADIJake | 0:85855ecd3257 | 987 | |
Vkadaba | 5:0728bde67bdb | 988 | ADMW_RESULT admw_GetDeviceReadyState( |
Vkadaba | 5:0728bde67bdb | 989 | ADMW_DEVICE_HANDLE const hDevice, |
ADIJake | 0:85855ecd3257 | 990 | bool * const bReady) |
ADIJake | 0:85855ecd3257 | 991 | { |
Vkadaba | 5:0728bde67bdb | 992 | ADMW_SPI_Chip_Type_t chipTypeReg; |
ADIJake | 0:85855ecd3257 | 993 | |
ADIJake | 0:85855ecd3257 | 994 | READ_REG_U8(hDevice, chipTypeReg.VALUE8, SPI_CHIP_TYPE); |
ADIJake | 0:85855ecd3257 | 995 | /* If we read this register successfully, assume the device is ready */ |
Vkadaba | 5:0728bde67bdb | 996 | *bReady = (chipTypeReg.VALUE8 == REG_SPI_CHIP_TYPE_RESET); |
Vkadaba | 5:0728bde67bdb | 997 | |
Vkadaba | 5:0728bde67bdb | 998 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 999 | } |
ADIJake | 0:85855ecd3257 | 1000 | |
Vkadaba | 5:0728bde67bdb | 1001 | ADMW_RESULT admw1001_GetDataReadyModeInfo( |
Vkadaba | 5:0728bde67bdb | 1002 | ADMW_DEVICE_HANDLE const hDevice, |
Vkadaba | 5:0728bde67bdb | 1003 | ADMW_MEASUREMENT_MODE const eMeasurementMode, |
Vkadaba | 5:0728bde67bdb | 1004 | ADMW1001_OPERATING_MODE * const peOperatingMode, |
Vkadaba | 5:0728bde67bdb | 1005 | ADMW1001_DATAREADY_MODE * const peDataReadyMode, |
ADIJake | 0:85855ecd3257 | 1006 | uint32_t * const pnSamplesPerDataready, |
ADIJake | 0:85855ecd3257 | 1007 | uint32_t * const pnSamplesPerCycle, |
ADIJake | 0:85855ecd3257 | 1008 | uint8_t * const pnBytesPerSample) |
ADIJake | 0:85855ecd3257 | 1009 | { |
ADIJake | 0:85855ecd3257 | 1010 | unsigned nChannelsEnabled = 0; |
ADIJake | 0:85855ecd3257 | 1011 | unsigned nSamplesPerCycle = 0; |
ADIJake | 0:85855ecd3257 | 1012 | |
Vkadaba | 5:0728bde67bdb | 1013 | CORE_Mode_t modeReg; |
ADIJake | 0:85855ecd3257 | 1014 | READ_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE); |
ADIJake | 0:85855ecd3257 | 1015 | |
Vkadaba | 5:0728bde67bdb | 1016 | if ((eMeasurementMode == ADMW_MEASUREMENT_MODE_HEALTHCHECK) || |
Vkadaba | 5:0728bde67bdb | 1017 | (modeReg.Conversion_Mode == CORE_MODE_SINGLECYCLE)) |
Vkadaba | 5:0728bde67bdb | 1018 | *peOperatingMode = ADMW1001_OPERATING_MODE_SINGLECYCLE; |
Vkadaba | 5:0728bde67bdb | 1019 | else if (modeReg.Conversion_Mode == CORE_MODE_MULTICYCLE) |
Vkadaba | 5:0728bde67bdb | 1020 | *peOperatingMode = ADMW1001_OPERATING_MODE_MULTICYCLE; |
ADIJake | 0:85855ecd3257 | 1021 | else |
Vkadaba | 5:0728bde67bdb | 1022 | *peOperatingMode = ADMW1001_OPERATING_MODE_CONTINUOUS; |
ADIJake | 0:85855ecd3257 | 1023 | |
ADIJake | 0:85855ecd3257 | 1024 | |
ADIJake | 0:85855ecd3257 | 1025 | /* FFT mode is quite different to the other modes: |
ADIJake | 0:85855ecd3257 | 1026 | * - Each FFT result produces a batch of samples |
ADIJake | 0:85855ecd3257 | 1027 | * - The size of the batch depends on selected FFT size and output config options |
ADIJake | 0:85855ecd3257 | 1028 | * - DATAREADY will fire for each FFT result (once per channel) |
ADIJake | 0:85855ecd3257 | 1029 | * - The size of the cycle depends on the number of channels enabled for FFT |
ADIJake | 0:85855ecd3257 | 1030 | */ |
Vkadaba | 5:0728bde67bdb | 1031 | if (eMeasurementMode == ADMW_MEASUREMENT_MODE_FFT) |
ADIJake | 0:85855ecd3257 | 1032 | { |
Vkadaba | 5:0728bde67bdb | 1033 | CORE_FFT_Config_t fftConfigReg; |
ADIJake | 0:85855ecd3257 | 1034 | |
ADIJake | 0:85855ecd3257 | 1035 | unsigned nFftChannels; |
ADIJake | 0:85855ecd3257 | 1036 | unsigned nSamplesPerChannel; |
ADIJake | 0:85855ecd3257 | 1037 | |
ADIJake | 0:85855ecd3257 | 1038 | READ_REG_U32(hDevice, fftConfigReg.VALUE32, CORE_FFT_CONFIG); |
ADIJake | 0:85855ecd3257 | 1039 | |
ADIJake | 0:85855ecd3257 | 1040 | nFftChannels = fftConfigReg.FFT_Num_Channels + 1; |
ADIJake | 0:85855ecd3257 | 1041 | |
Vkadaba | 5:0728bde67bdb | 1042 | if (fftConfigReg.FFT_Output == CORE_FFT_CONFIG_FFT_OUTPUT_MAX16) |
ADIJake | 0:85855ecd3257 | 1043 | { |
ADIJake | 0:85855ecd3257 | 1044 | nSamplesPerChannel = 16; |
ADIJake | 0:85855ecd3257 | 1045 | *pnBytesPerSample = 8; |
ADIJake | 0:85855ecd3257 | 1046 | } |
Vkadaba | 5:0728bde67bdb | 1047 | else if (fftConfigReg.FFT_Output == CORE_FFT_CONFIG_FFT_OUTPUT_FULL) |
ADIJake | 0:85855ecd3257 | 1048 | { |
ADIJake | 0:85855ecd3257 | 1049 | nSamplesPerChannel = (256 << fftConfigReg.FFT_Num_Bins) >> 1; |
ADIJake | 0:85855ecd3257 | 1050 | *pnBytesPerSample = 5; |
ADIJake | 0:85855ecd3257 | 1051 | } |
Vkadaba | 5:0728bde67bdb | 1052 | else if (fftConfigReg.FFT_Output == CORE_FFT_CONFIG_FFT_OUTPUT_FULL_WITH_RAW) |
ADIJake | 0:85855ecd3257 | 1053 | { |
ADIJake | 0:85855ecd3257 | 1054 | nSamplesPerChannel = (256 << fftConfigReg.FFT_Num_Bins); |
ADIJake | 0:85855ecd3257 | 1055 | *pnBytesPerSample = 8; |
ADIJake | 0:85855ecd3257 | 1056 | } |
ADIJake | 0:85855ecd3257 | 1057 | else |
ADIJake | 0:85855ecd3257 | 1058 | { |
Vkadaba | 5:0728bde67bdb | 1059 | ADMW_LOG_ERROR("Invalid FFT output format option %d configured", |
ADIJake | 0:85855ecd3257 | 1060 | fftConfigReg.FFT_Output); |
Vkadaba | 5:0728bde67bdb | 1061 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1062 | } |
ADIJake | 0:85855ecd3257 | 1063 | |
ADIJake | 0:85855ecd3257 | 1064 | *pnSamplesPerDataready = nSamplesPerChannel; |
ADIJake | 0:85855ecd3257 | 1065 | *pnSamplesPerCycle = nSamplesPerChannel * nFftChannels; |
ADIJake | 0:85855ecd3257 | 1066 | |
Vkadaba | 5:0728bde67bdb | 1067 | *peDataReadyMode = ADMW1001_DATAREADY_PER_CYCLE; |
Vkadaba | 5:0728bde67bdb | 1068 | |
Vkadaba | 5:0728bde67bdb | 1069 | if (modeReg.FFT_Mode == CORE_MODE_FFT_MODE_CONTINUOUS) |
ADIJake | 0:85855ecd3257 | 1070 | { |
Vkadaba | 5:0728bde67bdb | 1071 | *peOperatingMode = ADMW1001_OPERATING_MODE_CONTINUOUS; |
ADIJake | 0:85855ecd3257 | 1072 | } |
ADIJake | 0:85855ecd3257 | 1073 | else |
ADIJake | 0:85855ecd3257 | 1074 | { |
Vkadaba | 5:0728bde67bdb | 1075 | *peOperatingMode = ADMW1001_OPERATING_MODE_SINGLECYCLE; |
ADIJake | 0:85855ecd3257 | 1076 | } |
ADIJake | 0:85855ecd3257 | 1077 | } |
ADIJake | 0:85855ecd3257 | 1078 | else |
ADIJake | 0:85855ecd3257 | 1079 | { |
Vkadaba | 5:0728bde67bdb | 1080 | if (eMeasurementMode == ADMW_MEASUREMENT_MODE_OMIT_RAW) |
ADIJake | 0:85855ecd3257 | 1081 | { |
ADIJake | 0:85855ecd3257 | 1082 | *pnBytesPerSample = 5; |
ADIJake | 0:85855ecd3257 | 1083 | } |
ADIJake | 0:85855ecd3257 | 1084 | else |
ADIJake | 0:85855ecd3257 | 1085 | { |
ADIJake | 0:85855ecd3257 | 1086 | *pnBytesPerSample = 8; |
ADIJake | 0:85855ecd3257 | 1087 | } |
ADIJake | 0:85855ecd3257 | 1088 | |
Vkadaba | 5:0728bde67bdb | 1089 | for (ADMW1001_CHANNEL_ID chId = ADMW1001_CHANNEL_ID_CJC_0; |
Vkadaba | 5:0728bde67bdb | 1090 | chId < ADMW1001_MAX_CHANNELS; |
ADIJake | 0:85855ecd3257 | 1091 | chId++) |
ADIJake | 0:85855ecd3257 | 1092 | { |
Vkadaba | 5:0728bde67bdb | 1093 | CORE_Sensor_Details_t sensorDetailsReg; |
Vkadaba | 5:0728bde67bdb | 1094 | CORE_Channel_Count_t channelCountReg; |
Vkadaba | 5:0728bde67bdb | 1095 | |
Vkadaba | 5:0728bde67bdb | 1096 | if (ADMW1001_CHANNEL_IS_VIRTUAL(chId)) |
ADIJake | 0:85855ecd3257 | 1097 | continue; |
ADIJake | 0:85855ecd3257 | 1098 | |
ADIJake | 0:85855ecd3257 | 1099 | READ_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(chId)); |
ADIJake | 0:85855ecd3257 | 1100 | READ_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(chId)); |
ADIJake | 0:85855ecd3257 | 1101 | |
ADIJake | 0:85855ecd3257 | 1102 | if (channelCountReg.Channel_Enable && !sensorDetailsReg.Do_Not_Publish) |
ADIJake | 0:85855ecd3257 | 1103 | { |
Vkadaba | 5:0728bde67bdb | 1104 | CORE_Sensor_Type_t sensorTypeReg; |
ADIJake | 0:85855ecd3257 | 1105 | unsigned nActualChannels = 1; |
ADIJake | 0:85855ecd3257 | 1106 | |
ADIJake | 0:85855ecd3257 | 1107 | READ_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(chId)); |
ADIJake | 0:85855ecd3257 | 1108 | |
Vkadaba | 5:0728bde67bdb | 1109 | if (chId == ADMW1001_CHANNEL_ID_SPI_0) |
ADIJake | 0:85855ecd3257 | 1110 | { |
ADIJake | 0:85855ecd3257 | 1111 | /* Some sensors automatically generate samples on additional "virtual" channels |
ADIJake | 0:85855ecd3257 | 1112 | * so these channels must be counted as active when those sensors are selected |
ADIJake | 0:85855ecd3257 | 1113 | * and we use the count from the corresponding "physical" channel */ |
ADIJake | 0:85855ecd3257 | 1114 | if ((sensorTypeReg.Sensor_Type >= |
Vkadaba | 5:0728bde67bdb | 1115 | CORE_SENSOR_TYPE_SENSOR_SPI_ACCELEROMETER_A_DEF_L1) && |
ADIJake | 0:85855ecd3257 | 1116 | (sensorTypeReg.Sensor_Type <= |
Vkadaba | 5:0728bde67bdb | 1117 | CORE_SENSOR_TYPE_SENSOR_SPI_ACCELEROMETER_B_ADV_L2)) |
ADIJake | 0:85855ecd3257 | 1118 | nActualChannels += 2; |
ADIJake | 0:85855ecd3257 | 1119 | } |
ADIJake | 0:85855ecd3257 | 1120 | |
ADIJake | 0:85855ecd3257 | 1121 | nChannelsEnabled += nActualChannels; |
Vkadaba | 5:0728bde67bdb | 1122 | if (eMeasurementMode == ADMW_MEASUREMENT_MODE_HEALTHCHECK) |
ADIJake | 0:85855ecd3257 | 1123 | /* Assume a single sample per channel in test mode */ |
ADIJake | 0:85855ecd3257 | 1124 | nSamplesPerCycle += nActualChannels; |
ADIJake | 0:85855ecd3257 | 1125 | else |
ADIJake | 0:85855ecd3257 | 1126 | nSamplesPerCycle += nActualChannels * |
ADIJake | 0:85855ecd3257 | 1127 | (channelCountReg.Channel_Count + 1); |
ADIJake | 0:85855ecd3257 | 1128 | } |
ADIJake | 0:85855ecd3257 | 1129 | } |
ADIJake | 0:85855ecd3257 | 1130 | |
ADIJake | 0:85855ecd3257 | 1131 | if (nChannelsEnabled == 0) |
ADIJake | 0:85855ecd3257 | 1132 | { |
ADIJake | 0:85855ecd3257 | 1133 | *pnSamplesPerDataready = 0; |
ADIJake | 0:85855ecd3257 | 1134 | *pnSamplesPerCycle = 0; |
Vkadaba | 5:0728bde67bdb | 1135 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 1136 | } |
ADIJake | 0:85855ecd3257 | 1137 | |
ADIJake | 0:85855ecd3257 | 1138 | *pnSamplesPerCycle = nSamplesPerCycle; |
ADIJake | 0:85855ecd3257 | 1139 | |
Vkadaba | 5:0728bde67bdb | 1140 | if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CONVERSION) |
ADIJake | 0:85855ecd3257 | 1141 | { |
ADIJake | 0:85855ecd3257 | 1142 | *pnSamplesPerDataready = 1; |
ADIJake | 0:85855ecd3257 | 1143 | } |
Vkadaba | 5:0728bde67bdb | 1144 | else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CYCLE) |
ADIJake | 0:85855ecd3257 | 1145 | { |
ADIJake | 0:85855ecd3257 | 1146 | *pnSamplesPerDataready = nSamplesPerCycle; |
ADIJake | 0:85855ecd3257 | 1147 | } |
ADIJake | 0:85855ecd3257 | 1148 | else |
ADIJake | 0:85855ecd3257 | 1149 | { |
ADIJake | 0:85855ecd3257 | 1150 | /* Assume DRDY will be asserted after max. 1 cycle in test mode */ |
Vkadaba | 5:0728bde67bdb | 1151 | if (eMeasurementMode == ADMW_MEASUREMENT_MODE_HEALTHCHECK) |
ADIJake | 0:85855ecd3257 | 1152 | { |
ADIJake | 0:85855ecd3257 | 1153 | *pnSamplesPerDataready = nSamplesPerCycle; |
ADIJake | 0:85855ecd3257 | 1154 | } |
ADIJake | 0:85855ecd3257 | 1155 | else |
ADIJake | 0:85855ecd3257 | 1156 | { |
Vkadaba | 5:0728bde67bdb | 1157 | CORE_Fifo_Num_Cycles_t fifoNumCyclesReg; |
ADIJake | 0:85855ecd3257 | 1158 | READ_REG_U8(hDevice, fifoNumCyclesReg.VALUE8, CORE_FIFO_NUM_CYCLES); |
ADIJake | 0:85855ecd3257 | 1159 | |
ADIJake | 0:85855ecd3257 | 1160 | *pnSamplesPerDataready = |
ADIJake | 0:85855ecd3257 | 1161 | nSamplesPerCycle * fifoNumCyclesReg.Fifo_Num_Cycles; |
ADIJake | 0:85855ecd3257 | 1162 | } |
ADIJake | 0:85855ecd3257 | 1163 | } |
ADIJake | 0:85855ecd3257 | 1164 | |
Vkadaba | 5:0728bde67bdb | 1165 | if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CONVERSION) |
Vkadaba | 5:0728bde67bdb | 1166 | *peDataReadyMode = ADMW1001_DATAREADY_PER_CONVERSION; |
Vkadaba | 5:0728bde67bdb | 1167 | else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CYCLE) |
Vkadaba | 5:0728bde67bdb | 1168 | *peDataReadyMode = ADMW1001_DATAREADY_PER_CYCLE; |
ADIJake | 0:85855ecd3257 | 1169 | else |
ADIJake | 0:85855ecd3257 | 1170 | { |
ADIJake | 0:85855ecd3257 | 1171 | /* Assume DRDY will be asserted after max. 1 cycle in test mode */ |
Vkadaba | 5:0728bde67bdb | 1172 | if (eMeasurementMode == ADMW_MEASUREMENT_MODE_HEALTHCHECK) |
Vkadaba | 5:0728bde67bdb | 1173 | *peDataReadyMode = ADMW1001_DATAREADY_PER_CYCLE; |
ADIJake | 0:85855ecd3257 | 1174 | else |
Vkadaba | 5:0728bde67bdb | 1175 | *peDataReadyMode = ADMW1001_DATAREADY_PER_MULTICYCLE_BURST; |
ADIJake | 0:85855ecd3257 | 1176 | } |
ADIJake | 0:85855ecd3257 | 1177 | } |
ADIJake | 0:85855ecd3257 | 1178 | |
Vkadaba | 5:0728bde67bdb | 1179 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 1180 | } |
ADIJake | 0:85855ecd3257 | 1181 | |
Vkadaba | 5:0728bde67bdb | 1182 | ADMW_RESULT admw_GetProductID( |
Vkadaba | 5:0728bde67bdb | 1183 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 1184 | ADMW_PRODUCT_ID *pProductId) |
ADIJake | 0:85855ecd3257 | 1185 | { |
Vkadaba | 5:0728bde67bdb | 1186 | ADMW_SPI_Product_ID_L_t productIdLoReg; |
Vkadaba | 5:0728bde67bdb | 1187 | ADMW_SPI_Product_ID_H_t productIdHiReg; |
ADIJake | 0:85855ecd3257 | 1188 | |
ADIJake | 0:85855ecd3257 | 1189 | READ_REG_U8(hDevice, productIdLoReg.VALUE8, SPI_PRODUCT_ID_L); |
ADIJake | 0:85855ecd3257 | 1190 | READ_REG_U8(hDevice, productIdHiReg.VALUE8, SPI_PRODUCT_ID_H); |
ADIJake | 0:85855ecd3257 | 1191 | |
Vkadaba | 5:0728bde67bdb | 1192 | *pProductId = (ADMW_PRODUCT_ID)((productIdHiReg.VALUE8 << 8) |
ADIJake | 0:85855ecd3257 | 1193 | | productIdLoReg.VALUE8); |
Vkadaba | 5:0728bde67bdb | 1194 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 1195 | } |
ADIJake | 0:85855ecd3257 | 1196 | |
Vkadaba | 5:0728bde67bdb | 1197 | static ADMW_RESULT admw_SetPowerMode( |
Vkadaba | 5:0728bde67bdb | 1198 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 1199 | ADMW1001_POWER_MODE powerMode) |
ADIJake | 0:85855ecd3257 | 1200 | { |
Vkadaba | 5:0728bde67bdb | 1201 | CORE_Power_Config_t powerConfigReg; |
Vkadaba | 5:0728bde67bdb | 1202 | |
Vkadaba | 5:0728bde67bdb | 1203 | if (powerMode == ADMW1001_POWER_MODE_LOW) |
ADIJake | 0:85855ecd3257 | 1204 | { |
Vkadaba | 5:0728bde67bdb | 1205 | powerConfigReg.Power_Mode_ADC = CORE_POWER_CONFIG_ADC_LOW_POWER; |
ADIJake | 0:85855ecd3257 | 1206 | } |
Vkadaba | 5:0728bde67bdb | 1207 | else if (powerMode == ADMW1001_POWER_MODE_MID) |
ADIJake | 0:85855ecd3257 | 1208 | { |
Vkadaba | 5:0728bde67bdb | 1209 | powerConfigReg.Power_Mode_ADC = CORE_POWER_CONFIG_ADC_MID_POWER; |
ADIJake | 0:85855ecd3257 | 1210 | } |
Vkadaba | 5:0728bde67bdb | 1211 | else if (powerMode == ADMW1001_POWER_MODE_FULL) |
ADIJake | 0:85855ecd3257 | 1212 | { |
Vkadaba | 5:0728bde67bdb | 1213 | powerConfigReg.Power_Mode_ADC = CORE_POWER_CONFIG_ADC_FULL_POWER; |
ADIJake | 0:85855ecd3257 | 1214 | } |
ADIJake | 0:85855ecd3257 | 1215 | else |
ADIJake | 0:85855ecd3257 | 1216 | { |
Vkadaba | 5:0728bde67bdb | 1217 | ADMW_LOG_ERROR("Invalid power mode %d specified", powerMode); |
Vkadaba | 5:0728bde67bdb | 1218 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1219 | } |
ADIJake | 0:85855ecd3257 | 1220 | |
ADIJake | 0:85855ecd3257 | 1221 | WRITE_REG_U8(hDevice, powerConfigReg.VALUE8, CORE_POWER_CONFIG); |
ADIJake | 0:85855ecd3257 | 1222 | |
Vkadaba | 5:0728bde67bdb | 1223 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 1224 | } |
ADIJake | 0:85855ecd3257 | 1225 | |
Vkadaba | 5:0728bde67bdb | 1226 | ADMW_RESULT admw1001_SetPowerConfig( |
Vkadaba | 5:0728bde67bdb | 1227 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 1228 | ADMW1001_POWER_CONFIG *pPowerConfig) |
ADIJake | 0:85855ecd3257 | 1229 | { |
Vkadaba | 5:0728bde67bdb | 1230 | ADMW_RESULT eRet; |
Vkadaba | 5:0728bde67bdb | 1231 | |
Vkadaba | 5:0728bde67bdb | 1232 | eRet = admw_SetPowerMode(hDevice, pPowerConfig->powerMode); |
Vkadaba | 5:0728bde67bdb | 1233 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 1234 | { |
Vkadaba | 5:0728bde67bdb | 1235 | ADMW_LOG_ERROR("Failed to set power mode"); |
ADIJake | 0:85855ecd3257 | 1236 | return eRet; |
ADIJake | 0:85855ecd3257 | 1237 | } |
ADIJake | 0:85855ecd3257 | 1238 | |
Vkadaba | 5:0728bde67bdb | 1239 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 1240 | } |
ADIJake | 0:85855ecd3257 | 1241 | |
Vkadaba | 5:0728bde67bdb | 1242 | static ADMW_RESULT admw_SetMode( |
Vkadaba | 5:0728bde67bdb | 1243 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 1244 | ADMW1001_OPERATING_MODE eOperatingMode, |
Vkadaba | 5:0728bde67bdb | 1245 | ADMW1001_DATAREADY_MODE eDataReadyMode, |
Vkadaba | 5:0728bde67bdb | 1246 | ADMW1001_CALIBRATION_MODE eCalibrationMode, |
ADIJake | 0:85855ecd3257 | 1247 | bool bEnableExtFlash) |
ADIJake | 0:85855ecd3257 | 1248 | { |
Vkadaba | 5:0728bde67bdb | 1249 | CORE_Mode_t modeReg; |
ADIJake | 0:85855ecd3257 | 1250 | |
ADIJake | 0:85855ecd3257 | 1251 | modeReg.VALUE8 = REG_RESET_VAL(CORE_MODE); |
ADIJake | 0:85855ecd3257 | 1252 | |
Vkadaba | 5:0728bde67bdb | 1253 | if (eOperatingMode == ADMW1001_OPERATING_MODE_SINGLECYCLE) |
ADIJake | 0:85855ecd3257 | 1254 | { |
Vkadaba | 5:0728bde67bdb | 1255 | modeReg.Conversion_Mode = CORE_MODE_SINGLECYCLE; |
ADIJake | 0:85855ecd3257 | 1256 | } |
Vkadaba | 5:0728bde67bdb | 1257 | else if (eOperatingMode == ADMW1001_OPERATING_MODE_CONTINUOUS) |
ADIJake | 0:85855ecd3257 | 1258 | { |
Vkadaba | 5:0728bde67bdb | 1259 | modeReg.Conversion_Mode = CORE_MODE_CONTINUOUS; |
ADIJake | 0:85855ecd3257 | 1260 | } |
Vkadaba | 5:0728bde67bdb | 1261 | else if (eOperatingMode == ADMW1001_OPERATING_MODE_MULTICYCLE) |
ADIJake | 0:85855ecd3257 | 1262 | { |
Vkadaba | 5:0728bde67bdb | 1263 | modeReg.Conversion_Mode = CORE_MODE_MULTICYCLE; |
ADIJake | 0:85855ecd3257 | 1264 | } |
ADIJake | 0:85855ecd3257 | 1265 | else |
ADIJake | 0:85855ecd3257 | 1266 | { |
Vkadaba | 5:0728bde67bdb | 1267 | ADMW_LOG_ERROR("Invalid operating mode %d specified", |
ADIJake | 0:85855ecd3257 | 1268 | eOperatingMode); |
Vkadaba | 5:0728bde67bdb | 1269 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1270 | } |
ADIJake | 0:85855ecd3257 | 1271 | |
Vkadaba | 5:0728bde67bdb | 1272 | if (eDataReadyMode == ADMW1001_DATAREADY_PER_CONVERSION) |
ADIJake | 0:85855ecd3257 | 1273 | { |
Vkadaba | 5:0728bde67bdb | 1274 | modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_CONVERSION; |
ADIJake | 0:85855ecd3257 | 1275 | } |
Vkadaba | 5:0728bde67bdb | 1276 | else if (eDataReadyMode == ADMW1001_DATAREADY_PER_CYCLE) |
ADIJake | 0:85855ecd3257 | 1277 | { |
Vkadaba | 5:0728bde67bdb | 1278 | modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_CYCLE; |
ADIJake | 0:85855ecd3257 | 1279 | } |
Vkadaba | 5:0728bde67bdb | 1280 | else if (eDataReadyMode == ADMW1001_DATAREADY_PER_MULTICYCLE_BURST) |
ADIJake | 0:85855ecd3257 | 1281 | { |
Vkadaba | 5:0728bde67bdb | 1282 | if (eOperatingMode != ADMW1001_OPERATING_MODE_MULTICYCLE) |
ADIJake | 0:85855ecd3257 | 1283 | { |
Vkadaba | 5:0728bde67bdb | 1284 | ADMW_LOG_ERROR( |
ADIJake | 0:85855ecd3257 | 1285 | "Data-ready mode %d cannot be used with operating mode %d", |
ADIJake | 0:85855ecd3257 | 1286 | eDataReadyMode, eOperatingMode); |
Vkadaba | 5:0728bde67bdb | 1287 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1288 | } |
ADIJake | 0:85855ecd3257 | 1289 | else |
ADIJake | 0:85855ecd3257 | 1290 | { |
Vkadaba | 5:0728bde67bdb | 1291 | modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_FIFO_FILL; |
ADIJake | 0:85855ecd3257 | 1292 | } |
ADIJake | 0:85855ecd3257 | 1293 | } |
ADIJake | 0:85855ecd3257 | 1294 | else |
ADIJake | 0:85855ecd3257 | 1295 | { |
Vkadaba | 5:0728bde67bdb | 1296 | ADMW_LOG_ERROR("Invalid data-ready mode %d specified", eDataReadyMode); |
Vkadaba | 5:0728bde67bdb | 1297 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1298 | } |
ADIJake | 0:85855ecd3257 | 1299 | |
Vkadaba | 5:0728bde67bdb | 1300 | if (eCalibrationMode == ADMW1001_NO_CALIBRATION) |
ADIJake | 0:85855ecd3257 | 1301 | { |
Vkadaba | 5:0728bde67bdb | 1302 | modeReg.Calibration_Method = CORE_MODE_NO_CAL; |
ADIJake | 0:85855ecd3257 | 1303 | } |
Vkadaba | 5:0728bde67bdb | 1304 | else if (eCalibrationMode == ADMW1001_DO_CALIBRATION) |
ADIJake | 0:85855ecd3257 | 1305 | { |
Vkadaba | 5:0728bde67bdb | 1306 | modeReg.Calibration_Method = CORE_MODE_DO_CAL; |
ADIJake | 0:85855ecd3257 | 1307 | } |
ADIJake | 0:85855ecd3257 | 1308 | else |
ADIJake | 0:85855ecd3257 | 1309 | { |
Vkadaba | 5:0728bde67bdb | 1310 | ADMW_LOG_ERROR("Invalid calibration mode %d specified", |
ADIJake | 0:85855ecd3257 | 1311 | eCalibrationMode); |
Vkadaba | 5:0728bde67bdb | 1312 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1313 | } |
ADIJake | 0:85855ecd3257 | 1314 | |
ADIJake | 0:85855ecd3257 | 1315 | modeReg.Ext_Flash_Store = (bEnableExtFlash ? |
Vkadaba | 5:0728bde67bdb | 1316 | CORE_MODE_EXT_FLASH_USED : |
Vkadaba | 5:0728bde67bdb | 1317 | CORE_MODE_EXT_FLASH_NOT_USED); |
ADIJake | 0:85855ecd3257 | 1318 | |
ADIJake | 0:85855ecd3257 | 1319 | WRITE_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE); |
ADIJake | 0:85855ecd3257 | 1320 | |
Vkadaba | 5:0728bde67bdb | 1321 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 1322 | } |
ADIJake | 0:85855ecd3257 | 1323 | |
Vkadaba | 5:0728bde67bdb | 1324 | ADMW_RESULT admw_SetCycleControl( |
Vkadaba | 5:0728bde67bdb | 1325 | ADMW_DEVICE_HANDLE hDevice, |
ADIJake | 0:85855ecd3257 | 1326 | uint32_t nCycleInterval, |
ADIJake | 0:85855ecd3257 | 1327 | |
ADIJake | 0:85855ecd3257 | 1328 | #ifdef __V2_3_CFG_FMT__ |
Vkadaba | 5:0728bde67bdb | 1329 | ADMW1001_CYCLE_TYPE eCycleType, |
Vkadaba | 5:0728bde67bdb | 1330 | ADMW1001_FILTER_SETTLING eFilterSettling) |
ADIJake | 0:85855ecd3257 | 1331 | #else |
Vkadaba | 5:0728bde67bdb | 1332 | ADMW1001_CYCLE_TYPE eCycleType) |
ADIJake | 0:85855ecd3257 | 1333 | #endif |
ADIJake | 0:85855ecd3257 | 1334 | { |
Vkadaba | 5:0728bde67bdb | 1335 | CORE_Cycle_Control_t cycleControlReg; |
ADIJake | 0:85855ecd3257 | 1336 | |
ADIJake | 0:85855ecd3257 | 1337 | cycleControlReg.VALUE16 = REG_RESET_VAL(CORE_CYCLE_CONTROL); |
ADIJake | 0:85855ecd3257 | 1338 | |
ADIJake | 0:85855ecd3257 | 1339 | if (nCycleInterval < (1 << 12)) |
ADIJake | 0:85855ecd3257 | 1340 | { |
Vkadaba | 5:0728bde67bdb | 1341 | cycleControlReg.Cycle_Time_Units = CORE_CYCLE_CONTROL_MICROSECONDS; |
ADIJake | 0:85855ecd3257 | 1342 | } |
ADIJake | 0:85855ecd3257 | 1343 | else if (nCycleInterval < (1000 * (1 << 12))) |
ADIJake | 0:85855ecd3257 | 1344 | { |
Vkadaba | 5:0728bde67bdb | 1345 | cycleControlReg.Cycle_Time_Units = CORE_CYCLE_CONTROL_MILLISECONDS; |
ADIJake | 0:85855ecd3257 | 1346 | nCycleInterval /= 1000; |
ADIJake | 0:85855ecd3257 | 1347 | } |
ADIJake | 0:85855ecd3257 | 1348 | else |
ADIJake | 0:85855ecd3257 | 1349 | { |
Vkadaba | 5:0728bde67bdb | 1350 | cycleControlReg.Cycle_Time_Units = CORE_CYCLE_CONTROL_SECONDS; |
ADIJake | 0:85855ecd3257 | 1351 | nCycleInterval /= 1000000; |
ADIJake | 0:85855ecd3257 | 1352 | } |
ADIJake | 0:85855ecd3257 | 1353 | |
ADIJake | 0:85855ecd3257 | 1354 | CHECK_REG_FIELD_VAL(CORE_CYCLE_CONTROL_CYCLE_TIME, nCycleInterval); |
ADIJake | 0:85855ecd3257 | 1355 | cycleControlReg.Cycle_Time = nCycleInterval; |
ADIJake | 0:85855ecd3257 | 1356 | |
Vkadaba | 5:0728bde67bdb | 1357 | if (eCycleType == ADMW1001_CYCLE_TYPE_SWITCH) |
ADIJake | 0:85855ecd3257 | 1358 | { |
Vkadaba | 5:0728bde67bdb | 1359 | cycleControlReg.Cycle_Type = CORE_CYCLE_CONTROL_CYCLE_TYPE_SWITCH; |
ADIJake | 0:85855ecd3257 | 1360 | } |
Vkadaba | 5:0728bde67bdb | 1361 | else if (eCycleType == ADMW1001_CYCLE_TYPE_FULL) |
ADIJake | 0:85855ecd3257 | 1362 | { |
Vkadaba | 5:0728bde67bdb | 1363 | cycleControlReg.Cycle_Type = CORE_CYCLE_CONTROL_CYCLE_TYPE_FULL; |
ADIJake | 0:85855ecd3257 | 1364 | } |
ADIJake | 0:85855ecd3257 | 1365 | else |
ADIJake | 0:85855ecd3257 | 1366 | { |
Vkadaba | 5:0728bde67bdb | 1367 | ADMW_LOG_ERROR("Invalid cycle type %d specified", eCycleType); |
Vkadaba | 5:0728bde67bdb | 1368 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1369 | } |
ADIJake | 0:85855ecd3257 | 1370 | |
ADIJake | 0:85855ecd3257 | 1371 | #ifdef __V2_3_CFG_FMT__ |
Vkadaba | 5:0728bde67bdb | 1372 | if (eFilterSettling == ADMW1001_FILTER_SETTLING_ALWAYS) |
ADIJake | 0:85855ecd3257 | 1373 | { |
Vkadaba | 5:0728bde67bdb | 1374 | cycleControlReg.Filter_Settling = CORE_CYCLE_CONTROL_FILTER_SETTLING_SETTLED; |
ADIJake | 0:85855ecd3257 | 1375 | } |
Vkadaba | 5:0728bde67bdb | 1376 | else if (eFilterSettling == ADMW1001_FILTER_SETTLING_FAST) |
ADIJake | 0:85855ecd3257 | 1377 | { |
Vkadaba | 5:0728bde67bdb | 1378 | cycleControlReg.Filter_Settling = CORE_CYCLE_CONTROL_FILTER_SETTLING_FAST; |
ADIJake | 0:85855ecd3257 | 1379 | } |
ADIJake | 0:85855ecd3257 | 1380 | else |
ADIJake | 0:85855ecd3257 | 1381 | { |
Vkadaba | 5:0728bde67bdb | 1382 | ADMW_LOG_ERROR("Invalid filter settling option %d specified", eFilterSettling); |
Vkadaba | 5:0728bde67bdb | 1383 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1384 | } |
ADIJake | 0:85855ecd3257 | 1385 | #endif |
ADIJake | 0:85855ecd3257 | 1386 | |
ADIJake | 0:85855ecd3257 | 1387 | WRITE_REG_U16(hDevice, cycleControlReg.VALUE16, CORE_CYCLE_CONTROL); |
ADIJake | 0:85855ecd3257 | 1388 | |
Vkadaba | 5:0728bde67bdb | 1389 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 1390 | } |
ADIJake | 0:85855ecd3257 | 1391 | |
Vkadaba | 5:0728bde67bdb | 1392 | static ADMW_RESULT admw_SetMultiCycleConfig( |
Vkadaba | 5:0728bde67bdb | 1393 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 1394 | ADMW1001_MULTICYCLE_CONFIG *pMultiCycleConfig) |
ADIJake | 0:85855ecd3257 | 1395 | { |
ADIJake | 0:85855ecd3257 | 1396 | CHECK_REG_FIELD_VAL(CORE_FIFO_NUM_CYCLES_FIFO_NUM_CYCLES, |
ADIJake | 0:85855ecd3257 | 1397 | pMultiCycleConfig->cyclesPerBurst); |
ADIJake | 0:85855ecd3257 | 1398 | |
ADIJake | 0:85855ecd3257 | 1399 | WRITE_REG_U8(hDevice, pMultiCycleConfig->cyclesPerBurst, |
ADIJake | 0:85855ecd3257 | 1400 | CORE_FIFO_NUM_CYCLES); |
ADIJake | 0:85855ecd3257 | 1401 | |
ADIJake | 0:85855ecd3257 | 1402 | WRITE_REG_U32(hDevice, pMultiCycleConfig->burstInterval, |
ADIJake | 0:85855ecd3257 | 1403 | CORE_MULTI_CYCLE_REPEAT_INTERVAL); |
ADIJake | 0:85855ecd3257 | 1404 | |
Vkadaba | 5:0728bde67bdb | 1405 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 1406 | } |
ADIJake | 0:85855ecd3257 | 1407 | |
Vkadaba | 5:0728bde67bdb | 1408 | static ADMW_RESULT admw_SetExternalReferenceValues( |
Vkadaba | 5:0728bde67bdb | 1409 | ADMW_DEVICE_HANDLE hDevice, |
ADIJake | 0:85855ecd3257 | 1410 | float32_t externalRef1Value, |
ADIJake | 0:85855ecd3257 | 1411 | float32_t externalRef2Value) |
ADIJake | 0:85855ecd3257 | 1412 | { |
ADIJake | 0:85855ecd3257 | 1413 | WRITE_REG_FLOAT(hDevice, externalRef1Value, CORE_EXTERNAL_REFERENCE1); |
ADIJake | 0:85855ecd3257 | 1414 | WRITE_REG_FLOAT(hDevice, externalRef2Value, CORE_EXTERNAL_REFERENCE2); |
ADIJake | 0:85855ecd3257 | 1415 | |
Vkadaba | 5:0728bde67bdb | 1416 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 1417 | } |
ADIJake | 0:85855ecd3257 | 1418 | |
Vkadaba | 5:0728bde67bdb | 1419 | ADMW_RESULT admw1001_SetMeasurementConfig( |
Vkadaba | 5:0728bde67bdb | 1420 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 1421 | ADMW1001_MEASUREMENT_CONFIG *pMeasConfig) |
ADIJake | 0:85855ecd3257 | 1422 | { |
Vkadaba | 5:0728bde67bdb | 1423 | ADMW_RESULT eRet; |
Vkadaba | 5:0728bde67bdb | 1424 | |
Vkadaba | 5:0728bde67bdb | 1425 | eRet = admw_SetMode(hDevice, |
ADIJake | 0:85855ecd3257 | 1426 | pMeasConfig->operatingMode, |
ADIJake | 0:85855ecd3257 | 1427 | pMeasConfig->dataReadyMode, |
ADIJake | 0:85855ecd3257 | 1428 | pMeasConfig->calibrationMode, |
ADIJake | 0:85855ecd3257 | 1429 | pMeasConfig->enableExternalFlash); |
Vkadaba | 5:0728bde67bdb | 1430 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 1431 | { |
Vkadaba | 5:0728bde67bdb | 1432 | ADMW_LOG_ERROR("Failed to set operating mode"); |
ADIJake | 0:85855ecd3257 | 1433 | return eRet; |
ADIJake | 0:85855ecd3257 | 1434 | } |
ADIJake | 0:85855ecd3257 | 1435 | |
Vkadaba | 5:0728bde67bdb | 1436 | eRet = admw_SetCycleControl(hDevice, |
ADIJake | 0:85855ecd3257 | 1437 | pMeasConfig->cycleInterval, |
ADIJake | 0:85855ecd3257 | 1438 | pMeasConfig->cycleType); |
Vkadaba | 5:0728bde67bdb | 1439 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 1440 | { |
Vkadaba | 5:0728bde67bdb | 1441 | ADMW_LOG_ERROR("Failed to set cycle control"); |
ADIJake | 0:85855ecd3257 | 1442 | return eRet; |
ADIJake | 0:85855ecd3257 | 1443 | } |
ADIJake | 0:85855ecd3257 | 1444 | |
Vkadaba | 5:0728bde67bdb | 1445 | if (pMeasConfig->operatingMode == ADMW1001_OPERATING_MODE_MULTICYCLE) |
ADIJake | 0:85855ecd3257 | 1446 | { |
Vkadaba | 5:0728bde67bdb | 1447 | eRet = admw_SetMultiCycleConfig(hDevice, |
ADIJake | 0:85855ecd3257 | 1448 | &pMeasConfig->multiCycleConfig); |
Vkadaba | 5:0728bde67bdb | 1449 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 1450 | { |
Vkadaba | 5:0728bde67bdb | 1451 | ADMW_LOG_ERROR("Failed to set multi-cycle configuration"); |
ADIJake | 0:85855ecd3257 | 1452 | return eRet; |
ADIJake | 0:85855ecd3257 | 1453 | } |
ADIJake | 0:85855ecd3257 | 1454 | } |
ADIJake | 0:85855ecd3257 | 1455 | |
Vkadaba | 5:0728bde67bdb | 1456 | eRet = admw_SetExternalReferenceValues(hDevice, |
ADIJake | 0:85855ecd3257 | 1457 | pMeasConfig->externalRef1Value, |
ADIJake | 0:85855ecd3257 | 1458 | pMeasConfig->externalRef2Value); |
Vkadaba | 5:0728bde67bdb | 1459 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 1460 | { |
Vkadaba | 5:0728bde67bdb | 1461 | ADMW_LOG_ERROR("Failed to set external reference values"); |
ADIJake | 0:85855ecd3257 | 1462 | return eRet; |
ADIJake | 0:85855ecd3257 | 1463 | } |
ADIJake | 0:85855ecd3257 | 1464 | |
Vkadaba | 5:0728bde67bdb | 1465 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 1466 | } |
ADIJake | 0:85855ecd3257 | 1467 | |
Vkadaba | 5:0728bde67bdb | 1468 | ADMW_RESULT admw1001_SetDiagnosticsConfig( |
Vkadaba | 5:0728bde67bdb | 1469 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 1470 | ADMW1001_DIAGNOSTICS_CONFIG *pDiagnosticsConfig) |
ADIJake | 0:85855ecd3257 | 1471 | { |
Vkadaba | 5:0728bde67bdb | 1472 | CORE_Diagnostics_Control_t diagnosticsControlReg; |
ADIJake | 0:85855ecd3257 | 1473 | |
ADIJake | 0:85855ecd3257 | 1474 | diagnosticsControlReg.VALUE16 = REG_RESET_VAL(CORE_DIAGNOSTICS_CONTROL); |
ADIJake | 0:85855ecd3257 | 1475 | |
ADIJake | 0:85855ecd3257 | 1476 | if (pDiagnosticsConfig->disableGlobalDiag) |
ADIJake | 0:85855ecd3257 | 1477 | diagnosticsControlReg.Diag_Global_En = 0; |
ADIJake | 0:85855ecd3257 | 1478 | else |
ADIJake | 0:85855ecd3257 | 1479 | diagnosticsControlReg.Diag_Global_En = 1; |
ADIJake | 0:85855ecd3257 | 1480 | |
ADIJake | 0:85855ecd3257 | 1481 | if (pDiagnosticsConfig->disableMeasurementDiag) |
ADIJake | 0:85855ecd3257 | 1482 | diagnosticsControlReg.Diag_Meas_En = 0; |
ADIJake | 0:85855ecd3257 | 1483 | else |
ADIJake | 0:85855ecd3257 | 1484 | diagnosticsControlReg.Diag_Meas_En = 1; |
ADIJake | 0:85855ecd3257 | 1485 | |
ADIJake | 0:85855ecd3257 | 1486 | switch (pDiagnosticsConfig->osdFrequency) |
ADIJake | 0:85855ecd3257 | 1487 | { |
Vkadaba | 5:0728bde67bdb | 1488 | case ADMW1001_OPEN_SENSOR_DIAGNOSTICS_DISABLED: |
Vkadaba | 5:0728bde67bdb | 1489 | diagnosticsControlReg.Diag_OSD_Freq = CORE_DIAGNOSTICS_CONTROL_OCD_OFF; |
ADIJake | 0:85855ecd3257 | 1490 | break; |
Vkadaba | 5:0728bde67bdb | 1491 | case ADMW1001_OPEN_SENSOR_DIAGNOSTICS_PER_CYCLE: |
Vkadaba | 5:0728bde67bdb | 1492 | diagnosticsControlReg.Diag_OSD_Freq = CORE_DIAGNOSTICS_CONTROL_OCD_PER_1_CYCLE; |
ADIJake | 0:85855ecd3257 | 1493 | break; |
Vkadaba | 5:0728bde67bdb | 1494 | case ADMW1001_OPEN_SENSOR_DIAGNOSTICS_PER_100_CYCLES: |
Vkadaba | 5:0728bde67bdb | 1495 | diagnosticsControlReg.Diag_OSD_Freq = CORE_DIAGNOSTICS_CONTROL_OCD_PER_100_CYCLES; |
ADIJake | 0:85855ecd3257 | 1496 | break; |
Vkadaba | 5:0728bde67bdb | 1497 | case ADMW1001_OPEN_SENSOR_DIAGNOSTICS_PER_1000_CYCLES: |
Vkadaba | 5:0728bde67bdb | 1498 | diagnosticsControlReg.Diag_OSD_Freq = CORE_DIAGNOSTICS_CONTROL_OCD_PER_1000_CYCLES; |
ADIJake | 0:85855ecd3257 | 1499 | break; |
ADIJake | 0:85855ecd3257 | 1500 | default: |
Vkadaba | 5:0728bde67bdb | 1501 | ADMW_LOG_ERROR("Invalid open-sensor diagnostic frequency %d specified", |
ADIJake | 0:85855ecd3257 | 1502 | pDiagnosticsConfig->osdFrequency); |
Vkadaba | 5:0728bde67bdb | 1503 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1504 | } |
ADIJake | 0:85855ecd3257 | 1505 | |
ADIJake | 0:85855ecd3257 | 1506 | WRITE_REG_U16(hDevice, diagnosticsControlReg.VALUE16, CORE_DIAGNOSTICS_CONTROL); |
ADIJake | 0:85855ecd3257 | 1507 | |
Vkadaba | 5:0728bde67bdb | 1508 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 1509 | } |
ADIJake | 0:85855ecd3257 | 1510 | |
Vkadaba | 5:0728bde67bdb | 1511 | ADMW_RESULT admw1001_SetFftConfig( |
Vkadaba | 5:0728bde67bdb | 1512 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 1513 | ADMW1001_FFT_CONFIG *pFftConfig, |
Vkadaba | 5:0728bde67bdb | 1514 | ADMW1001_CHANNEL_CONFIG *pChannels) |
ADIJake | 0:85855ecd3257 | 1515 | { |
Vkadaba | 5:0728bde67bdb | 1516 | CORE_FFT_Config_t fftConfigReg; |
Vkadaba | 5:0728bde67bdb | 1517 | CORE_Mode_t modeReg; |
ADIJake | 0:85855ecd3257 | 1518 | uint32_t numFftChannels = 0; |
ADIJake | 0:85855ecd3257 | 1519 | |
ADIJake | 0:85855ecd3257 | 1520 | fftConfigReg.VALUE32 = REG_RESET_VAL(CORE_FFT_CONFIG); |
ADIJake | 0:85855ecd3257 | 1521 | |
Vkadaba | 5:0728bde67bdb | 1522 | for (ADMW1001_CHANNEL_ID id = ADMW1001_CHANNEL_ID_CJC_0; |
Vkadaba | 5:0728bde67bdb | 1523 | id < ADMW1001_MAX_CHANNELS; |
ADIJake | 0:85855ecd3257 | 1524 | id++) |
ADIJake | 0:85855ecd3257 | 1525 | { |
ADIJake | 0:85855ecd3257 | 1526 | if (pChannels[id].enableFFT) |
ADIJake | 0:85855ecd3257 | 1527 | { |
ADIJake | 0:85855ecd3257 | 1528 | if (numFftChannels >= 4) /* TODO - temporary limit */ |
ADIJake | 0:85855ecd3257 | 1529 | { |
Vkadaba | 5:0728bde67bdb | 1530 | ADMW_LOG_ERROR("Maximum limit of 4 FFT channels exceeded"); |
Vkadaba | 5:0728bde67bdb | 1531 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1532 | } |
ADIJake | 0:85855ecd3257 | 1533 | |
ADIJake | 0:85855ecd3257 | 1534 | numFftChannels++; |
ADIJake | 0:85855ecd3257 | 1535 | } |
ADIJake | 0:85855ecd3257 | 1536 | } |
ADIJake | 0:85855ecd3257 | 1537 | |
ADIJake | 0:85855ecd3257 | 1538 | if (numFftChannels > 0) |
ADIJake | 0:85855ecd3257 | 1539 | { |
ADIJake | 0:85855ecd3257 | 1540 | fftConfigReg.FFT_Num_Channels = numFftChannels - 1; |
ADIJake | 0:85855ecd3257 | 1541 | |
ADIJake | 0:85855ecd3257 | 1542 | switch (pFftConfig->size) |
ADIJake | 0:85855ecd3257 | 1543 | { |
Vkadaba | 5:0728bde67bdb | 1544 | case ADMW1001_FFT_SIZE_256: |
Vkadaba | 5:0728bde67bdb | 1545 | fftConfigReg.FFT_Num_Bins = CORE_FFT_CONFIG_FFT_BINS_256; |
ADIJake | 0:85855ecd3257 | 1546 | break; |
Vkadaba | 5:0728bde67bdb | 1547 | case ADMW1001_FFT_SIZE_512: |
Vkadaba | 5:0728bde67bdb | 1548 | fftConfigReg.FFT_Num_Bins = CORE_FFT_CONFIG_FFT_BINS_512; |
ADIJake | 0:85855ecd3257 | 1549 | break; |
Vkadaba | 5:0728bde67bdb | 1550 | case ADMW1001_FFT_SIZE_1024: |
Vkadaba | 5:0728bde67bdb | 1551 | fftConfigReg.FFT_Num_Bins = CORE_FFT_CONFIG_FFT_BINS_1024; |
ADIJake | 0:85855ecd3257 | 1552 | break; |
Vkadaba | 5:0728bde67bdb | 1553 | case ADMW1001_FFT_SIZE_2048: |
Vkadaba | 5:0728bde67bdb | 1554 | fftConfigReg.FFT_Num_Bins = CORE_FFT_CONFIG_FFT_BINS_2048; |
ADIJake | 0:85855ecd3257 | 1555 | break; |
ADIJake | 0:85855ecd3257 | 1556 | default: |
Vkadaba | 5:0728bde67bdb | 1557 | ADMW_LOG_ERROR("Invalid FFT size option %d specified", |
ADIJake | 0:85855ecd3257 | 1558 | pFftConfig->size); |
Vkadaba | 5:0728bde67bdb | 1559 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1560 | } |
ADIJake | 0:85855ecd3257 | 1561 | |
ADIJake | 0:85855ecd3257 | 1562 | switch (pFftConfig->window) |
ADIJake | 0:85855ecd3257 | 1563 | { |
Vkadaba | 5:0728bde67bdb | 1564 | case ADMW1001_FFT_WINDOW_NONE: |
Vkadaba | 5:0728bde67bdb | 1565 | fftConfigReg.FFT_Window = CORE_FFT_CONFIG_FFT_WINDOW_NONE; |
ADIJake | 0:85855ecd3257 | 1566 | break; |
Vkadaba | 5:0728bde67bdb | 1567 | case ADMW1001_FFT_WINDOW_HANN: |
Vkadaba | 5:0728bde67bdb | 1568 | fftConfigReg.FFT_Window = CORE_FFT_CONFIG_FFT_WINDOW_HANN; |
ADIJake | 0:85855ecd3257 | 1569 | break; |
Vkadaba | 5:0728bde67bdb | 1570 | case ADMW1001_FFT_WINDOW_BLACKMAN_HARRIS: |
Vkadaba | 5:0728bde67bdb | 1571 | fftConfigReg.FFT_Window = CORE_FFT_CONFIG_FFT_WINDOW_BLACKMANN_HARRIS; |
ADIJake | 0:85855ecd3257 | 1572 | break; |
ADIJake | 0:85855ecd3257 | 1573 | default: |
Vkadaba | 5:0728bde67bdb | 1574 | ADMW_LOG_ERROR("Invalid FFT window option %d specified", |
ADIJake | 0:85855ecd3257 | 1575 | pFftConfig->window); |
Vkadaba | 5:0728bde67bdb | 1576 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1577 | } |
ADIJake | 0:85855ecd3257 | 1578 | |
ADIJake | 0:85855ecd3257 | 1579 | switch (pFftConfig->output) |
ADIJake | 0:85855ecd3257 | 1580 | { |
Vkadaba | 5:0728bde67bdb | 1581 | case ADMW1001_FFT_OUTPUT_FULL: |
Vkadaba | 5:0728bde67bdb | 1582 | fftConfigReg.FFT_Output = CORE_FFT_CONFIG_FFT_OUTPUT_FULL; |
ADIJake | 0:85855ecd3257 | 1583 | break; |
Vkadaba | 5:0728bde67bdb | 1584 | case ADMW1001_FFT_OUTPUT_MAX16: |
Vkadaba | 5:0728bde67bdb | 1585 | fftConfigReg.FFT_Output = CORE_FFT_CONFIG_FFT_OUTPUT_MAX16; |
ADIJake | 0:85855ecd3257 | 1586 | break; |
Vkadaba | 5:0728bde67bdb | 1587 | case ADMW1001_FFT_OUTPUT_FULL_WITH_RAW: |
Vkadaba | 5:0728bde67bdb | 1588 | fftConfigReg.FFT_Output = CORE_FFT_CONFIG_FFT_OUTPUT_FULL_WITH_RAW; |
ADIJake | 0:85855ecd3257 | 1589 | break; |
ADIJake | 0:85855ecd3257 | 1590 | default: |
Vkadaba | 5:0728bde67bdb | 1591 | ADMW_LOG_ERROR("Invalid FFT output format option %d specified", |
ADIJake | 0:85855ecd3257 | 1592 | pFftConfig->output); |
Vkadaba | 5:0728bde67bdb | 1593 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1594 | } |
ADIJake | 0:85855ecd3257 | 1595 | } |
ADIJake | 0:85855ecd3257 | 1596 | WRITE_REG_U32(hDevice, fftConfigReg.VALUE32, CORE_FFT_CONFIG); |
ADIJake | 0:85855ecd3257 | 1597 | |
ADIJake | 0:85855ecd3257 | 1598 | if (numFftChannels > 0) |
ADIJake | 0:85855ecd3257 | 1599 | { |
ADIJake | 0:85855ecd3257 | 1600 | READ_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE); |
ADIJake | 0:85855ecd3257 | 1601 | |
Vkadaba | 5:0728bde67bdb | 1602 | if (pFftConfig->mode == ADMW1001_FFT_MODE_SINGLE) |
ADIJake | 0:85855ecd3257 | 1603 | { |
Vkadaba | 5:0728bde67bdb | 1604 | modeReg.FFT_Mode = CORE_MODE_FFT_MODE_SINGLE; |
ADIJake | 0:85855ecd3257 | 1605 | } |
Vkadaba | 5:0728bde67bdb | 1606 | else if (pFftConfig->mode == ADMW1001_FFT_MODE_CONTINUOUS) |
ADIJake | 0:85855ecd3257 | 1607 | { |
Vkadaba | 5:0728bde67bdb | 1608 | modeReg.FFT_Mode = CORE_MODE_FFT_MODE_CONTINUOUS; |
ADIJake | 0:85855ecd3257 | 1609 | } |
ADIJake | 0:85855ecd3257 | 1610 | else |
ADIJake | 0:85855ecd3257 | 1611 | { |
Vkadaba | 5:0728bde67bdb | 1612 | ADMW_LOG_ERROR("Invalid FFT mode %d specified", |
ADIJake | 0:85855ecd3257 | 1613 | pFftConfig->mode); |
Vkadaba | 5:0728bde67bdb | 1614 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1615 | } |
ADIJake | 0:85855ecd3257 | 1616 | |
ADIJake | 0:85855ecd3257 | 1617 | WRITE_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE); |
ADIJake | 0:85855ecd3257 | 1618 | } |
ADIJake | 0:85855ecd3257 | 1619 | |
Vkadaba | 5:0728bde67bdb | 1620 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 1621 | } |
ADIJake | 0:85855ecd3257 | 1622 | |
Vkadaba | 5:0728bde67bdb | 1623 | ADMW_RESULT admw1001_SetChannelCount( |
Vkadaba | 5:0728bde67bdb | 1624 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 1625 | ADMW1001_CHANNEL_ID eChannelId, |
ADIJake | 0:85855ecd3257 | 1626 | uint32_t nMeasurementsPerCycle) |
ADIJake | 0:85855ecd3257 | 1627 | { |
Vkadaba | 5:0728bde67bdb | 1628 | CORE_Channel_Count_t channelCountReg; |
ADIJake | 0:85855ecd3257 | 1629 | |
ADIJake | 0:85855ecd3257 | 1630 | channelCountReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_COUNTn); |
ADIJake | 0:85855ecd3257 | 1631 | |
ADIJake | 0:85855ecd3257 | 1632 | if (nMeasurementsPerCycle > 0) |
ADIJake | 0:85855ecd3257 | 1633 | { |
ADIJake | 0:85855ecd3257 | 1634 | nMeasurementsPerCycle -= 1; |
ADIJake | 0:85855ecd3257 | 1635 | |
ADIJake | 0:85855ecd3257 | 1636 | CHECK_REG_FIELD_VAL(CORE_CHANNEL_COUNT_CHANNEL_COUNT, |
ADIJake | 0:85855ecd3257 | 1637 | nMeasurementsPerCycle); |
ADIJake | 0:85855ecd3257 | 1638 | |
ADIJake | 0:85855ecd3257 | 1639 | channelCountReg.Channel_Enable = 1; |
ADIJake | 0:85855ecd3257 | 1640 | channelCountReg.Channel_Count = nMeasurementsPerCycle; |
ADIJake | 0:85855ecd3257 | 1641 | } |
ADIJake | 0:85855ecd3257 | 1642 | else |
ADIJake | 0:85855ecd3257 | 1643 | { |
ADIJake | 0:85855ecd3257 | 1644 | channelCountReg.Channel_Enable = 0; |
ADIJake | 0:85855ecd3257 | 1645 | } |
ADIJake | 0:85855ecd3257 | 1646 | |
ADIJake | 0:85855ecd3257 | 1647 | WRITE_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 1648 | |
Vkadaba | 5:0728bde67bdb | 1649 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 1650 | } |
ADIJake | 0:85855ecd3257 | 1651 | |
Vkadaba | 5:0728bde67bdb | 1652 | ADMW_RESULT admw1001_SetChannelOptions( |
Vkadaba | 5:0728bde67bdb | 1653 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 1654 | ADMW1001_CHANNEL_ID eChannelId, |
Vkadaba | 5:0728bde67bdb | 1655 | ADMW1001_CHANNEL_PRIORITY ePriority, |
ADIJake | 0:85855ecd3257 | 1656 | bool bEnableFft) |
ADIJake | 0:85855ecd3257 | 1657 | { |
Vkadaba | 5:0728bde67bdb | 1658 | CORE_Channel_Options_t channelOptionsReg; |
ADIJake | 0:85855ecd3257 | 1659 | |
ADIJake | 0:85855ecd3257 | 1660 | channelOptionsReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_OPTIONSn); |
ADIJake | 0:85855ecd3257 | 1661 | |
ADIJake | 0:85855ecd3257 | 1662 | CHECK_REG_FIELD_VAL(CORE_CHANNEL_OPTIONS_CHANNEL_PRIORITY, ePriority); |
ADIJake | 0:85855ecd3257 | 1663 | channelOptionsReg.Channel_Priority = ePriority; |
ADIJake | 0:85855ecd3257 | 1664 | channelOptionsReg.FFT_Enable_Ch = bEnableFft ? 1 : 0; |
ADIJake | 0:85855ecd3257 | 1665 | |
ADIJake | 0:85855ecd3257 | 1666 | WRITE_REG_U8(hDevice, channelOptionsReg.VALUE8, CORE_CHANNEL_OPTIONSn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 1667 | |
Vkadaba | 5:0728bde67bdb | 1668 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 1669 | } |
ADIJake | 0:85855ecd3257 | 1670 | |
Vkadaba | 5:0728bde67bdb | 1671 | ADMW_RESULT admw1001_SetChannelSkipCount( |
Vkadaba | 5:0728bde67bdb | 1672 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 1673 | ADMW1001_CHANNEL_ID eChannelId, |
ADIJake | 0:85855ecd3257 | 1674 | uint32_t nCycleSkipCount) |
ADIJake | 0:85855ecd3257 | 1675 | { |
Vkadaba | 5:0728bde67bdb | 1676 | CORE_Channel_Skip_t channelSkipReg; |
ADIJake | 0:85855ecd3257 | 1677 | |
ADIJake | 0:85855ecd3257 | 1678 | channelSkipReg.VALUE16 = REG_RESET_VAL(CORE_CHANNEL_SKIPn); |
ADIJake | 0:85855ecd3257 | 1679 | |
ADIJake | 0:85855ecd3257 | 1680 | CHECK_REG_FIELD_VAL(CORE_CHANNEL_SKIP_CHANNEL_SKIP, nCycleSkipCount); |
ADIJake | 0:85855ecd3257 | 1681 | |
ADIJake | 0:85855ecd3257 | 1682 | channelSkipReg.Channel_Skip = nCycleSkipCount; |
ADIJake | 0:85855ecd3257 | 1683 | |
ADIJake | 0:85855ecd3257 | 1684 | WRITE_REG_U16(hDevice, channelSkipReg.VALUE16, CORE_CHANNEL_SKIPn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 1685 | |
Vkadaba | 5:0728bde67bdb | 1686 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 1687 | } |
ADIJake | 0:85855ecd3257 | 1688 | |
Vkadaba | 5:0728bde67bdb | 1689 | static ADMW_RESULT admw_SetChannelAdcSensorType( |
Vkadaba | 5:0728bde67bdb | 1690 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 1691 | ADMW1001_CHANNEL_ID eChannelId, |
Vkadaba | 5:0728bde67bdb | 1692 | ADMW1001_ADC_SENSOR_TYPE sensorType) |
ADIJake | 0:85855ecd3257 | 1693 | { |
Vkadaba | 5:0728bde67bdb | 1694 | CORE_Sensor_Type_t sensorTypeReg; |
ADIJake | 0:85855ecd3257 | 1695 | |
ADIJake | 0:85855ecd3257 | 1696 | sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn); |
ADIJake | 0:85855ecd3257 | 1697 | |
ADIJake | 0:85855ecd3257 | 1698 | /* Ensure that the sensor type is valid for this channel */ |
ADIJake | 0:85855ecd3257 | 1699 | switch(sensorType) |
ADIJake | 0:85855ecd3257 | 1700 | { |
Vkadaba | 5:0728bde67bdb | 1701 | case ADMW1001_ADC_SENSOR_THERMOCOUPLE_J_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 1702 | case ADMW1001_ADC_SENSOR_THERMOCOUPLE_K_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 1703 | case ADMW1001_ADC_SENSOR_THERMOCOUPLE_T_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 1704 | case ADMW1001_ADC_SENSOR_THERMOCOUPLE_1_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1705 | case ADMW1001_ADC_SENSOR_THERMOCOUPLE_2_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1706 | case ADMW1001_ADC_SENSOR_THERMOCOUPLE_3_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1707 | case ADMW1001_ADC_SENSOR_THERMOCOUPLE_4_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1708 | case ADMW1001_ADC_SENSOR_THERMOCOUPLE_J_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 1709 | case ADMW1001_ADC_SENSOR_THERMOCOUPLE_K_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 1710 | case ADMW1001_ADC_SENSOR_THERMOCOUPLE_T_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 1711 | case ADMW1001_ADC_SENSOR_THERMOCOUPLE_1_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1712 | case ADMW1001_ADC_SENSOR_THERMOCOUPLE_2_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1713 | case ADMW1001_ADC_SENSOR_THERMOCOUPLE_3_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1714 | case ADMW1001_ADC_SENSOR_THERMOCOUPLE_4_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1715 | case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_1_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1716 | case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_2_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1717 | case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_3_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1718 | case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_4_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1719 | case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_1_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1720 | case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_2_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1721 | case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_3_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1722 | case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_4_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1723 | case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_1_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1724 | case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_2_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1725 | case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_3_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1726 | case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_4_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1727 | case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_1_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1728 | case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_2_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1729 | case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_3_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1730 | case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_4_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1731 | if (! ADMW1001_CHANNEL_IS_ADC_SENSOR(eChannelId)) |
abrophy | 4:2ca06eee5735 | 1732 | { |
Vkadaba | 5:0728bde67bdb | 1733 | ADMW_LOG_ERROR( |
abrophy | 4:2ca06eee5735 | 1734 | "Invalid ADC sensor type %d specified for channel %d", |
abrophy | 4:2ca06eee5735 | 1735 | sensorType, eChannelId); |
Vkadaba | 5:0728bde67bdb | 1736 | return ADMW_INVALID_PARAM; |
abrophy | 4:2ca06eee5735 | 1737 | } |
abrophy | 4:2ca06eee5735 | 1738 | break; |
Vkadaba | 5:0728bde67bdb | 1739 | case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT100_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 1740 | case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT1000_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 1741 | case ADMW1001_ADC_SENSOR_RTD_2WIRE_1_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1742 | case ADMW1001_ADC_SENSOR_RTD_2WIRE_2_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1743 | case ADMW1001_ADC_SENSOR_RTD_2WIRE_3_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1744 | case ADMW1001_ADC_SENSOR_RTD_2WIRE_4_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1745 | case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT100_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 1746 | case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT1000_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 1747 | case ADMW1001_ADC_SENSOR_RTD_2WIRE_1_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1748 | case ADMW1001_ADC_SENSOR_RTD_2WIRE_2_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1749 | case ADMW1001_ADC_SENSOR_RTD_2WIRE_3_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1750 | case ADMW1001_ADC_SENSOR_RTD_2WIRE_4_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1751 | case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT100_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 1752 | case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT1000_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 1753 | case ADMW1001_ADC_SENSOR_RTD_3WIRE_1_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1754 | case ADMW1001_ADC_SENSOR_RTD_3WIRE_2_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1755 | case ADMW1001_ADC_SENSOR_RTD_3WIRE_3_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1756 | case ADMW1001_ADC_SENSOR_RTD_3WIRE_4_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1757 | case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT100_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 1758 | case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT1000_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 1759 | case ADMW1001_ADC_SENSOR_RTD_3WIRE_1_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1760 | case ADMW1001_ADC_SENSOR_RTD_3WIRE_2_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1761 | case ADMW1001_ADC_SENSOR_RTD_3WIRE_3_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1762 | case ADMW1001_ADC_SENSOR_RTD_3WIRE_4_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1763 | case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT100_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 1764 | case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT1000_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 1765 | case ADMW1001_ADC_SENSOR_RTD_4WIRE_1_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1766 | case ADMW1001_ADC_SENSOR_RTD_4WIRE_2_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1767 | case ADMW1001_ADC_SENSOR_RTD_4WIRE_3_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1768 | case ADMW1001_ADC_SENSOR_RTD_4WIRE_4_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1769 | case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT100_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 1770 | case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT1000_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 1771 | case ADMW1001_ADC_SENSOR_RTD_4WIRE_1_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1772 | case ADMW1001_ADC_SENSOR_RTD_4WIRE_2_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1773 | case ADMW1001_ADC_SENSOR_RTD_4WIRE_3_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1774 | case ADMW1001_ADC_SENSOR_RTD_4WIRE_4_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1775 | if (!ADMW1001_CHANNEL_IS_ADC_CJC(eChannelId)) |
ADIJake | 0:85855ecd3257 | 1776 | { |
Vkadaba | 5:0728bde67bdb | 1777 | ADMW_LOG_ERROR( |
ADIJake | 0:85855ecd3257 | 1778 | "Invalid ADC sensor type %d specified for channel %d", |
ADIJake | 0:85855ecd3257 | 1779 | sensorType, eChannelId); |
Vkadaba | 5:0728bde67bdb | 1780 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1781 | } |
ADIJake | 0:85855ecd3257 | 1782 | break; |
Vkadaba | 5:0728bde67bdb | 1783 | case ADMW1001_ADC_SENSOR_DIODE_2C_TYPEA_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 1784 | case ADMW1001_ADC_SENSOR_DIODE_3C_TYPEA_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 1785 | case ADMW1001_ADC_SENSOR_DIODE_2C_1_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1786 | case ADMW1001_ADC_SENSOR_DIODE_3C_1_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1787 | case ADMW1001_ADC_SENSOR_DIODE_2C_TYPEA_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 1788 | case ADMW1001_ADC_SENSOR_DIODE_3C_TYPEA_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 1789 | case ADMW1001_ADC_SENSOR_DIODE_2C_1_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1790 | case ADMW1001_ADC_SENSOR_DIODE_3C_1_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1791 | case ADMW1001_ADC_SENSOR_THERMISTOR_A_10K_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 1792 | case ADMW1001_ADC_SENSOR_THERMISTOR_B_10K_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 1793 | case ADMW1001_ADC_SENSOR_THERMISTOR_1_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1794 | case ADMW1001_ADC_SENSOR_THERMISTOR_2_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1795 | case ADMW1001_ADC_SENSOR_THERMISTOR_3_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1796 | case ADMW1001_ADC_SENSOR_THERMISTOR_4_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1797 | case ADMW1001_ADC_SENSOR_THERMISTOR_A_10K_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 1798 | case ADMW1001_ADC_SENSOR_THERMISTOR_B_10K_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 1799 | case ADMW1001_ADC_SENSOR_THERMISTOR_1_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1800 | case ADMW1001_ADC_SENSOR_THERMISTOR_2_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1801 | case ADMW1001_ADC_SENSOR_THERMISTOR_3_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1802 | case ADMW1001_ADC_SENSOR_THERMISTOR_4_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1803 | if (! (ADMW1001_CHANNEL_IS_ADC_SENSOR(eChannelId) || |
Vkadaba | 5:0728bde67bdb | 1804 | ADMW1001_CHANNEL_IS_ADC_CJC(eChannelId))) |
ADIJake | 0:85855ecd3257 | 1805 | { |
Vkadaba | 5:0728bde67bdb | 1806 | ADMW_LOG_ERROR( |
ADIJake | 0:85855ecd3257 | 1807 | "Invalid ADC sensor type %d specified for channel %d", |
ADIJake | 0:85855ecd3257 | 1808 | sensorType, eChannelId); |
Vkadaba | 5:0728bde67bdb | 1809 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1810 | } |
ADIJake | 0:85855ecd3257 | 1811 | break; |
Vkadaba | 5:0728bde67bdb | 1812 | case ADMW1001_ADC_SENSOR_VOLTAGE: |
Vkadaba | 5:0728bde67bdb | 1813 | case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_A_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 1814 | case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_B_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 1815 | case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_1_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1816 | case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_2_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1817 | case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_A_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 1818 | case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_B_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 1819 | case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_1_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1820 | case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_2_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1821 | if (! ADMW1001_CHANNEL_IS_ADC_VOLTAGE(eChannelId)) |
ADIJake | 0:85855ecd3257 | 1822 | { |
Vkadaba | 5:0728bde67bdb | 1823 | ADMW_LOG_ERROR( |
ADIJake | 0:85855ecd3257 | 1824 | "Invalid ADC sensor type %d specified for channel %d", |
ADIJake | 0:85855ecd3257 | 1825 | sensorType, eChannelId); |
Vkadaba | 5:0728bde67bdb | 1826 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1827 | } |
ADIJake | 0:85855ecd3257 | 1828 | break; |
Vkadaba | 5:0728bde67bdb | 1829 | case ADMW1001_ADC_SENSOR_CURRENT: |
Vkadaba | 5:0728bde67bdb | 1830 | case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_A_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 1831 | case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_1_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1832 | case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_2_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 1833 | case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_A_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 1834 | case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_1_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1835 | case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_2_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 1836 | if (! ADMW1001_CHANNEL_IS_ADC_CURRENT(eChannelId)) |
ADIJake | 0:85855ecd3257 | 1837 | { |
Vkadaba | 5:0728bde67bdb | 1838 | ADMW_LOG_ERROR( |
ADIJake | 0:85855ecd3257 | 1839 | "Invalid ADC sensor type %d specified for channel %d", |
ADIJake | 0:85855ecd3257 | 1840 | sensorType, eChannelId); |
Vkadaba | 5:0728bde67bdb | 1841 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1842 | } |
ADIJake | 0:85855ecd3257 | 1843 | break; |
ADIJake | 0:85855ecd3257 | 1844 | default: |
Vkadaba | 5:0728bde67bdb | 1845 | ADMW_LOG_ERROR("Invalid/unsupported ADC sensor type %d specified", |
ADIJake | 0:85855ecd3257 | 1846 | sensorType); |
Vkadaba | 5:0728bde67bdb | 1847 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1848 | } |
ADIJake | 0:85855ecd3257 | 1849 | |
ADIJake | 0:85855ecd3257 | 1850 | sensorTypeReg.Sensor_Type = sensorType; |
ADIJake | 0:85855ecd3257 | 1851 | |
ADIJake | 0:85855ecd3257 | 1852 | WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 1853 | |
Vkadaba | 5:0728bde67bdb | 1854 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 1855 | } |
ADIJake | 0:85855ecd3257 | 1856 | |
Vkadaba | 5:0728bde67bdb | 1857 | static ADMW_RESULT admw_SetChannelAdcSensorDetails( |
Vkadaba | 5:0728bde67bdb | 1858 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 1859 | ADMW1001_CHANNEL_ID eChannelId, |
Vkadaba | 5:0728bde67bdb | 1860 | ADMW1001_CHANNEL_CONFIG *pChannelConfig) |
ADIJake | 0:85855ecd3257 | 1861 | /* |
ADIJake | 0:85855ecd3257 | 1862 | * TODO - it would be nice if the general- vs. ADC-specific sensor details could be split into separate registers |
ADIJake | 0:85855ecd3257 | 1863 | * General details: |
ADIJake | 0:85855ecd3257 | 1864 | * - Measurement_Units |
ADIJake | 0:85855ecd3257 | 1865 | * - Compensation_Channel |
ADIJake | 0:85855ecd3257 | 1866 | * - CJC_Publish (if "CJC" was removed from the name) |
ADIJake | 0:85855ecd3257 | 1867 | * ADC-specific details: |
ADIJake | 0:85855ecd3257 | 1868 | * - PGA_Gain |
ADIJake | 0:85855ecd3257 | 1869 | * - Reference_Select |
ADIJake | 0:85855ecd3257 | 1870 | * - Reference_Buffer_Disable |
ADIJake | 0:85855ecd3257 | 1871 | * - Vbias |
ADIJake | 0:85855ecd3257 | 1872 | */ |
ADIJake | 0:85855ecd3257 | 1873 | { |
Vkadaba | 5:0728bde67bdb | 1874 | ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig = &pChannelConfig->adcChannelConfig; |
Vkadaba | 5:0728bde67bdb | 1875 | ADMW1001_ADC_REFERENCE_CONFIG *pRefConfig = &pAdcChannelConfig->reference; |
Vkadaba | 5:0728bde67bdb | 1876 | CORE_Sensor_Details_t sensorDetailsReg; |
ADIJake | 0:85855ecd3257 | 1877 | |
ADIJake | 0:85855ecd3257 | 1878 | sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn); |
ADIJake | 0:85855ecd3257 | 1879 | |
ADIJake | 0:85855ecd3257 | 1880 | switch(pChannelConfig->measurementUnit) |
ADIJake | 0:85855ecd3257 | 1881 | { |
Vkadaba | 5:0728bde67bdb | 1882 | case ADMW1001_MEASUREMENT_UNIT_FAHRENHEIT: |
Vkadaba | 5:0728bde67bdb | 1883 | sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGF; |
ADIJake | 0:85855ecd3257 | 1884 | break; |
Vkadaba | 5:0728bde67bdb | 1885 | case ADMW1001_MEASUREMENT_UNIT_CELSIUS: |
Vkadaba | 5:0728bde67bdb | 1886 | sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGC; |
ADIJake | 0:85855ecd3257 | 1887 | break; |
Vkadaba | 5:0728bde67bdb | 1888 | case ADMW1001_MEASUREMENT_UNIT_UNSPECIFIED: |
Vkadaba | 5:0728bde67bdb | 1889 | sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_UNSPECIFIED; |
ADIJake | 0:85855ecd3257 | 1890 | break; |
ADIJake | 0:85855ecd3257 | 1891 | default: |
Vkadaba | 5:0728bde67bdb | 1892 | ADMW_LOG_ERROR("Invalid measurement unit %d specified", |
ADIJake | 0:85855ecd3257 | 1893 | pChannelConfig->measurementUnit); |
Vkadaba | 5:0728bde67bdb | 1894 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1895 | } |
ADIJake | 0:85855ecd3257 | 1896 | |
Vkadaba | 5:0728bde67bdb | 1897 | if (pChannelConfig->compensationChannel == ADMW1001_CHANNEL_ID_NONE) |
ADIJake | 0:85855ecd3257 | 1898 | { |
ADIJake | 0:85855ecd3257 | 1899 | sensorDetailsReg.Compensation_Disable = 1; |
ADIJake | 0:85855ecd3257 | 1900 | sensorDetailsReg.Compensation_Channel = 0; |
ADIJake | 0:85855ecd3257 | 1901 | } |
ADIJake | 0:85855ecd3257 | 1902 | else |
ADIJake | 0:85855ecd3257 | 1903 | { |
ADIJake | 0:85855ecd3257 | 1904 | sensorDetailsReg.Compensation_Disable = 0; |
ADIJake | 0:85855ecd3257 | 1905 | sensorDetailsReg.Compensation_Channel = pChannelConfig->compensationChannel; |
ADIJake | 0:85855ecd3257 | 1906 | } |
ADIJake | 0:85855ecd3257 | 1907 | |
ADIJake | 0:85855ecd3257 | 1908 | switch(pRefConfig->type) |
ADIJake | 0:85855ecd3257 | 1909 | { |
Vkadaba | 5:0728bde67bdb | 1910 | case ADMW1001_ADC_REFERENCE_RESISTOR_INTERNAL_1: |
Vkadaba | 5:0728bde67bdb | 1911 | sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_RINT1; |
ADIJake | 0:85855ecd3257 | 1912 | break; |
Vkadaba | 5:0728bde67bdb | 1913 | case ADMW1001_ADC_REFERENCE_RESISTOR_INTERNAL_2: |
Vkadaba | 5:0728bde67bdb | 1914 | sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_RINT2; |
ADIJake | 0:85855ecd3257 | 1915 | break; |
Vkadaba | 5:0728bde67bdb | 1916 | case ADMW1001_ADC_REFERENCE_VOLTAGE_INTERNAL: |
Vkadaba | 5:0728bde67bdb | 1917 | sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_INT; |
ADIJake | 0:85855ecd3257 | 1918 | break; |
Vkadaba | 5:0728bde67bdb | 1919 | case ADMW1001_ADC_REFERENCE_VOLTAGE_AVDD: |
Vkadaba | 5:0728bde67bdb | 1920 | sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_AVDD; |
ADIJake | 0:85855ecd3257 | 1921 | break; |
Vkadaba | 5:0728bde67bdb | 1922 | case ADMW1001_ADC_REFERENCE_RESISTOR_EXTERNAL_1: |
Vkadaba | 5:0728bde67bdb | 1923 | sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_REXT1; |
ADIJake | 0:85855ecd3257 | 1924 | break; |
Vkadaba | 5:0728bde67bdb | 1925 | case ADMW1001_ADC_REFERENCE_RESISTOR_EXTERNAL_2: |
Vkadaba | 5:0728bde67bdb | 1926 | sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_REXT2; |
ADIJake | 0:85855ecd3257 | 1927 | break; |
Vkadaba | 5:0728bde67bdb | 1928 | case ADMW1001_ADC_REFERENCE_VOLTAGE_EXTERNAL_1: |
Vkadaba | 5:0728bde67bdb | 1929 | sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_VEXT1; |
ADIJake | 0:85855ecd3257 | 1930 | break; |
Vkadaba | 5:0728bde67bdb | 1931 | case ADMW1001_ADC_REFERENCE_VOLTAGE_EXTERNAL_2: |
Vkadaba | 5:0728bde67bdb | 1932 | sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_VEXT2; |
ADIJake | 0:85855ecd3257 | 1933 | break; |
Vkadaba | 5:0728bde67bdb | 1934 | case ADMW1001_ADC_REFERENCE_BRIDGE_EXCITATION: |
Vkadaba | 5:0728bde67bdb | 1935 | sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_EXC; |
ADIJake | 0:85855ecd3257 | 1936 | break; |
ADIJake | 0:85855ecd3257 | 1937 | default: |
Vkadaba | 5:0728bde67bdb | 1938 | ADMW_LOG_ERROR("Invalid ADC reference type %d specified", |
ADIJake | 0:85855ecd3257 | 1939 | pRefConfig->type); |
Vkadaba | 5:0728bde67bdb | 1940 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1941 | } |
ADIJake | 0:85855ecd3257 | 1942 | |
ADIJake | 0:85855ecd3257 | 1943 | switch(pAdcChannelConfig->gain) |
ADIJake | 0:85855ecd3257 | 1944 | { |
Vkadaba | 5:0728bde67bdb | 1945 | case ADMW1001_ADC_GAIN_1X: |
Vkadaba | 5:0728bde67bdb | 1946 | sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_1; |
ADIJake | 0:85855ecd3257 | 1947 | break; |
Vkadaba | 5:0728bde67bdb | 1948 | case ADMW1001_ADC_GAIN_2X: |
Vkadaba | 5:0728bde67bdb | 1949 | sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_2; |
ADIJake | 0:85855ecd3257 | 1950 | break; |
Vkadaba | 5:0728bde67bdb | 1951 | case ADMW1001_ADC_GAIN_4X: |
Vkadaba | 5:0728bde67bdb | 1952 | sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_4; |
ADIJake | 0:85855ecd3257 | 1953 | break; |
Vkadaba | 5:0728bde67bdb | 1954 | case ADMW1001_ADC_GAIN_8X: |
Vkadaba | 5:0728bde67bdb | 1955 | sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_8; |
ADIJake | 0:85855ecd3257 | 1956 | break; |
Vkadaba | 5:0728bde67bdb | 1957 | case ADMW1001_ADC_GAIN_16X: |
Vkadaba | 5:0728bde67bdb | 1958 | sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_16; |
ADIJake | 0:85855ecd3257 | 1959 | break; |
Vkadaba | 5:0728bde67bdb | 1960 | case ADMW1001_ADC_GAIN_32X: |
Vkadaba | 5:0728bde67bdb | 1961 | sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_32; |
ADIJake | 0:85855ecd3257 | 1962 | break; |
Vkadaba | 5:0728bde67bdb | 1963 | case ADMW1001_ADC_GAIN_64X: |
Vkadaba | 5:0728bde67bdb | 1964 | sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_64; |
ADIJake | 0:85855ecd3257 | 1965 | break; |
Vkadaba | 5:0728bde67bdb | 1966 | case ADMW1001_ADC_GAIN_128X: |
Vkadaba | 5:0728bde67bdb | 1967 | sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_128; |
ADIJake | 0:85855ecd3257 | 1968 | break; |
ADIJake | 0:85855ecd3257 | 1969 | default: |
Vkadaba | 5:0728bde67bdb | 1970 | ADMW_LOG_ERROR("Invalid ADC gain %d specified", |
ADIJake | 0:85855ecd3257 | 1971 | pAdcChannelConfig->gain); |
Vkadaba | 5:0728bde67bdb | 1972 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 1973 | } |
ADIJake | 0:85855ecd3257 | 1974 | |
ADIJake | 0:85855ecd3257 | 1975 | if (pAdcChannelConfig->enableVbias) |
ADIJake | 0:85855ecd3257 | 1976 | sensorDetailsReg.Vbias = 1; |
ADIJake | 0:85855ecd3257 | 1977 | else |
ADIJake | 0:85855ecd3257 | 1978 | sensorDetailsReg.Vbias = 0; |
ADIJake | 0:85855ecd3257 | 1979 | |
ADIJake | 0:85855ecd3257 | 1980 | if (pAdcChannelConfig->reference.disableBuffer) |
ADIJake | 0:85855ecd3257 | 1981 | sensorDetailsReg.Reference_Buffer_Disable = 1; |
ADIJake | 0:85855ecd3257 | 1982 | else |
ADIJake | 0:85855ecd3257 | 1983 | sensorDetailsReg.Reference_Buffer_Disable = 0; |
ADIJake | 0:85855ecd3257 | 1984 | |
ADIJake | 0:85855ecd3257 | 1985 | if (pChannelConfig->disablePublishing) |
ADIJake | 0:85855ecd3257 | 1986 | sensorDetailsReg.Do_Not_Publish = 1; |
ADIJake | 0:85855ecd3257 | 1987 | else |
ADIJake | 0:85855ecd3257 | 1988 | sensorDetailsReg.Do_Not_Publish = 0; |
ADIJake | 0:85855ecd3257 | 1989 | |
ADIJake | 0:85855ecd3257 | 1990 | if (pChannelConfig->enableUnityLut) |
ADIJake | 0:85855ecd3257 | 1991 | sensorDetailsReg.Unity_LUT_Select = 1; |
ADIJake | 0:85855ecd3257 | 1992 | else |
ADIJake | 0:85855ecd3257 | 1993 | sensorDetailsReg.Unity_LUT_Select = 0; |
ADIJake | 0:85855ecd3257 | 1994 | |
ADIJake | 0:85855ecd3257 | 1995 | WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 1996 | |
Vkadaba | 5:0728bde67bdb | 1997 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 1998 | } |
ADIJake | 0:85855ecd3257 | 1999 | |
Vkadaba | 5:0728bde67bdb | 2000 | static ADMW_RESULT admw_SetChannelAdcFilter( |
Vkadaba | 5:0728bde67bdb | 2001 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 2002 | ADMW1001_CHANNEL_ID eChannelId, |
Vkadaba | 5:0728bde67bdb | 2003 | ADMW1001_ADC_FILTER_CONFIG *pFilterConfig) |
ADIJake | 0:85855ecd3257 | 2004 | { |
Vkadaba | 5:0728bde67bdb | 2005 | CORE_Filter_Select_t filterSelectReg; |
ADIJake | 0:85855ecd3257 | 2006 | |
ADIJake | 0:85855ecd3257 | 2007 | filterSelectReg.VALUE32 = REG_RESET_VAL(CORE_FILTER_SELECTn); |
ADIJake | 0:85855ecd3257 | 2008 | |
Vkadaba | 5:0728bde67bdb | 2009 | if (pFilterConfig->type == ADMW1001_ADC_FILTER_SINC4) |
ADIJake | 0:85855ecd3257 | 2010 | { |
Vkadaba | 5:0728bde67bdb | 2011 | filterSelectReg.ADC_Filter_Type = CORE_FILTER_SELECT_FILTER_SINC4; |
ADIJake | 0:85855ecd3257 | 2012 | filterSelectReg.ADC_FS = pFilterConfig->fs; |
ADIJake | 0:85855ecd3257 | 2013 | } |
Vkadaba | 5:0728bde67bdb | 2014 | else if (pFilterConfig->type == ADMW1001_ADC_FILTER_FIR_20SPS) |
ADIJake | 0:85855ecd3257 | 2015 | { |
Vkadaba | 5:0728bde67bdb | 2016 | filterSelectReg.ADC_Filter_Type = CORE_FILTER_SELECT_FILTER_FIR_20SPS; |
ADIJake | 0:85855ecd3257 | 2017 | } |
Vkadaba | 5:0728bde67bdb | 2018 | else if (pFilterConfig->type == ADMW1001_ADC_FILTER_FIR_25SPS) |
ADIJake | 0:85855ecd3257 | 2019 | { |
Vkadaba | 5:0728bde67bdb | 2020 | filterSelectReg.ADC_Filter_Type = CORE_FILTER_SELECT_FILTER_FIR_25SPS; |
ADIJake | 0:85855ecd3257 | 2021 | } |
ADIJake | 0:85855ecd3257 | 2022 | else |
ADIJake | 0:85855ecd3257 | 2023 | { |
Vkadaba | 5:0728bde67bdb | 2024 | ADMW_LOG_ERROR("Invalid ADC filter type %d specified", |
ADIJake | 0:85855ecd3257 | 2025 | pFilterConfig->type); |
Vkadaba | 5:0728bde67bdb | 2026 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 2027 | } |
ADIJake | 0:85855ecd3257 | 2028 | |
ADIJake | 0:85855ecd3257 | 2029 | WRITE_REG_U32(hDevice, filterSelectReg.VALUE32, CORE_FILTER_SELECTn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2030 | |
Vkadaba | 5:0728bde67bdb | 2031 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 2032 | } |
ADIJake | 0:85855ecd3257 | 2033 | |
Vkadaba | 5:0728bde67bdb | 2034 | static ADMW_RESULT admw_SetChannelAdcCurrentConfig( |
Vkadaba | 5:0728bde67bdb | 2035 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 2036 | ADMW1001_CHANNEL_ID eChannelId, |
Vkadaba | 5:0728bde67bdb | 2037 | ADMW1001_ADC_EXC_CURRENT_CONFIG *pCurrentConfig) |
ADIJake | 0:85855ecd3257 | 2038 | { |
Vkadaba | 5:0728bde67bdb | 2039 | CORE_Channel_Excitation_t channelExcitationReg; |
ADIJake | 0:85855ecd3257 | 2040 | |
ADIJake | 0:85855ecd3257 | 2041 | channelExcitationReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_EXCITATIONn); |
ADIJake | 0:85855ecd3257 | 2042 | |
Vkadaba | 5:0728bde67bdb | 2043 | if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_NONE) |
ADIJake | 0:85855ecd3257 | 2044 | { |
Vkadaba | 5:0728bde67bdb | 2045 | channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_OFF; |
ADIJake | 0:85855ecd3257 | 2046 | } |
ADIJake | 0:85855ecd3257 | 2047 | else |
ADIJake | 0:85855ecd3257 | 2048 | { |
Vkadaba | 5:0728bde67bdb | 2049 | if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_50uA) |
Vkadaba | 5:0728bde67bdb | 2050 | channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_50UA; |
Vkadaba | 5:0728bde67bdb | 2051 | else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_100uA) |
Vkadaba | 5:0728bde67bdb | 2052 | channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_100UA; |
Vkadaba | 5:0728bde67bdb | 2053 | else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_250uA) |
Vkadaba | 5:0728bde67bdb | 2054 | channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_250UA; |
Vkadaba | 5:0728bde67bdb | 2055 | else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_500uA) |
Vkadaba | 5:0728bde67bdb | 2056 | channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_500UA; |
Vkadaba | 5:0728bde67bdb | 2057 | else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_750uA) |
Vkadaba | 5:0728bde67bdb | 2058 | channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_750UA; |
Vkadaba | 5:0728bde67bdb | 2059 | else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_1000uA) |
Vkadaba | 5:0728bde67bdb | 2060 | channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_1000UA; |
ADIJake | 0:85855ecd3257 | 2061 | else |
ADIJake | 0:85855ecd3257 | 2062 | { |
Vkadaba | 5:0728bde67bdb | 2063 | ADMW_LOG_ERROR("Invalid ADC excitation current %d specified", |
ADIJake | 0:85855ecd3257 | 2064 | pCurrentConfig->outputLevel); |
Vkadaba | 5:0728bde67bdb | 2065 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 2066 | } |
ADIJake | 0:85855ecd3257 | 2067 | } |
ADIJake | 0:85855ecd3257 | 2068 | |
Vkadaba | 5:0728bde67bdb | 2069 | if (pCurrentConfig->diodeRatio == ADMW1001_ADC_EXC_CURRENT_IOUT_DIODE_DEFAULT) |
ADIJake | 0:85855ecd3257 | 2070 | { |
ADIJake | 0:85855ecd3257 | 2071 | channelExcitationReg.IOUT_Diode_Ratio = 0; |
ADIJake | 0:85855ecd3257 | 2072 | } |
ADIJake | 0:85855ecd3257 | 2073 | else |
ADIJake | 0:85855ecd3257 | 2074 | { |
ADIJake | 0:85855ecd3257 | 2075 | channelExcitationReg.IOUT_Diode_Ratio = 1; |
ADIJake | 0:85855ecd3257 | 2076 | } |
ADIJake | 0:85855ecd3257 | 2077 | |
ADIJake | 0:85855ecd3257 | 2078 | WRITE_REG_U8(hDevice, channelExcitationReg.VALUE8, CORE_CHANNEL_EXCITATIONn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2079 | |
Vkadaba | 5:0728bde67bdb | 2080 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 2081 | } |
ADIJake | 0:85855ecd3257 | 2082 | |
Vkadaba | 5:0728bde67bdb | 2083 | ADMW_RESULT admw_SetAdcChannelConfig( |
Vkadaba | 5:0728bde67bdb | 2084 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 2085 | ADMW1001_CHANNEL_ID eChannelId, |
Vkadaba | 5:0728bde67bdb | 2086 | ADMW1001_CHANNEL_CONFIG *pChannelConfig) |
ADIJake | 0:85855ecd3257 | 2087 | { |
Vkadaba | 5:0728bde67bdb | 2088 | ADMW_RESULT eRet; |
Vkadaba | 5:0728bde67bdb | 2089 | ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig = |
ADIJake | 0:85855ecd3257 | 2090 | &pChannelConfig->adcChannelConfig; |
ADIJake | 0:85855ecd3257 | 2091 | |
Vkadaba | 5:0728bde67bdb | 2092 | eRet = admw_SetChannelAdcSensorType(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2093 | pAdcChannelConfig->sensor); |
Vkadaba | 5:0728bde67bdb | 2094 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2095 | { |
Vkadaba | 5:0728bde67bdb | 2096 | ADMW_LOG_ERROR("Failed to set ADC sensor type for channel %d", |
ADIJake | 0:85855ecd3257 | 2097 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2098 | return eRet; |
ADIJake | 0:85855ecd3257 | 2099 | } |
ADIJake | 0:85855ecd3257 | 2100 | |
Vkadaba | 5:0728bde67bdb | 2101 | eRet = admw_SetChannelAdcSensorDetails(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2102 | pChannelConfig); |
Vkadaba | 5:0728bde67bdb | 2103 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2104 | { |
Vkadaba | 5:0728bde67bdb | 2105 | ADMW_LOG_ERROR("Failed to set ADC sensor details for channel %d", |
ADIJake | 0:85855ecd3257 | 2106 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2107 | return eRet; |
ADIJake | 0:85855ecd3257 | 2108 | } |
ADIJake | 0:85855ecd3257 | 2109 | |
Vkadaba | 5:0728bde67bdb | 2110 | eRet = admw_SetChannelAdcFilter(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2111 | &pAdcChannelConfig->filter); |
Vkadaba | 5:0728bde67bdb | 2112 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2113 | { |
Vkadaba | 5:0728bde67bdb | 2114 | ADMW_LOG_ERROR("Failed to set ADC filter for channel %d", |
ADIJake | 0:85855ecd3257 | 2115 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2116 | return eRet; |
ADIJake | 0:85855ecd3257 | 2117 | } |
ADIJake | 0:85855ecd3257 | 2118 | |
Vkadaba | 5:0728bde67bdb | 2119 | eRet = admw_SetChannelAdcCurrentConfig(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2120 | &pAdcChannelConfig->current); |
Vkadaba | 5:0728bde67bdb | 2121 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2122 | { |
Vkadaba | 5:0728bde67bdb | 2123 | ADMW_LOG_ERROR("Failed to set ADC current for channel %d", |
ADIJake | 0:85855ecd3257 | 2124 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2125 | return eRet; |
ADIJake | 0:85855ecd3257 | 2126 | } |
ADIJake | 0:85855ecd3257 | 2127 | |
Vkadaba | 5:0728bde67bdb | 2128 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 2129 | } |
ADIJake | 0:85855ecd3257 | 2130 | |
Vkadaba | 5:0728bde67bdb | 2131 | static ADMW_RESULT admw_SetChannelDigitalSensorDetails( |
Vkadaba | 5:0728bde67bdb | 2132 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 2133 | ADMW1001_CHANNEL_ID eChannelId, |
Vkadaba | 5:0728bde67bdb | 2134 | ADMW1001_CHANNEL_CONFIG *pChannelConfig) |
ADIJake | 0:85855ecd3257 | 2135 | { |
Vkadaba | 5:0728bde67bdb | 2136 | CORE_Sensor_Details_t sensorDetailsReg; |
ADIJake | 0:85855ecd3257 | 2137 | |
ADIJake | 0:85855ecd3257 | 2138 | sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn); |
ADIJake | 0:85855ecd3257 | 2139 | |
Vkadaba | 5:0728bde67bdb | 2140 | if (pChannelConfig->compensationChannel == ADMW1001_CHANNEL_ID_NONE) |
ADIJake | 0:85855ecd3257 | 2141 | { |
ADIJake | 0:85855ecd3257 | 2142 | sensorDetailsReg.Compensation_Disable = 1; |
ADIJake | 0:85855ecd3257 | 2143 | sensorDetailsReg.Compensation_Channel = 0; |
ADIJake | 0:85855ecd3257 | 2144 | } |
ADIJake | 0:85855ecd3257 | 2145 | else |
ADIJake | 0:85855ecd3257 | 2146 | { |
Vkadaba | 5:0728bde67bdb | 2147 | ADMW_LOG_ERROR("Invalid compensation channel specified for digital sensor"); |
Vkadaba | 5:0728bde67bdb | 2148 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 2149 | } |
ADIJake | 0:85855ecd3257 | 2150 | |
Vkadaba | 5:0728bde67bdb | 2151 | if (pChannelConfig->measurementUnit == ADMW1001_MEASUREMENT_UNIT_UNSPECIFIED) |
ADIJake | 0:85855ecd3257 | 2152 | { |
Vkadaba | 5:0728bde67bdb | 2153 | sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_UNSPECIFIED; |
ADIJake | 0:85855ecd3257 | 2154 | } |
ADIJake | 0:85855ecd3257 | 2155 | else |
ADIJake | 0:85855ecd3257 | 2156 | { |
Vkadaba | 5:0728bde67bdb | 2157 | ADMW_LOG_ERROR("Invalid measurement unit specified for digital channel"); |
Vkadaba | 5:0728bde67bdb | 2158 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 2159 | } |
ADIJake | 0:85855ecd3257 | 2160 | |
ADIJake | 0:85855ecd3257 | 2161 | if (pChannelConfig->disablePublishing) |
ADIJake | 0:85855ecd3257 | 2162 | sensorDetailsReg.Do_Not_Publish = 1; |
ADIJake | 0:85855ecd3257 | 2163 | else |
ADIJake | 0:85855ecd3257 | 2164 | sensorDetailsReg.Do_Not_Publish = 0; |
ADIJake | 0:85855ecd3257 | 2165 | |
ADIJake | 0:85855ecd3257 | 2166 | if (pChannelConfig->enableUnityLut) |
ADIJake | 0:85855ecd3257 | 2167 | sensorDetailsReg.Unity_LUT_Select = 1; |
ADIJake | 0:85855ecd3257 | 2168 | else |
ADIJake | 0:85855ecd3257 | 2169 | sensorDetailsReg.Unity_LUT_Select = 0; |
ADIJake | 0:85855ecd3257 | 2170 | |
ADIJake | 0:85855ecd3257 | 2171 | sensorDetailsReg.Vbias = 0; |
ADIJake | 0:85855ecd3257 | 2172 | sensorDetailsReg.Reference_Buffer_Disable = 1; |
ADIJake | 0:85855ecd3257 | 2173 | |
ADIJake | 0:85855ecd3257 | 2174 | WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2175 | |
Vkadaba | 5:0728bde67bdb | 2176 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 2177 | } |
ADIJake | 0:85855ecd3257 | 2178 | |
Vkadaba | 5:0728bde67bdb | 2179 | static ADMW_RESULT admw_SetDigitalSensorCommands( |
Vkadaba | 5:0728bde67bdb | 2180 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 2181 | ADMW1001_CHANNEL_ID eChannelId, |
Vkadaba | 5:0728bde67bdb | 2182 | ADMW1001_DIGITAL_SENSOR_COMMAND *pConfigCommand, |
Vkadaba | 5:0728bde67bdb | 2183 | ADMW1001_DIGITAL_SENSOR_COMMAND *pDataRequestCommand) |
ADIJake | 0:85855ecd3257 | 2184 | { |
Vkadaba | 5:0728bde67bdb | 2185 | CORE_Digital_Sensor_Num_Cmds_t numCmdsReg; |
ADIJake | 0:85855ecd3257 | 2186 | |
ADIJake | 0:85855ecd3257 | 2187 | numCmdsReg.VALUE8 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_NUM_CMDSn); |
ADIJake | 0:85855ecd3257 | 2188 | |
ADIJake | 0:85855ecd3257 | 2189 | CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_NUM_CMDS_DIGITAL_SENSOR_NUM_CFG_CMDS, |
ADIJake | 0:85855ecd3257 | 2190 | pConfigCommand->commandLength); |
ADIJake | 0:85855ecd3257 | 2191 | CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_NUM_CMDS_DIGITAL_SENSOR_NUM_READ_CMDS, |
ADIJake | 0:85855ecd3257 | 2192 | pDataRequestCommand->commandLength); |
ADIJake | 0:85855ecd3257 | 2193 | |
ADIJake | 0:85855ecd3257 | 2194 | numCmdsReg.Digital_Sensor_Num_Cfg_Cmds = pConfigCommand->commandLength; |
ADIJake | 0:85855ecd3257 | 2195 | numCmdsReg.Digital_Sensor_Num_Read_Cmds = pDataRequestCommand->commandLength; |
ADIJake | 0:85855ecd3257 | 2196 | |
ADIJake | 0:85855ecd3257 | 2197 | WRITE_REG_U8(hDevice, numCmdsReg.VALUE8, |
ADIJake | 0:85855ecd3257 | 2198 | CORE_DIGITAL_SENSOR_NUM_CMDSn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2199 | |
ADIJake | 0:85855ecd3257 | 2200 | /* |
ADIJake | 0:85855ecd3257 | 2201 | * NOTE - the fall-through cases in the switch statement below are |
ADIJake | 0:85855ecd3257 | 2202 | * intentional, so temporarily disable related compiler warnings which may |
ADIJake | 0:85855ecd3257 | 2203 | * be produced here by GCC |
ADIJake | 0:85855ecd3257 | 2204 | */ |
ADIJake | 0:85855ecd3257 | 2205 | #ifndef __CC_ARM |
ADIJake | 0:85855ecd3257 | 2206 | #pragma GCC diagnostic push |
ADIJake | 0:85855ecd3257 | 2207 | #pragma GCC diagnostic ignored "-Wimplicit-fallthrough" |
ADIJake | 0:85855ecd3257 | 2208 | #endif |
ADIJake | 0:85855ecd3257 | 2209 | |
ADIJake | 0:85855ecd3257 | 2210 | switch (pConfigCommand->commandLength) |
ADIJake | 0:85855ecd3257 | 2211 | { |
ADIJake | 0:85855ecd3257 | 2212 | case 7: |
ADIJake | 0:85855ecd3257 | 2213 | WRITE_REG_U8(hDevice, pConfigCommand->command[6], |
ADIJake | 0:85855ecd3257 | 2214 | CORE_DIGITAL_SENSOR_COMMAND7n(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2215 | case 6: |
ADIJake | 0:85855ecd3257 | 2216 | WRITE_REG_U8(hDevice, pConfigCommand->command[5], |
ADIJake | 0:85855ecd3257 | 2217 | CORE_DIGITAL_SENSOR_COMMAND6n(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2218 | case 5: |
ADIJake | 0:85855ecd3257 | 2219 | WRITE_REG_U8(hDevice, pConfigCommand->command[4], |
ADIJake | 0:85855ecd3257 | 2220 | CORE_DIGITAL_SENSOR_COMMAND5n(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2221 | case 4: |
ADIJake | 0:85855ecd3257 | 2222 | WRITE_REG_U8(hDevice, pConfigCommand->command[3], |
ADIJake | 0:85855ecd3257 | 2223 | CORE_DIGITAL_SENSOR_COMMAND4n(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2224 | case 3: |
ADIJake | 0:85855ecd3257 | 2225 | WRITE_REG_U8(hDevice, pConfigCommand->command[2], |
ADIJake | 0:85855ecd3257 | 2226 | CORE_DIGITAL_SENSOR_COMMAND3n(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2227 | case 2: |
ADIJake | 0:85855ecd3257 | 2228 | WRITE_REG_U8(hDevice, pConfigCommand->command[1], |
ADIJake | 0:85855ecd3257 | 2229 | CORE_DIGITAL_SENSOR_COMMAND2n(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2230 | case 1: |
ADIJake | 0:85855ecd3257 | 2231 | WRITE_REG_U8(hDevice, pConfigCommand->command[0], |
ADIJake | 0:85855ecd3257 | 2232 | CORE_DIGITAL_SENSOR_COMMAND1n(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2233 | case 0: |
ADIJake | 0:85855ecd3257 | 2234 | default: |
ADIJake | 0:85855ecd3257 | 2235 | break; |
ADIJake | 0:85855ecd3257 | 2236 | }; |
ADIJake | 0:85855ecd3257 | 2237 | |
ADIJake | 0:85855ecd3257 | 2238 | switch (pDataRequestCommand->commandLength) |
ADIJake | 0:85855ecd3257 | 2239 | { |
ADIJake | 0:85855ecd3257 | 2240 | case 7: |
ADIJake | 0:85855ecd3257 | 2241 | WRITE_REG_U8(hDevice, pDataRequestCommand->command[6], |
ADIJake | 0:85855ecd3257 | 2242 | CORE_DIGITAL_SENSOR_READ_CMD7n(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2243 | case 6: |
ADIJake | 0:85855ecd3257 | 2244 | WRITE_REG_U8(hDevice, pDataRequestCommand->command[5], |
ADIJake | 0:85855ecd3257 | 2245 | CORE_DIGITAL_SENSOR_READ_CMD6n(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2246 | case 5: |
ADIJake | 0:85855ecd3257 | 2247 | WRITE_REG_U8(hDevice, pDataRequestCommand->command[4], |
ADIJake | 0:85855ecd3257 | 2248 | CORE_DIGITAL_SENSOR_READ_CMD5n(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2249 | case 4: |
ADIJake | 0:85855ecd3257 | 2250 | WRITE_REG_U8(hDevice, pDataRequestCommand->command[3], |
ADIJake | 0:85855ecd3257 | 2251 | CORE_DIGITAL_SENSOR_READ_CMD4n(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2252 | case 3: |
ADIJake | 0:85855ecd3257 | 2253 | WRITE_REG_U8(hDevice, pDataRequestCommand->command[2], |
ADIJake | 0:85855ecd3257 | 2254 | CORE_DIGITAL_SENSOR_READ_CMD3n(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2255 | case 2: |
ADIJake | 0:85855ecd3257 | 2256 | WRITE_REG_U8(hDevice, pDataRequestCommand->command[1], |
ADIJake | 0:85855ecd3257 | 2257 | CORE_DIGITAL_SENSOR_READ_CMD2n(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2258 | case 1: |
ADIJake | 0:85855ecd3257 | 2259 | WRITE_REG_U8(hDevice, pDataRequestCommand->command[0], |
ADIJake | 0:85855ecd3257 | 2260 | CORE_DIGITAL_SENSOR_READ_CMD1n(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2261 | case 0: |
ADIJake | 0:85855ecd3257 | 2262 | default: |
ADIJake | 0:85855ecd3257 | 2263 | break; |
ADIJake | 0:85855ecd3257 | 2264 | }; |
ADIJake | 0:85855ecd3257 | 2265 | |
ADIJake | 0:85855ecd3257 | 2266 | /* Re-enable the implicit-fallthrough warning */ |
ADIJake | 0:85855ecd3257 | 2267 | #ifndef __CC_ARM |
ADIJake | 0:85855ecd3257 | 2268 | #pragma GCC diagnostic pop |
ADIJake | 0:85855ecd3257 | 2269 | #endif |
ADIJake | 0:85855ecd3257 | 2270 | |
Vkadaba | 5:0728bde67bdb | 2271 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 2272 | } |
ADIJake | 0:85855ecd3257 | 2273 | |
Vkadaba | 5:0728bde67bdb | 2274 | static ADMW_RESULT admw_SetDigitalSensorFormat( |
Vkadaba | 5:0728bde67bdb | 2275 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 2276 | ADMW1001_CHANNEL_ID eChannelId, |
Vkadaba | 5:0728bde67bdb | 2277 | ADMW1001_DIGITAL_SENSOR_DATA_FORMAT *pDataFormat) |
ADIJake | 0:85855ecd3257 | 2278 | { |
Vkadaba | 5:0728bde67bdb | 2279 | CORE_Digital_Sensor_Config_t sensorConfigReg; |
ADIJake | 0:85855ecd3257 | 2280 | |
ADIJake | 0:85855ecd3257 | 2281 | sensorConfigReg.VALUE16 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_CONFIGn); |
ADIJake | 0:85855ecd3257 | 2282 | |
Vkadaba | 5:0728bde67bdb | 2283 | if (pDataFormat->coding != ADMW1001_DIGITAL_SENSOR_DATA_CODING_NONE) |
ADIJake | 0:85855ecd3257 | 2284 | { |
ADIJake | 0:85855ecd3257 | 2285 | if (pDataFormat->frameLength == 0) |
ADIJake | 0:85855ecd3257 | 2286 | { |
Vkadaba | 5:0728bde67bdb | 2287 | ADMW_LOG_ERROR("Invalid frame length specified for digital sensor data format"); |
Vkadaba | 5:0728bde67bdb | 2288 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 2289 | } |
ADIJake | 0:85855ecd3257 | 2290 | if (pDataFormat->numDataBits == 0) |
ADIJake | 0:85855ecd3257 | 2291 | { |
Vkadaba | 5:0728bde67bdb | 2292 | ADMW_LOG_ERROR("Invalid frame length specified for digital sensor data format"); |
Vkadaba | 5:0728bde67bdb | 2293 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 2294 | } |
ADIJake | 0:85855ecd3257 | 2295 | |
ADIJake | 0:85855ecd3257 | 2296 | CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_READ_BYTES, |
ADIJake | 0:85855ecd3257 | 2297 | pDataFormat->frameLength - 1); |
ADIJake | 0:85855ecd3257 | 2298 | CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_DATA_BITS, |
ADIJake | 0:85855ecd3257 | 2299 | pDataFormat->numDataBits - 1); |
ADIJake | 0:85855ecd3257 | 2300 | CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_BIT_OFFSET, |
ADIJake | 0:85855ecd3257 | 2301 | pDataFormat->bitOffset); |
ADIJake | 0:85855ecd3257 | 2302 | |
ADIJake | 0:85855ecd3257 | 2303 | sensorConfigReg.Digital_Sensor_Read_Bytes = pDataFormat->frameLength - 1; |
ADIJake | 0:85855ecd3257 | 2304 | sensorConfigReg.Digital_Sensor_Data_Bits = pDataFormat->numDataBits - 1; |
ADIJake | 0:85855ecd3257 | 2305 | sensorConfigReg.Digital_Sensor_Bit_Offset = pDataFormat->bitOffset; |
ADIJake | 0:85855ecd3257 | 2306 | sensorConfigReg.Digital_Sensor_Left_Aligned = pDataFormat->leftJustified ? 1 : 0; |
ADIJake | 0:85855ecd3257 | 2307 | sensorConfigReg.Digital_Sensor_Little_Endian = pDataFormat->littleEndian ? 1 : 0; |
ADIJake | 0:85855ecd3257 | 2308 | |
ADIJake | 0:85855ecd3257 | 2309 | switch (pDataFormat->coding) |
ADIJake | 0:85855ecd3257 | 2310 | { |
Vkadaba | 5:0728bde67bdb | 2311 | case ADMW1001_DIGITAL_SENSOR_DATA_CODING_UNIPOLAR: |
Vkadaba | 5:0728bde67bdb | 2312 | sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_UNIPOLAR; |
ADIJake | 0:85855ecd3257 | 2313 | break; |
Vkadaba | 5:0728bde67bdb | 2314 | case ADMW1001_DIGITAL_SENSOR_DATA_CODING_TWOS_COMPLEMENT: |
Vkadaba | 5:0728bde67bdb | 2315 | sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_TWOS_COMPL; |
ADIJake | 0:85855ecd3257 | 2316 | break; |
Vkadaba | 5:0728bde67bdb | 2317 | case ADMW1001_DIGITAL_SENSOR_DATA_CODING_OFFSET_BINARY: |
Vkadaba | 5:0728bde67bdb | 2318 | sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_OFFSET_BINARY; |
ADIJake | 0:85855ecd3257 | 2319 | break; |
ADIJake | 0:85855ecd3257 | 2320 | default: |
Vkadaba | 5:0728bde67bdb | 2321 | ADMW_LOG_ERROR("Invalid coding specified for digital sensor data format"); |
Vkadaba | 5:0728bde67bdb | 2322 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 2323 | } |
ADIJake | 0:85855ecd3257 | 2324 | } |
ADIJake | 0:85855ecd3257 | 2325 | else |
ADIJake | 0:85855ecd3257 | 2326 | { |
Vkadaba | 5:0728bde67bdb | 2327 | sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_NONE; |
ADIJake | 0:85855ecd3257 | 2328 | } |
ADIJake | 0:85855ecd3257 | 2329 | |
ADIJake | 0:85855ecd3257 | 2330 | WRITE_REG_U16(hDevice, sensorConfigReg.VALUE16, |
ADIJake | 0:85855ecd3257 | 2331 | CORE_DIGITAL_SENSOR_CONFIGn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2332 | |
ADIJake | 0:85855ecd3257 | 2333 | |
Vkadaba | 5:0728bde67bdb | 2334 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 2335 | } |
ADIJake | 0:85855ecd3257 | 2336 | |
Vkadaba | 5:0728bde67bdb | 2337 | static ADMW_RESULT admw_SetDigitalCalibrationParam( |
Vkadaba | 5:0728bde67bdb | 2338 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 2339 | ADMW1001_CHANNEL_ID eChannelId, |
Vkadaba | 5:0728bde67bdb | 2340 | ADMW1001_DIGITAL_CALIBRATION_COMMAND *pCalibrationParam) |
ADIJake | 0:85855ecd3257 | 2341 | { |
Vkadaba | 5:0728bde67bdb | 2342 | CORE_Calibration_Parameter_t calibrationParamReg; |
ADIJake | 0:85855ecd3257 | 2343 | |
ADIJake | 0:85855ecd3257 | 2344 | calibrationParamReg.VALUE32 = REG_RESET_VAL(CORE_CALIBRATION_PARAMETERn); |
ADIJake | 0:85855ecd3257 | 2345 | |
ADIJake | 0:85855ecd3257 | 2346 | if (pCalibrationParam->enableCalibrationParam == false) |
ADIJake | 0:85855ecd3257 | 2347 | calibrationParamReg.Calibration_Parameter_Enable = 0; |
ADIJake | 0:85855ecd3257 | 2348 | else |
ADIJake | 0:85855ecd3257 | 2349 | calibrationParamReg.Calibration_Parameter_Enable = 1; |
ADIJake | 0:85855ecd3257 | 2350 | |
ADIJake | 0:85855ecd3257 | 2351 | CHECK_REG_FIELD_VAL(CORE_CALIBRATION_PARAMETER_CALIBRATION_PARAMETER, |
ADIJake | 0:85855ecd3257 | 2352 | pCalibrationParam->calibrationParam); |
ADIJake | 0:85855ecd3257 | 2353 | |
ADIJake | 0:85855ecd3257 | 2354 | calibrationParamReg.Calibration_Parameter = pCalibrationParam->calibrationParam; |
ADIJake | 0:85855ecd3257 | 2355 | |
ADIJake | 0:85855ecd3257 | 2356 | WRITE_REG_U32(hDevice, calibrationParamReg.VALUE32, |
ADIJake | 0:85855ecd3257 | 2357 | CORE_CALIBRATION_PARAMETERn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2358 | |
Vkadaba | 5:0728bde67bdb | 2359 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 2360 | } |
ADIJake | 0:85855ecd3257 | 2361 | |
Vkadaba | 5:0728bde67bdb | 2362 | static ADMW_RESULT admw_SetChannelI2cSensorType( |
Vkadaba | 5:0728bde67bdb | 2363 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 2364 | ADMW1001_CHANNEL_ID eChannelId, |
Vkadaba | 5:0728bde67bdb | 2365 | ADMW1001_I2C_SENSOR_TYPE sensorType) |
ADIJake | 0:85855ecd3257 | 2366 | { |
Vkadaba | 5:0728bde67bdb | 2367 | CORE_Sensor_Type_t sensorTypeReg; |
ADIJake | 0:85855ecd3257 | 2368 | |
ADIJake | 0:85855ecd3257 | 2369 | sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn); |
ADIJake | 0:85855ecd3257 | 2370 | |
ADIJake | 0:85855ecd3257 | 2371 | /* Ensure that the sensor type is valid for this channel */ |
ADIJake | 0:85855ecd3257 | 2372 | switch(sensorType) |
ADIJake | 0:85855ecd3257 | 2373 | { |
Vkadaba | 5:0728bde67bdb | 2374 | case ADMW1001_I2C_SENSOR_HUMIDITY_A_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 2375 | case ADMW1001_I2C_SENSOR_HUMIDITY_B_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 2376 | case ADMW1001_I2C_SENSOR_HUMIDITY_A_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 2377 | case ADMW1001_I2C_SENSOR_HUMIDITY_B_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 2378 | case ADMW1001_I2C_SENSOR_HUMIDITY_A_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 2379 | case ADMW1001_I2C_SENSOR_HUMIDITY_B_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 2380 | case ADMW1001_I2C_SENSOR_HUMIDITY_A_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 2381 | case ADMW1001_I2C_SENSOR_HUMIDITY_B_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 2382 | case ADMW1001_I2C_SENSOR_AMBIENTLIGHT_A_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 2383 | case ADMW1001_I2C_SENSOR_AMBIENTLIGHT_A_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 2384 | case ADMW1001_I2C_SENSOR_AMBIENTLIGHT_A_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 2385 | case ADMW1001_I2C_SENSOR_AMBIENTLIGHT_A_ADV_L2: |
ADIJake | 0:85855ecd3257 | 2386 | sensorTypeReg.Sensor_Type = sensorType; |
ADIJake | 0:85855ecd3257 | 2387 | break; |
ADIJake | 0:85855ecd3257 | 2388 | default: |
Vkadaba | 5:0728bde67bdb | 2389 | ADMW_LOG_ERROR("Unsupported I2C sensor type %d specified", sensorType); |
Vkadaba | 5:0728bde67bdb | 2390 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 2391 | } |
ADIJake | 0:85855ecd3257 | 2392 | |
ADIJake | 0:85855ecd3257 | 2393 | WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2394 | |
Vkadaba | 5:0728bde67bdb | 2395 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 2396 | } |
ADIJake | 0:85855ecd3257 | 2397 | |
Vkadaba | 5:0728bde67bdb | 2398 | static ADMW_RESULT admw_SetChannelI2cSensorAddress( |
Vkadaba | 5:0728bde67bdb | 2399 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 2400 | ADMW1001_CHANNEL_ID eChannelId, |
ADIJake | 0:85855ecd3257 | 2401 | uint32_t deviceAddress) |
ADIJake | 0:85855ecd3257 | 2402 | { |
ADIJake | 0:85855ecd3257 | 2403 | CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_ADDRESS_DIGITAL_SENSOR_ADDRESS, deviceAddress); |
ADIJake | 0:85855ecd3257 | 2404 | WRITE_REG_U8(hDevice, deviceAddress, CORE_DIGITAL_SENSOR_ADDRESSn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2405 | |
Vkadaba | 5:0728bde67bdb | 2406 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 2407 | } |
ADIJake | 0:85855ecd3257 | 2408 | |
Vkadaba | 5:0728bde67bdb | 2409 | static ADMW_RESULT admw_SetDigitalChannelComms( |
Vkadaba | 5:0728bde67bdb | 2410 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 2411 | ADMW1001_CHANNEL_ID eChannelId, |
Vkadaba | 5:0728bde67bdb | 2412 | ADMW1001_DIGITAL_SENSOR_COMMS *pDigitalComms) |
ADIJake | 0:85855ecd3257 | 2413 | { |
Vkadaba | 5:0728bde67bdb | 2414 | CORE_Digital_Sensor_Comms_t digitalSensorComms; |
ADIJake | 0:85855ecd3257 | 2415 | |
ADIJake | 0:85855ecd3257 | 2416 | digitalSensorComms.VALUE16 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_COMMSn); |
ADIJake | 0:85855ecd3257 | 2417 | |
ADIJake | 0:85855ecd3257 | 2418 | if(pDigitalComms->useCustomCommsConfig) |
ADIJake | 0:85855ecd3257 | 2419 | { |
ADIJake | 0:85855ecd3257 | 2420 | digitalSensorComms.Digital_Sensor_Comms_En = 1; |
ADIJake | 0:85855ecd3257 | 2421 | |
Vkadaba | 5:0728bde67bdb | 2422 | if(pDigitalComms->i2cClockSpeed == ADMW1001_DIGITAL_SENSOR_COMMS_I2C_CLOCK_SPEED_100K) |
ADIJake | 0:85855ecd3257 | 2423 | { |
Vkadaba | 5:0728bde67bdb | 2424 | digitalSensorComms.I2C_Clock = CORE_DIGITAL_SENSOR_COMMS_I2C_100K; |
ADIJake | 0:85855ecd3257 | 2425 | } |
Vkadaba | 5:0728bde67bdb | 2426 | else if(pDigitalComms->i2cClockSpeed == ADMW1001_DIGITAL_SENSOR_COMMS_I2C_CLOCK_SPEED_400K) |
ADIJake | 0:85855ecd3257 | 2427 | { |
Vkadaba | 5:0728bde67bdb | 2428 | digitalSensorComms.I2C_Clock = CORE_DIGITAL_SENSOR_COMMS_I2C_400K; |
ADIJake | 0:85855ecd3257 | 2429 | } |
ADIJake | 0:85855ecd3257 | 2430 | else |
ADIJake | 0:85855ecd3257 | 2431 | { |
Vkadaba | 5:0728bde67bdb | 2432 | ADMW_LOG_ERROR("Invalid I2C clock speed %d specified", |
ADIJake | 0:85855ecd3257 | 2433 | pDigitalComms->i2cClockSpeed); |
Vkadaba | 5:0728bde67bdb | 2434 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 2435 | } |
ADIJake | 0:85855ecd3257 | 2436 | |
Vkadaba | 5:0728bde67bdb | 2437 | if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_0) |
ADIJake | 0:85855ecd3257 | 2438 | { |
Vkadaba | 5:0728bde67bdb | 2439 | digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_0; |
ADIJake | 0:85855ecd3257 | 2440 | } |
Vkadaba | 5:0728bde67bdb | 2441 | else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_1) |
ADIJake | 0:85855ecd3257 | 2442 | { |
Vkadaba | 5:0728bde67bdb | 2443 | digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_1; |
ADIJake | 0:85855ecd3257 | 2444 | } |
Vkadaba | 5:0728bde67bdb | 2445 | else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_2) |
ADIJake | 0:85855ecd3257 | 2446 | { |
Vkadaba | 5:0728bde67bdb | 2447 | digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_2; |
ADIJake | 0:85855ecd3257 | 2448 | } |
Vkadaba | 5:0728bde67bdb | 2449 | else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_3) |
ADIJake | 0:85855ecd3257 | 2450 | { |
Vkadaba | 5:0728bde67bdb | 2451 | digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_3; |
ADIJake | 0:85855ecd3257 | 2452 | } |
ADIJake | 0:85855ecd3257 | 2453 | else |
ADIJake | 0:85855ecd3257 | 2454 | { |
Vkadaba | 5:0728bde67bdb | 2455 | ADMW_LOG_ERROR("Invalid SPI mode %d specified", |
ADIJake | 0:85855ecd3257 | 2456 | pDigitalComms->spiMode); |
Vkadaba | 5:0728bde67bdb | 2457 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 2458 | } |
ADIJake | 0:85855ecd3257 | 2459 | |
ADIJake | 0:85855ecd3257 | 2460 | switch (pDigitalComms->spiClock) |
ADIJake | 0:85855ecd3257 | 2461 | { |
Vkadaba | 5:0728bde67bdb | 2462 | case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_13MHZ: |
Vkadaba | 5:0728bde67bdb | 2463 | digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_13MHZ; |
ADIJake | 0:85855ecd3257 | 2464 | break; |
Vkadaba | 5:0728bde67bdb | 2465 | case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_6_5MHZ: |
Vkadaba | 5:0728bde67bdb | 2466 | digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_6_5MHZ; |
ADIJake | 0:85855ecd3257 | 2467 | break; |
Vkadaba | 5:0728bde67bdb | 2468 | case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_3_25MHZ: |
Vkadaba | 5:0728bde67bdb | 2469 | digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_3_25MHZ; |
ADIJake | 0:85855ecd3257 | 2470 | break; |
Vkadaba | 5:0728bde67bdb | 2471 | case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_1_625MHZ: |
Vkadaba | 5:0728bde67bdb | 2472 | digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_1_625MHZ; |
ADIJake | 0:85855ecd3257 | 2473 | break; |
Vkadaba | 5:0728bde67bdb | 2474 | case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_812KHZ: |
Vkadaba | 5:0728bde67bdb | 2475 | digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_812KHZ; |
ADIJake | 0:85855ecd3257 | 2476 | break; |
Vkadaba | 5:0728bde67bdb | 2477 | case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_406KHZ: |
Vkadaba | 5:0728bde67bdb | 2478 | digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_406KHZ; |
ADIJake | 0:85855ecd3257 | 2479 | break; |
Vkadaba | 5:0728bde67bdb | 2480 | case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_203KHZ: |
Vkadaba | 5:0728bde67bdb | 2481 | digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_203KHZ; |
ADIJake | 0:85855ecd3257 | 2482 | break; |
Vkadaba | 5:0728bde67bdb | 2483 | case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_101KHZ: |
Vkadaba | 5:0728bde67bdb | 2484 | digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_101KHZ; |
ADIJake | 0:85855ecd3257 | 2485 | break; |
Vkadaba | 5:0728bde67bdb | 2486 | case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_50KHZ: |
Vkadaba | 5:0728bde67bdb | 2487 | digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_50KHZ; |
ADIJake | 0:85855ecd3257 | 2488 | break; |
Vkadaba | 5:0728bde67bdb | 2489 | case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_25KHZ: |
Vkadaba | 5:0728bde67bdb | 2490 | digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_25KHZ; |
ADIJake | 0:85855ecd3257 | 2491 | break; |
Vkadaba | 5:0728bde67bdb | 2492 | case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_12KHZ: |
Vkadaba | 5:0728bde67bdb | 2493 | digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_12KHZ; |
ADIJake | 0:85855ecd3257 | 2494 | break; |
Vkadaba | 5:0728bde67bdb | 2495 | case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_6KHZ: |
Vkadaba | 5:0728bde67bdb | 2496 | digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_6KHZ; |
ADIJake | 0:85855ecd3257 | 2497 | break; |
Vkadaba | 5:0728bde67bdb | 2498 | case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_3KHZ: |
Vkadaba | 5:0728bde67bdb | 2499 | digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_3KHZ; |
ADIJake | 0:85855ecd3257 | 2500 | break; |
Vkadaba | 5:0728bde67bdb | 2501 | case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_1_5KHZ: |
Vkadaba | 5:0728bde67bdb | 2502 | digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_1_5KHZ; |
ADIJake | 0:85855ecd3257 | 2503 | break; |
Vkadaba | 5:0728bde67bdb | 2504 | case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_793HZ: |
Vkadaba | 5:0728bde67bdb | 2505 | digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_793HZ; |
ADIJake | 0:85855ecd3257 | 2506 | break; |
Vkadaba | 5:0728bde67bdb | 2507 | case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_396HZ: |
Vkadaba | 5:0728bde67bdb | 2508 | digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_396HZ; |
ADIJake | 0:85855ecd3257 | 2509 | break; |
ADIJake | 0:85855ecd3257 | 2510 | default: |
Vkadaba | 5:0728bde67bdb | 2511 | ADMW_LOG_ERROR("Invalid SPI clock %d specified", |
ADIJake | 0:85855ecd3257 | 2512 | pDigitalComms->spiClock); |
Vkadaba | 5:0728bde67bdb | 2513 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 2514 | } |
ADIJake | 0:85855ecd3257 | 2515 | |
ADIJake | 0:85855ecd3257 | 2516 | switch (pDigitalComms->uartLineConfig) |
ADIJake | 0:85855ecd3257 | 2517 | { |
Vkadaba | 5:0728bde67bdb | 2518 | case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8N1: |
Vkadaba | 5:0728bde67bdb | 2519 | digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8N1; |
ADIJake | 0:85855ecd3257 | 2520 | break; |
Vkadaba | 5:0728bde67bdb | 2521 | case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8N2: |
Vkadaba | 5:0728bde67bdb | 2522 | digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8N2; |
ADIJake | 0:85855ecd3257 | 2523 | break; |
Vkadaba | 5:0728bde67bdb | 2524 | case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8N3: |
Vkadaba | 5:0728bde67bdb | 2525 | digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8N3; |
ADIJake | 0:85855ecd3257 | 2526 | break; |
Vkadaba | 5:0728bde67bdb | 2527 | case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8E1: |
Vkadaba | 5:0728bde67bdb | 2528 | digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8E1; |
ADIJake | 0:85855ecd3257 | 2529 | break; |
Vkadaba | 5:0728bde67bdb | 2530 | case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8E2: |
Vkadaba | 5:0728bde67bdb | 2531 | digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8E2; |
ADIJake | 0:85855ecd3257 | 2532 | break; |
Vkadaba | 5:0728bde67bdb | 2533 | case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8E3: |
Vkadaba | 5:0728bde67bdb | 2534 | digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8E3; |
ADIJake | 0:85855ecd3257 | 2535 | break; |
Vkadaba | 5:0728bde67bdb | 2536 | case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8O1: |
Vkadaba | 5:0728bde67bdb | 2537 | digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8O1; |
ADIJake | 0:85855ecd3257 | 2538 | break; |
Vkadaba | 5:0728bde67bdb | 2539 | case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8O2: |
Vkadaba | 5:0728bde67bdb | 2540 | digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8O2; |
ADIJake | 0:85855ecd3257 | 2541 | break; |
Vkadaba | 5:0728bde67bdb | 2542 | case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8O3: |
Vkadaba | 5:0728bde67bdb | 2543 | digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8O3; |
ADIJake | 0:85855ecd3257 | 2544 | break; |
ADIJake | 0:85855ecd3257 | 2545 | default: |
Vkadaba | 5:0728bde67bdb | 2546 | ADMW_LOG_ERROR("Invalid UART mode %d specified", |
ADIJake | 0:85855ecd3257 | 2547 | pDigitalComms->uartLineConfig); |
Vkadaba | 5:0728bde67bdb | 2548 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 2549 | } |
ADIJake | 0:85855ecd3257 | 2550 | |
ADIJake | 0:85855ecd3257 | 2551 | switch (pDigitalComms->uartBaudRate) |
ADIJake | 0:85855ecd3257 | 2552 | { |
Vkadaba | 5:0728bde67bdb | 2553 | case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_115200: |
Vkadaba | 5:0728bde67bdb | 2554 | digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_115200; |
ADIJake | 0:85855ecd3257 | 2555 | break; |
Vkadaba | 5:0728bde67bdb | 2556 | case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_57600: |
Vkadaba | 5:0728bde67bdb | 2557 | digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_57600; |
ADIJake | 0:85855ecd3257 | 2558 | break; |
Vkadaba | 5:0728bde67bdb | 2559 | case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_38400: |
Vkadaba | 5:0728bde67bdb | 2560 | digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_38400; |
ADIJake | 0:85855ecd3257 | 2561 | break; |
Vkadaba | 5:0728bde67bdb | 2562 | case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_19200: |
Vkadaba | 5:0728bde67bdb | 2563 | digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_19200; |
ADIJake | 0:85855ecd3257 | 2564 | break; |
Vkadaba | 5:0728bde67bdb | 2565 | case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_9600: |
Vkadaba | 5:0728bde67bdb | 2566 | digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_9600; |
ADIJake | 0:85855ecd3257 | 2567 | break; |
Vkadaba | 5:0728bde67bdb | 2568 | case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_4800: |
Vkadaba | 5:0728bde67bdb | 2569 | digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_4800; |
ADIJake | 0:85855ecd3257 | 2570 | break; |
Vkadaba | 5:0728bde67bdb | 2571 | case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_2400: |
Vkadaba | 5:0728bde67bdb | 2572 | digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_2400; |
ADIJake | 0:85855ecd3257 | 2573 | break; |
Vkadaba | 5:0728bde67bdb | 2574 | case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_1200: |
Vkadaba | 5:0728bde67bdb | 2575 | digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_1200; |
ADIJake | 0:85855ecd3257 | 2576 | break; |
ADIJake | 0:85855ecd3257 | 2577 | default: |
Vkadaba | 5:0728bde67bdb | 2578 | ADMW_LOG_ERROR("Invalid UART baud rate %d specified", |
ADIJake | 0:85855ecd3257 | 2579 | pDigitalComms->uartBaudRate); |
Vkadaba | 5:0728bde67bdb | 2580 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 2581 | } |
ADIJake | 0:85855ecd3257 | 2582 | } |
ADIJake | 0:85855ecd3257 | 2583 | else |
ADIJake | 0:85855ecd3257 | 2584 | { |
ADIJake | 0:85855ecd3257 | 2585 | digitalSensorComms.Digital_Sensor_Comms_En = 0; |
ADIJake | 0:85855ecd3257 | 2586 | } |
ADIJake | 0:85855ecd3257 | 2587 | |
ADIJake | 0:85855ecd3257 | 2588 | WRITE_REG_U16(hDevice, digitalSensorComms.VALUE16, CORE_DIGITAL_SENSOR_COMMSn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2589 | |
Vkadaba | 5:0728bde67bdb | 2590 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 2591 | } |
ADIJake | 0:85855ecd3257 | 2592 | |
Vkadaba | 5:0728bde67bdb | 2593 | ADMW_RESULT admw_SetI2cChannelConfig( |
Vkadaba | 5:0728bde67bdb | 2594 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 2595 | ADMW1001_CHANNEL_ID eChannelId, |
Vkadaba | 5:0728bde67bdb | 2596 | ADMW1001_CHANNEL_CONFIG *pChannelConfig) |
ADIJake | 0:85855ecd3257 | 2597 | { |
Vkadaba | 5:0728bde67bdb | 2598 | ADMW_RESULT eRet; |
Vkadaba | 5:0728bde67bdb | 2599 | ADMW1001_I2C_CHANNEL_CONFIG *pI2cChannelConfig = |
ADIJake | 0:85855ecd3257 | 2600 | &pChannelConfig->i2cChannelConfig; |
ADIJake | 0:85855ecd3257 | 2601 | |
Vkadaba | 5:0728bde67bdb | 2602 | eRet = admw_SetChannelI2cSensorType(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2603 | pI2cChannelConfig->sensor); |
Vkadaba | 5:0728bde67bdb | 2604 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2605 | { |
Vkadaba | 5:0728bde67bdb | 2606 | ADMW_LOG_ERROR("Failed to set I2C sensor type for channel %d", |
ADIJake | 0:85855ecd3257 | 2607 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2608 | return eRet; |
ADIJake | 0:85855ecd3257 | 2609 | } |
ADIJake | 0:85855ecd3257 | 2610 | |
Vkadaba | 5:0728bde67bdb | 2611 | eRet = admw_SetChannelI2cSensorAddress(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2612 | pI2cChannelConfig->deviceAddress); |
Vkadaba | 5:0728bde67bdb | 2613 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2614 | { |
Vkadaba | 5:0728bde67bdb | 2615 | ADMW_LOG_ERROR("Failed to set I2C sensor address for channel %d", |
ADIJake | 0:85855ecd3257 | 2616 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2617 | return eRet; |
ADIJake | 0:85855ecd3257 | 2618 | } |
ADIJake | 0:85855ecd3257 | 2619 | |
Vkadaba | 5:0728bde67bdb | 2620 | eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2621 | pChannelConfig); |
Vkadaba | 5:0728bde67bdb | 2622 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2623 | { |
Vkadaba | 5:0728bde67bdb | 2624 | ADMW_LOG_ERROR("Failed to set I2C sensor details for channel %d", |
ADIJake | 0:85855ecd3257 | 2625 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2626 | return eRet; |
ADIJake | 0:85855ecd3257 | 2627 | } |
ADIJake | 0:85855ecd3257 | 2628 | |
Vkadaba | 5:0728bde67bdb | 2629 | eRet = admw_SetDigitalSensorCommands(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2630 | &pI2cChannelConfig->configurationCommand, |
ADIJake | 0:85855ecd3257 | 2631 | &pI2cChannelConfig->dataRequestCommand); |
Vkadaba | 5:0728bde67bdb | 2632 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2633 | { |
Vkadaba | 5:0728bde67bdb | 2634 | ADMW_LOG_ERROR("Failed to set I2C sensor commands for channel %d", |
ADIJake | 0:85855ecd3257 | 2635 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2636 | return eRet; |
ADIJake | 0:85855ecd3257 | 2637 | } |
ADIJake | 0:85855ecd3257 | 2638 | |
Vkadaba | 5:0728bde67bdb | 2639 | eRet = admw_SetDigitalSensorFormat(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2640 | &pI2cChannelConfig->dataFormat); |
Vkadaba | 5:0728bde67bdb | 2641 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2642 | { |
Vkadaba | 5:0728bde67bdb | 2643 | ADMW_LOG_ERROR("Failed to set I2C sensor data format for channel %d", |
ADIJake | 0:85855ecd3257 | 2644 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2645 | return eRet; |
ADIJake | 0:85855ecd3257 | 2646 | } |
ADIJake | 0:85855ecd3257 | 2647 | |
Vkadaba | 5:0728bde67bdb | 2648 | eRet = admw_SetDigitalCalibrationParam(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2649 | &pI2cChannelConfig->digitalCalibrationParam); |
Vkadaba | 5:0728bde67bdb | 2650 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2651 | { |
Vkadaba | 5:0728bde67bdb | 2652 | ADMW_LOG_ERROR("Failed to set I2C digital calibration param for channel %d", |
ADIJake | 0:85855ecd3257 | 2653 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2654 | return eRet; |
ADIJake | 0:85855ecd3257 | 2655 | } |
ADIJake | 0:85855ecd3257 | 2656 | |
Vkadaba | 5:0728bde67bdb | 2657 | eRet = admw_SetDigitalChannelComms(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2658 | &pI2cChannelConfig->configureComms); |
Vkadaba | 5:0728bde67bdb | 2659 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2660 | { |
Vkadaba | 5:0728bde67bdb | 2661 | ADMW_LOG_ERROR("Failed to set I2C comms for channel %d", |
ADIJake | 0:85855ecd3257 | 2662 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2663 | return eRet; |
ADIJake | 0:85855ecd3257 | 2664 | } |
ADIJake | 0:85855ecd3257 | 2665 | |
Vkadaba | 5:0728bde67bdb | 2666 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 2667 | } |
ADIJake | 0:85855ecd3257 | 2668 | |
Vkadaba | 5:0728bde67bdb | 2669 | static ADMW_RESULT admw_SetChannelSpiSensorType( |
Vkadaba | 5:0728bde67bdb | 2670 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 2671 | ADMW1001_CHANNEL_ID eChannelId, |
Vkadaba | 5:0728bde67bdb | 2672 | ADMW1001_SPI_SENSOR_TYPE sensorType) |
ADIJake | 0:85855ecd3257 | 2673 | { |
Vkadaba | 5:0728bde67bdb | 2674 | CORE_Sensor_Type_t sensorTypeReg; |
ADIJake | 0:85855ecd3257 | 2675 | |
ADIJake | 0:85855ecd3257 | 2676 | sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn); |
ADIJake | 0:85855ecd3257 | 2677 | |
ADIJake | 0:85855ecd3257 | 2678 | /* Ensure that the sensor type is valid for this channel */ |
ADIJake | 0:85855ecd3257 | 2679 | switch(sensorType) |
ADIJake | 0:85855ecd3257 | 2680 | { |
Vkadaba | 5:0728bde67bdb | 2681 | case ADMW1001_SPI_SENSOR_PRESSURE_A_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 2682 | case ADMW1001_SPI_SENSOR_PRESSURE_A_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 2683 | case ADMW1001_SPI_SENSOR_PRESSURE_A_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 2684 | case ADMW1001_SPI_SENSOR_PRESSURE_A_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 2685 | case ADMW1001_SPI_SENSOR_ACCELEROMETER_A_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 2686 | case ADMW1001_SPI_SENSOR_ACCELEROMETER_B_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 2687 | case ADMW1001_SPI_SENSOR_ACCELEROMETER_A_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 2688 | case ADMW1001_SPI_SENSOR_ACCELEROMETER_B_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 2689 | case ADMW1001_SPI_SENSOR_ACCELEROMETER_A_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 2690 | case ADMW1001_SPI_SENSOR_ACCELEROMETER_B_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 2691 | case ADMW1001_SPI_SENSOR_ACCELEROMETER_A_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 2692 | case ADMW1001_SPI_SENSOR_ACCELEROMETER_B_ADV_L2: |
ADIJake | 0:85855ecd3257 | 2693 | sensorTypeReg.Sensor_Type = sensorType; |
ADIJake | 0:85855ecd3257 | 2694 | break; |
ADIJake | 0:85855ecd3257 | 2695 | default: |
Vkadaba | 5:0728bde67bdb | 2696 | ADMW_LOG_ERROR("Unsupported SPI sensor type %d specified", sensorType); |
Vkadaba | 5:0728bde67bdb | 2697 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 2698 | } |
ADIJake | 0:85855ecd3257 | 2699 | |
ADIJake | 0:85855ecd3257 | 2700 | WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2701 | |
Vkadaba | 5:0728bde67bdb | 2702 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 2703 | } |
ADIJake | 0:85855ecd3257 | 2704 | |
Vkadaba | 5:0728bde67bdb | 2705 | ADMW_RESULT admw_SetSpiChannelConfig( |
Vkadaba | 5:0728bde67bdb | 2706 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 2707 | ADMW1001_CHANNEL_ID eChannelId, |
Vkadaba | 5:0728bde67bdb | 2708 | ADMW1001_CHANNEL_CONFIG *pChannelConfig) |
ADIJake | 0:85855ecd3257 | 2709 | { |
Vkadaba | 5:0728bde67bdb | 2710 | ADMW_RESULT eRet; |
Vkadaba | 5:0728bde67bdb | 2711 | ADMW1001_SPI_CHANNEL_CONFIG *pSpiChannelConfig = |
ADIJake | 0:85855ecd3257 | 2712 | &pChannelConfig->spiChannelConfig; |
ADIJake | 0:85855ecd3257 | 2713 | |
Vkadaba | 5:0728bde67bdb | 2714 | eRet = admw_SetChannelSpiSensorType(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2715 | pSpiChannelConfig->sensor); |
Vkadaba | 5:0728bde67bdb | 2716 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2717 | { |
Vkadaba | 5:0728bde67bdb | 2718 | ADMW_LOG_ERROR("Failed to set SPI sensor type for channel %d", |
ADIJake | 0:85855ecd3257 | 2719 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2720 | return eRet; |
ADIJake | 0:85855ecd3257 | 2721 | } |
ADIJake | 0:85855ecd3257 | 2722 | |
Vkadaba | 5:0728bde67bdb | 2723 | eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2724 | pChannelConfig); |
Vkadaba | 5:0728bde67bdb | 2725 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2726 | { |
Vkadaba | 5:0728bde67bdb | 2727 | ADMW_LOG_ERROR("Failed to set SPI sensor details for channel %d", |
ADIJake | 0:85855ecd3257 | 2728 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2729 | return eRet; |
ADIJake | 0:85855ecd3257 | 2730 | } |
ADIJake | 0:85855ecd3257 | 2731 | |
Vkadaba | 5:0728bde67bdb | 2732 | eRet = admw_SetDigitalSensorCommands(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2733 | &pSpiChannelConfig->configurationCommand, |
ADIJake | 0:85855ecd3257 | 2734 | &pSpiChannelConfig->dataRequestCommand); |
Vkadaba | 5:0728bde67bdb | 2735 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2736 | { |
Vkadaba | 5:0728bde67bdb | 2737 | ADMW_LOG_ERROR("Failed to set SPI sensor commands for channel %d", |
ADIJake | 0:85855ecd3257 | 2738 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2739 | return eRet; |
ADIJake | 0:85855ecd3257 | 2740 | } |
ADIJake | 0:85855ecd3257 | 2741 | |
Vkadaba | 5:0728bde67bdb | 2742 | eRet = admw_SetDigitalSensorFormat(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2743 | &pSpiChannelConfig->dataFormat); |
Vkadaba | 5:0728bde67bdb | 2744 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2745 | { |
Vkadaba | 5:0728bde67bdb | 2746 | ADMW_LOG_ERROR("Failed to set SPI sensor data format for channel %d", |
ADIJake | 0:85855ecd3257 | 2747 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2748 | return eRet; |
ADIJake | 0:85855ecd3257 | 2749 | } |
ADIJake | 0:85855ecd3257 | 2750 | |
Vkadaba | 5:0728bde67bdb | 2751 | eRet = admw_SetDigitalCalibrationParam(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2752 | &pSpiChannelConfig->digitalCalibrationParam); |
Vkadaba | 5:0728bde67bdb | 2753 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2754 | { |
Vkadaba | 5:0728bde67bdb | 2755 | ADMW_LOG_ERROR("Failed to set SPI digital calibration param for channel %d", |
ADIJake | 0:85855ecd3257 | 2756 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2757 | return eRet; |
ADIJake | 0:85855ecd3257 | 2758 | } |
ADIJake | 0:85855ecd3257 | 2759 | |
Vkadaba | 5:0728bde67bdb | 2760 | eRet = admw_SetDigitalChannelComms(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2761 | &pSpiChannelConfig->configureComms); |
Vkadaba | 5:0728bde67bdb | 2762 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2763 | { |
Vkadaba | 5:0728bde67bdb | 2764 | ADMW_LOG_ERROR("Failed to set SPI comms for channel %d", |
ADIJake | 0:85855ecd3257 | 2765 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2766 | return eRet; |
ADIJake | 0:85855ecd3257 | 2767 | } |
ADIJake | 0:85855ecd3257 | 2768 | |
Vkadaba | 5:0728bde67bdb | 2769 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 2770 | } |
ADIJake | 0:85855ecd3257 | 2771 | |
Vkadaba | 5:0728bde67bdb | 2772 | static ADMW_RESULT admw_SetChannelUartSensorType( |
Vkadaba | 5:0728bde67bdb | 2773 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 2774 | ADMW1001_CHANNEL_ID eChannelId, |
Vkadaba | 5:0728bde67bdb | 2775 | ADMW1001_UART_SENSOR_TYPE sensorType) |
ADIJake | 0:85855ecd3257 | 2776 | { |
Vkadaba | 5:0728bde67bdb | 2777 | CORE_Sensor_Type_t sensorTypeReg; |
ADIJake | 0:85855ecd3257 | 2778 | |
ADIJake | 0:85855ecd3257 | 2779 | sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn); |
ADIJake | 0:85855ecd3257 | 2780 | |
ADIJake | 0:85855ecd3257 | 2781 | /* Ensure that the sensor type is valid for this channel */ |
ADIJake | 0:85855ecd3257 | 2782 | switch(sensorType) |
ADIJake | 0:85855ecd3257 | 2783 | { |
Vkadaba | 5:0728bde67bdb | 2784 | case ADMW1001_UART_SENSOR_UART_CO2_A_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 2785 | case ADMW1001_UART_SENSOR_UART_CO2_B_DEF_L1: |
Vkadaba | 5:0728bde67bdb | 2786 | case ADMW1001_UART_SENSOR_UART_CO2_A_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 2787 | case ADMW1001_UART_SENSOR_UART_CO2_B_DEF_L2: |
Vkadaba | 5:0728bde67bdb | 2788 | case ADMW1001_UART_SENSOR_UART_CO2_A_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 2789 | case ADMW1001_UART_SENSOR_UART_CO2_B_ADV_L1: |
Vkadaba | 5:0728bde67bdb | 2790 | case ADMW1001_UART_SENSOR_UART_CO2_A_ADV_L2: |
Vkadaba | 5:0728bde67bdb | 2791 | case ADMW1001_UART_SENSOR_UART_CO2_B_ADV_L2: |
ADIJake | 0:85855ecd3257 | 2792 | sensorTypeReg.Sensor_Type = sensorType; |
ADIJake | 0:85855ecd3257 | 2793 | break; |
ADIJake | 0:85855ecd3257 | 2794 | default: |
Vkadaba | 5:0728bde67bdb | 2795 | ADMW_LOG_ERROR("Unsupported UART sensor type %d specified", sensorType); |
Vkadaba | 5:0728bde67bdb | 2796 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 2797 | } |
ADIJake | 0:85855ecd3257 | 2798 | |
ADIJake | 0:85855ecd3257 | 2799 | WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2800 | |
Vkadaba | 5:0728bde67bdb | 2801 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 2802 | } |
ADIJake | 0:85855ecd3257 | 2803 | |
Vkadaba | 5:0728bde67bdb | 2804 | ADMW_RESULT admw_SetUartChannelConfig( |
Vkadaba | 5:0728bde67bdb | 2805 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 2806 | ADMW1001_CHANNEL_ID eChannelId, |
Vkadaba | 5:0728bde67bdb | 2807 | ADMW1001_CHANNEL_CONFIG *pChannelConfig) |
ADIJake | 0:85855ecd3257 | 2808 | { |
Vkadaba | 5:0728bde67bdb | 2809 | ADMW_RESULT eRet; |
Vkadaba | 5:0728bde67bdb | 2810 | ADMW1001_UART_CHANNEL_CONFIG *pUartChannelConfig = |
ADIJake | 0:85855ecd3257 | 2811 | &pChannelConfig->uartChannelConfig; |
ADIJake | 0:85855ecd3257 | 2812 | |
Vkadaba | 5:0728bde67bdb | 2813 | eRet = admw_SetChannelUartSensorType(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2814 | pUartChannelConfig->sensor); |
Vkadaba | 5:0728bde67bdb | 2815 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2816 | { |
Vkadaba | 5:0728bde67bdb | 2817 | ADMW_LOG_ERROR("Failed to set UART sensor type for channel %d", |
ADIJake | 0:85855ecd3257 | 2818 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2819 | return eRet; |
ADIJake | 0:85855ecd3257 | 2820 | } |
ADIJake | 0:85855ecd3257 | 2821 | |
Vkadaba | 5:0728bde67bdb | 2822 | eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2823 | pChannelConfig); |
Vkadaba | 5:0728bde67bdb | 2824 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2825 | { |
Vkadaba | 5:0728bde67bdb | 2826 | ADMW_LOG_ERROR("Failed to set UART sensor details for channel %d", |
ADIJake | 0:85855ecd3257 | 2827 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2828 | return eRet; |
ADIJake | 0:85855ecd3257 | 2829 | } |
ADIJake | 0:85855ecd3257 | 2830 | |
Vkadaba | 5:0728bde67bdb | 2831 | eRet = admw_SetDigitalCalibrationParam(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2832 | &pUartChannelConfig->digitalCalibrationParam); |
Vkadaba | 5:0728bde67bdb | 2833 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2834 | { |
Vkadaba | 5:0728bde67bdb | 2835 | ADMW_LOG_ERROR("Failed to set UART digital calibration param for channel %d", |
ADIJake | 0:85855ecd3257 | 2836 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2837 | return eRet; |
ADIJake | 0:85855ecd3257 | 2838 | } |
ADIJake | 0:85855ecd3257 | 2839 | |
Vkadaba | 5:0728bde67bdb | 2840 | eRet = admw_SetDigitalChannelComms(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2841 | &pUartChannelConfig->configureComms); |
Vkadaba | 5:0728bde67bdb | 2842 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2843 | { |
Vkadaba | 5:0728bde67bdb | 2844 | ADMW_LOG_ERROR("Failed to set UART comms for channel %d", |
ADIJake | 0:85855ecd3257 | 2845 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2846 | return eRet; |
ADIJake | 0:85855ecd3257 | 2847 | } |
ADIJake | 0:85855ecd3257 | 2848 | |
ADIJake | 0:85855ecd3257 | 2849 | |
Vkadaba | 5:0728bde67bdb | 2850 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 2851 | } |
ADIJake | 0:85855ecd3257 | 2852 | |
Vkadaba | 5:0728bde67bdb | 2853 | ADMW_RESULT admw1001_SetChannelThresholdLimits( |
Vkadaba | 5:0728bde67bdb | 2854 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 2855 | ADMW1001_CHANNEL_ID eChannelId, |
ADIJake | 0:85855ecd3257 | 2856 | float32_t fHighThresholdLimit, |
ADIJake | 0:85855ecd3257 | 2857 | float32_t fLowThresholdLimit) |
ADIJake | 0:85855ecd3257 | 2858 | { |
ADIJake | 0:85855ecd3257 | 2859 | /* |
ADIJake | 0:85855ecd3257 | 2860 | * If the low/high limits are *both* set to 0 in memory, or NaNs, assume |
ADIJake | 0:85855ecd3257 | 2861 | * that they are unset, or not required, and use infinity defaults instead |
ADIJake | 0:85855ecd3257 | 2862 | */ |
ADIJake | 0:85855ecd3257 | 2863 | if (fHighThresholdLimit == 0.0f && fLowThresholdLimit == 0.0f) |
ADIJake | 0:85855ecd3257 | 2864 | { |
ADIJake | 0:85855ecd3257 | 2865 | fHighThresholdLimit = INFINITY; |
ADIJake | 0:85855ecd3257 | 2866 | fLowThresholdLimit = -INFINITY; |
ADIJake | 0:85855ecd3257 | 2867 | } |
ADIJake | 0:85855ecd3257 | 2868 | else |
ADIJake | 0:85855ecd3257 | 2869 | { |
ADIJake | 0:85855ecd3257 | 2870 | if (isnan(fHighThresholdLimit)) |
ADIJake | 0:85855ecd3257 | 2871 | fHighThresholdLimit = INFINITY; |
ADIJake | 0:85855ecd3257 | 2872 | if (isnan(fLowThresholdLimit)) |
ADIJake | 0:85855ecd3257 | 2873 | fLowThresholdLimit = -INFINITY; |
ADIJake | 0:85855ecd3257 | 2874 | } |
ADIJake | 0:85855ecd3257 | 2875 | |
ADIJake | 0:85855ecd3257 | 2876 | WRITE_REG_FLOAT(hDevice, fHighThresholdLimit, |
ADIJake | 0:85855ecd3257 | 2877 | CORE_HIGH_THRESHOLD_LIMITn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2878 | WRITE_REG_FLOAT(hDevice, fLowThresholdLimit, |
ADIJake | 0:85855ecd3257 | 2879 | CORE_LOW_THRESHOLD_LIMITn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2880 | |
Vkadaba | 5:0728bde67bdb | 2881 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 2882 | } |
ADIJake | 0:85855ecd3257 | 2883 | |
Vkadaba | 5:0728bde67bdb | 2884 | ADMW_RESULT admw1001_SetOffsetGain( |
Vkadaba | 5:0728bde67bdb | 2885 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 2886 | ADMW1001_CHANNEL_ID eChannelId, |
ADIJake | 0:85855ecd3257 | 2887 | float32_t fOffsetAdjustment, |
ADIJake | 0:85855ecd3257 | 2888 | float32_t fGainAdjustment) |
ADIJake | 0:85855ecd3257 | 2889 | { |
ADIJake | 0:85855ecd3257 | 2890 | /* Replace with default values if NaNs are specified (or 0.0 for gain) */ |
ADIJake | 0:85855ecd3257 | 2891 | if (isnan(fGainAdjustment) || (fGainAdjustment == 0.0f)) |
ADIJake | 0:85855ecd3257 | 2892 | fGainAdjustment = 1.0f; |
ADIJake | 0:85855ecd3257 | 2893 | if (isnan(fOffsetAdjustment)) |
ADIJake | 0:85855ecd3257 | 2894 | fOffsetAdjustment = 0.0f; |
ADIJake | 0:85855ecd3257 | 2895 | |
ADIJake | 0:85855ecd3257 | 2896 | WRITE_REG_FLOAT(hDevice, fGainAdjustment, CORE_SENSOR_GAINn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2897 | WRITE_REG_FLOAT(hDevice, fOffsetAdjustment, CORE_SENSOR_OFFSETn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2898 | |
Vkadaba | 5:0728bde67bdb | 2899 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 2900 | } |
ADIJake | 0:85855ecd3257 | 2901 | |
Vkadaba | 5:0728bde67bdb | 2902 | ADMW_RESULT admw1001_SetSensorParameter( |
Vkadaba | 5:0728bde67bdb | 2903 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 2904 | ADMW1001_CHANNEL_ID eChannelId, |
ADIJake | 0:85855ecd3257 | 2905 | float32_t fSensorParam) |
ADIJake | 0:85855ecd3257 | 2906 | { |
ADIJake | 0:85855ecd3257 | 2907 | if (fSensorParam == 0.0f) |
ADIJake | 0:85855ecd3257 | 2908 | fSensorParam = NAN; |
ADIJake | 0:85855ecd3257 | 2909 | |
ADIJake | 0:85855ecd3257 | 2910 | WRITE_REG_FLOAT(hDevice, fSensorParam, CORE_SENSOR_PARAMETERn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2911 | |
Vkadaba | 5:0728bde67bdb | 2912 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 2913 | } |
ADIJake | 0:85855ecd3257 | 2914 | |
Vkadaba | 5:0728bde67bdb | 2915 | ADMW_RESULT admw1001_SetChannelSettlingTime( |
Vkadaba | 5:0728bde67bdb | 2916 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 2917 | ADMW1001_CHANNEL_ID eChannelId, |
ADIJake | 0:85855ecd3257 | 2918 | uint32_t nSettlingTime) |
ADIJake | 0:85855ecd3257 | 2919 | { |
Vkadaba | 5:0728bde67bdb | 2920 | CORE_Settling_Time_t settlingTimeReg; |
ADIJake | 0:85855ecd3257 | 2921 | |
ADIJake | 0:85855ecd3257 | 2922 | if (nSettlingTime < (1 << 12)) |
ADIJake | 0:85855ecd3257 | 2923 | { |
Vkadaba | 5:0728bde67bdb | 2924 | settlingTimeReg.Settling_Time_Units = CORE_SETTLING_TIME_MICROSECONDS; |
ADIJake | 0:85855ecd3257 | 2925 | } |
ADIJake | 0:85855ecd3257 | 2926 | else if (nSettlingTime < (1000 * (1 << 12))) |
ADIJake | 0:85855ecd3257 | 2927 | { |
Vkadaba | 5:0728bde67bdb | 2928 | settlingTimeReg.Settling_Time_Units = CORE_SETTLING_TIME_MILLISECONDS; |
ADIJake | 0:85855ecd3257 | 2929 | nSettlingTime /= 1000; |
ADIJake | 0:85855ecd3257 | 2930 | } |
ADIJake | 0:85855ecd3257 | 2931 | else |
ADIJake | 0:85855ecd3257 | 2932 | { |
Vkadaba | 5:0728bde67bdb | 2933 | settlingTimeReg.Settling_Time_Units = CORE_SETTLING_TIME_SECONDS; |
ADIJake | 0:85855ecd3257 | 2934 | nSettlingTime /= 1000000; |
ADIJake | 0:85855ecd3257 | 2935 | } |
ADIJake | 0:85855ecd3257 | 2936 | |
ADIJake | 0:85855ecd3257 | 2937 | CHECK_REG_FIELD_VAL(CORE_SETTLING_TIME_SETTLING_TIME, nSettlingTime); |
ADIJake | 0:85855ecd3257 | 2938 | settlingTimeReg.Settling_Time = nSettlingTime; |
ADIJake | 0:85855ecd3257 | 2939 | |
ADIJake | 0:85855ecd3257 | 2940 | WRITE_REG_U16(hDevice, settlingTimeReg.VALUE16, CORE_SETTLING_TIMEn(eChannelId)); |
ADIJake | 0:85855ecd3257 | 2941 | |
Vkadaba | 5:0728bde67bdb | 2942 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 2943 | } |
ADIJake | 0:85855ecd3257 | 2944 | |
Vkadaba | 5:0728bde67bdb | 2945 | ADMW_RESULT admw1001_SetChannelConfig( |
Vkadaba | 5:0728bde67bdb | 2946 | ADMW_DEVICE_HANDLE hDevice, |
Vkadaba | 5:0728bde67bdb | 2947 | ADMW1001_CHANNEL_ID eChannelId, |
Vkadaba | 5:0728bde67bdb | 2948 | ADMW1001_CHANNEL_CONFIG *pChannelConfig) |
ADIJake | 0:85855ecd3257 | 2949 | { |
Vkadaba | 5:0728bde67bdb | 2950 | ADMW_RESULT eRet; |
Vkadaba | 5:0728bde67bdb | 2951 | |
Vkadaba | 5:0728bde67bdb | 2952 | if (! ADMW1001_CHANNEL_IS_VIRTUAL(eChannelId)) |
ADIJake | 0:85855ecd3257 | 2953 | { |
Vkadaba | 5:0728bde67bdb | 2954 | eRet = admw1001_SetChannelCount(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2955 | pChannelConfig->enableChannel ? |
ADIJake | 0:85855ecd3257 | 2956 | pChannelConfig->measurementsPerCycle : 0); |
Vkadaba | 5:0728bde67bdb | 2957 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2958 | { |
Vkadaba | 5:0728bde67bdb | 2959 | ADMW_LOG_ERROR("Failed to set measurement count for channel %d", |
ADIJake | 0:85855ecd3257 | 2960 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2961 | return eRet; |
ADIJake | 0:85855ecd3257 | 2962 | } |
ADIJake | 0:85855ecd3257 | 2963 | |
Vkadaba | 5:0728bde67bdb | 2964 | eRet = admw1001_SetChannelOptions(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2965 | pChannelConfig->priority, |
ADIJake | 0:85855ecd3257 | 2966 | pChannelConfig->enableFFT); |
Vkadaba | 5:0728bde67bdb | 2967 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2968 | { |
Vkadaba | 5:0728bde67bdb | 2969 | ADMW_LOG_ERROR("Failed to set priority for channel %d", |
ADIJake | 0:85855ecd3257 | 2970 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2971 | return eRet; |
ADIJake | 0:85855ecd3257 | 2972 | } |
ADIJake | 0:85855ecd3257 | 2973 | |
ADIJake | 0:85855ecd3257 | 2974 | /* If the channel is not enabled, we can skip the following steps */ |
ADIJake | 0:85855ecd3257 | 2975 | if (pChannelConfig->enableChannel || pChannelConfig->enableFFT) |
ADIJake | 0:85855ecd3257 | 2976 | { |
Vkadaba | 5:0728bde67bdb | 2977 | eRet = admw1001_SetChannelSkipCount(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 2978 | pChannelConfig->cycleSkipCount); |
Vkadaba | 5:0728bde67bdb | 2979 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 2980 | { |
Vkadaba | 5:0728bde67bdb | 2981 | ADMW_LOG_ERROR("Failed to set cycle skip count for channel %d", |
ADIJake | 0:85855ecd3257 | 2982 | eChannelId); |
ADIJake | 0:85855ecd3257 | 2983 | return eRet; |
ADIJake | 0:85855ecd3257 | 2984 | } |
ADIJake | 0:85855ecd3257 | 2985 | |
ADIJake | 0:85855ecd3257 | 2986 | switch (eChannelId) |
ADIJake | 0:85855ecd3257 | 2987 | { |
Vkadaba | 5:0728bde67bdb | 2988 | case ADMW1001_CHANNEL_ID_CJC_0: |
Vkadaba | 5:0728bde67bdb | 2989 | case ADMW1001_CHANNEL_ID_CJC_1: |
Vkadaba | 5:0728bde67bdb | 2990 | case ADMW1001_CHANNEL_ID_SENSOR_0: |
Vkadaba | 5:0728bde67bdb | 2991 | case ADMW1001_CHANNEL_ID_SENSOR_1: |
Vkadaba | 5:0728bde67bdb | 2992 | case ADMW1001_CHANNEL_ID_SENSOR_2: |
Vkadaba | 5:0728bde67bdb | 2993 | case ADMW1001_CHANNEL_ID_SENSOR_3: |
Vkadaba | 5:0728bde67bdb | 2994 | case ADMW1001_CHANNEL_ID_VOLTAGE_0: |
Vkadaba | 5:0728bde67bdb | 2995 | case ADMW1001_CHANNEL_ID_CURRENT_0: |
Vkadaba | 5:0728bde67bdb | 2996 | eRet = admw_SetAdcChannelConfig(hDevice, eChannelId, pChannelConfig); |
ADIJake | 0:85855ecd3257 | 2997 | break; |
Vkadaba | 5:0728bde67bdb | 2998 | case ADMW1001_CHANNEL_ID_I2C_0: |
Vkadaba | 5:0728bde67bdb | 2999 | case ADMW1001_CHANNEL_ID_I2C_1: |
Vkadaba | 5:0728bde67bdb | 3000 | eRet = admw_SetI2cChannelConfig(hDevice, eChannelId, pChannelConfig); |
ADIJake | 0:85855ecd3257 | 3001 | break; |
Vkadaba | 5:0728bde67bdb | 3002 | case ADMW1001_CHANNEL_ID_SPI_0: |
Vkadaba | 5:0728bde67bdb | 3003 | eRet = admw_SetSpiChannelConfig(hDevice, eChannelId, pChannelConfig); |
ADIJake | 0:85855ecd3257 | 3004 | break; |
Vkadaba | 5:0728bde67bdb | 3005 | case ADMW1001_CHANNEL_ID_UART: |
Vkadaba | 5:0728bde67bdb | 3006 | eRet = admw_SetUartChannelConfig(hDevice, eChannelId, pChannelConfig); |
ADIJake | 0:85855ecd3257 | 3007 | break; |
ADIJake | 0:85855ecd3257 | 3008 | default: |
Vkadaba | 5:0728bde67bdb | 3009 | ADMW_LOG_ERROR("Invalid channel ID %d specified", eChannelId); |
Vkadaba | 5:0728bde67bdb | 3010 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 3011 | } |
ADIJake | 0:85855ecd3257 | 3012 | |
Vkadaba | 5:0728bde67bdb | 3013 | eRet = admw1001_SetChannelSettlingTime(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 3014 | pChannelConfig->extraSettlingTime); |
Vkadaba | 5:0728bde67bdb | 3015 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 3016 | { |
Vkadaba | 5:0728bde67bdb | 3017 | ADMW_LOG_ERROR("Failed to set settling time for channel %d", |
ADIJake | 0:85855ecd3257 | 3018 | eChannelId); |
ADIJake | 0:85855ecd3257 | 3019 | return eRet; |
ADIJake | 0:85855ecd3257 | 3020 | } |
ADIJake | 0:85855ecd3257 | 3021 | } |
ADIJake | 0:85855ecd3257 | 3022 | } |
ADIJake | 0:85855ecd3257 | 3023 | |
ADIJake | 0:85855ecd3257 | 3024 | if (pChannelConfig->enableChannel || pChannelConfig->enableFFT) |
ADIJake | 0:85855ecd3257 | 3025 | { |
ADIJake | 0:85855ecd3257 | 3026 | /* Threshold limits can be configured individually for virtual channels */ |
Vkadaba | 5:0728bde67bdb | 3027 | eRet = admw1001_SetChannelThresholdLimits(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 3028 | pChannelConfig->highThreshold, |
ADIJake | 0:85855ecd3257 | 3029 | pChannelConfig->lowThreshold); |
Vkadaba | 5:0728bde67bdb | 3030 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 3031 | { |
Vkadaba | 5:0728bde67bdb | 3032 | ADMW_LOG_ERROR("Failed to set threshold limits for channel %d", |
ADIJake | 0:85855ecd3257 | 3033 | eChannelId); |
ADIJake | 0:85855ecd3257 | 3034 | return eRet; |
ADIJake | 0:85855ecd3257 | 3035 | } |
ADIJake | 0:85855ecd3257 | 3036 | |
ADIJake | 0:85855ecd3257 | 3037 | /* Offset and gain can be configured individually for virtual channels */ |
Vkadaba | 5:0728bde67bdb | 3038 | eRet = admw1001_SetOffsetGain(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 3039 | pChannelConfig->offsetAdjustment, |
ADIJake | 0:85855ecd3257 | 3040 | pChannelConfig->gainAdjustment); |
Vkadaba | 5:0728bde67bdb | 3041 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 3042 | { |
Vkadaba | 5:0728bde67bdb | 3043 | ADMW_LOG_ERROR("Failed to set offset/gain for channel %d", |
ADIJake | 0:85855ecd3257 | 3044 | eChannelId); |
ADIJake | 0:85855ecd3257 | 3045 | return eRet; |
ADIJake | 0:85855ecd3257 | 3046 | } |
ADIJake | 0:85855ecd3257 | 3047 | |
ADIJake | 0:85855ecd3257 | 3048 | /* Set sensor specific parameter */ |
Vkadaba | 5:0728bde67bdb | 3049 | eRet = admw1001_SetSensorParameter(hDevice, eChannelId, |
ADIJake | 0:85855ecd3257 | 3050 | pChannelConfig->sensorParameter); |
Vkadaba | 5:0728bde67bdb | 3051 | if (eRet != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 3052 | { |
Vkadaba | 5:0728bde67bdb | 3053 | ADMW_LOG_ERROR("Failed to set sensor parameter for channel %d", |
ADIJake | 0:85855ecd3257 | 3054 | eChannelId); |
ADIJake | 0:85855ecd3257 | 3055 | return eRet; |
ADIJake | 0:85855ecd3257 | 3056 | } |
ADIJake | 0:85855ecd3257 | 3057 | } |
ADIJake | 0:85855ecd3257 | 3058 | |
Vkadaba | 5:0728bde67bdb | 3059 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 3060 | } |
ADIJake | 0:85855ecd3257 | 3061 | |
Vkadaba | 5:0728bde67bdb | 3062 | ADMW_RESULT admw_SetConfig( |
Vkadaba | 5:0728bde67bdb | 3063 | ADMW_DEVICE_HANDLE const hDevice, |
Vkadaba | 5:0728bde67bdb | 3064 | ADMW_CONFIG * const pConfig) |
ADIJake | 0:85855ecd3257 | 3065 | { |
Vkadaba | 5:0728bde67bdb | 3066 | ADMW1001_CONFIG *pDeviceConfig; |
Vkadaba | 5:0728bde67bdb | 3067 | ADMW_PRODUCT_ID productId; |
Vkadaba | 5:0728bde67bdb | 3068 | ADMW_RESULT eRet; |
Vkadaba | 5:0728bde67bdb | 3069 | |
Vkadaba | 5:0728bde67bdb | 3070 | if (pConfig->productId != ADMW_PRODUCT_ID_ADMW1001) |
ADIJake | 0:85855ecd3257 | 3071 | { |
Vkadaba | 5:0728bde67bdb | 3072 | ADMW_LOG_ERROR("Configuration Product ID (0x%X) is not supported (0x%0X)", |
Vkadaba | 5:0728bde67bdb | 3073 | pConfig->productId, ADMW_PRODUCT_ID_ADMW1001); |
Vkadaba | 5:0728bde67bdb | 3074 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 3075 | } |
ADIJake | 0:85855ecd3257 | 3076 | |
ADIJake | 0:85855ecd3257 | 3077 | /* Check that the actual Product ID is a match? */ |
Vkadaba | 5:0728bde67bdb | 3078 | eRet = admw_GetProductID(hDevice, &productId); |
ADIJake | 0:85855ecd3257 | 3079 | if (eRet) |
ADIJake | 0:85855ecd3257 | 3080 | { |
Vkadaba | 5:0728bde67bdb | 3081 | ADMW_LOG_ERROR("Failed to read device Product ID register"); |
ADIJake | 0:85855ecd3257 | 3082 | return eRet; |
ADIJake | 0:85855ecd3257 | 3083 | } |
ADIJake | 0:85855ecd3257 | 3084 | if (pConfig->productId != productId) |
ADIJake | 0:85855ecd3257 | 3085 | { |
Vkadaba | 5:0728bde67bdb | 3086 | ADMW_LOG_ERROR("Configuration Product ID (0x%X) does not match device (0x%0X)", |
ADIJake | 0:85855ecd3257 | 3087 | pConfig->productId, productId); |
Vkadaba | 5:0728bde67bdb | 3088 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 3089 | } |
ADIJake | 0:85855ecd3257 | 3090 | |
Vkadaba | 5:0728bde67bdb | 3091 | pDeviceConfig = &pConfig->admw1001; |
Vkadaba | 5:0728bde67bdb | 3092 | |
Vkadaba | 5:0728bde67bdb | 3093 | eRet = admw1001_SetPowerConfig(hDevice, &pDeviceConfig->power); |
ADIJake | 0:85855ecd3257 | 3094 | if (eRet) |
ADIJake | 0:85855ecd3257 | 3095 | { |
Vkadaba | 5:0728bde67bdb | 3096 | ADMW_LOG_ERROR("Failed to set power configuration"); |
ADIJake | 0:85855ecd3257 | 3097 | return eRet; |
ADIJake | 0:85855ecd3257 | 3098 | } |
ADIJake | 0:85855ecd3257 | 3099 | |
Vkadaba | 5:0728bde67bdb | 3100 | eRet = admw1001_SetMeasurementConfig(hDevice, &pDeviceConfig->measurement); |
ADIJake | 0:85855ecd3257 | 3101 | if (eRet) |
ADIJake | 0:85855ecd3257 | 3102 | { |
Vkadaba | 5:0728bde67bdb | 3103 | ADMW_LOG_ERROR("Failed to set measurement configuration"); |
ADIJake | 0:85855ecd3257 | 3104 | return eRet; |
ADIJake | 0:85855ecd3257 | 3105 | } |
ADIJake | 0:85855ecd3257 | 3106 | |
Vkadaba | 5:0728bde67bdb | 3107 | eRet = admw1001_SetDiagnosticsConfig(hDevice, &pDeviceConfig->diagnostics); |
ADIJake | 0:85855ecd3257 | 3108 | if (eRet) |
ADIJake | 0:85855ecd3257 | 3109 | { |
Vkadaba | 5:0728bde67bdb | 3110 | ADMW_LOG_ERROR("Failed to set diagnostics configuration"); |
ADIJake | 0:85855ecd3257 | 3111 | return eRet; |
ADIJake | 0:85855ecd3257 | 3112 | } |
ADIJake | 0:85855ecd3257 | 3113 | |
Vkadaba | 5:0728bde67bdb | 3114 | for (ADMW1001_CHANNEL_ID id = ADMW1001_CHANNEL_ID_CJC_0; |
Vkadaba | 5:0728bde67bdb | 3115 | id < ADMW1001_MAX_CHANNELS; |
ADIJake | 0:85855ecd3257 | 3116 | id++) |
ADIJake | 0:85855ecd3257 | 3117 | { |
Vkadaba | 5:0728bde67bdb | 3118 | eRet = admw1001_SetChannelConfig(hDevice, id, |
ADIJake | 0:85855ecd3257 | 3119 | &pDeviceConfig->channels[id]); |
ADIJake | 0:85855ecd3257 | 3120 | if (eRet) |
ADIJake | 0:85855ecd3257 | 3121 | { |
Vkadaba | 5:0728bde67bdb | 3122 | ADMW_LOG_ERROR("Failed to set channel %d configuration", id); |
ADIJake | 0:85855ecd3257 | 3123 | return eRet; |
ADIJake | 0:85855ecd3257 | 3124 | } |
ADIJake | 0:85855ecd3257 | 3125 | } |
ADIJake | 0:85855ecd3257 | 3126 | |
Vkadaba | 5:0728bde67bdb | 3127 | eRet = admw1001_SetFftConfig(hDevice, &pDeviceConfig->fft, |
ADIJake | 0:85855ecd3257 | 3128 | pDeviceConfig->channels); |
ADIJake | 0:85855ecd3257 | 3129 | if (eRet) |
ADIJake | 0:85855ecd3257 | 3130 | { |
Vkadaba | 5:0728bde67bdb | 3131 | ADMW_LOG_ERROR("Failed to set FFT configuration"); |
ADIJake | 0:85855ecd3257 | 3132 | return eRet; |
ADIJake | 0:85855ecd3257 | 3133 | } |
ADIJake | 0:85855ecd3257 | 3134 | |
Vkadaba | 5:0728bde67bdb | 3135 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 3136 | } |
ADIJake | 0:85855ecd3257 | 3137 | |
Vkadaba | 5:0728bde67bdb | 3138 | ADMW_RESULT admw1001_SetLutData( |
Vkadaba | 5:0728bde67bdb | 3139 | ADMW_DEVICE_HANDLE const hDevice, |
Vkadaba | 5:0728bde67bdb | 3140 | ADMW1001_LUT * const pLutData) |
ADIJake | 0:85855ecd3257 | 3141 | { |
Vkadaba | 5:0728bde67bdb | 3142 | ADMW1001_LUT_HEADER *pLutHeader = &pLutData->header; |
Vkadaba | 5:0728bde67bdb | 3143 | ADMW1001_LUT_TABLE *pLutTable = pLutData->tables; |
ADIJake | 0:85855ecd3257 | 3144 | unsigned actualLength = 0; |
ADIJake | 0:85855ecd3257 | 3145 | |
Vkadaba | 5:0728bde67bdb | 3146 | if (pLutData->header.signature != ADMW_LUT_SIGNATURE) |
ADIJake | 0:85855ecd3257 | 3147 | { |
Vkadaba | 5:0728bde67bdb | 3148 | ADMW_LOG_ERROR("LUT signature incorrect (expected 0x%X, actual 0x%X)", |
Vkadaba | 5:0728bde67bdb | 3149 | ADMW_LUT_SIGNATURE, pLutHeader->signature); |
Vkadaba | 5:0728bde67bdb | 3150 | return ADMW_INVALID_SIGNATURE; |
ADIJake | 0:85855ecd3257 | 3151 | } |
ADIJake | 0:85855ecd3257 | 3152 | |
ADIJake | 0:85855ecd3257 | 3153 | for (unsigned i = 0; i < pLutHeader->numTables; i++) |
ADIJake | 0:85855ecd3257 | 3154 | { |
Vkadaba | 5:0728bde67bdb | 3155 | ADMW1001_LUT_DESCRIPTOR *pDesc = &pLutTable->descriptor; |
Vkadaba | 5:0728bde67bdb | 3156 | ADMW1001_LUT_TABLE_DATA *pData = &pLutTable->data; |
ADIJake | 0:85855ecd3257 | 3157 | unsigned short calculatedCrc; |
ADIJake | 0:85855ecd3257 | 3158 | |
ADIJake | 0:85855ecd3257 | 3159 | switch (pDesc->geometry) |
ADIJake | 0:85855ecd3257 | 3160 | { |
Vkadaba | 5:0728bde67bdb | 3161 | case ADMW1001_LUT_GEOMETRY_COEFFS: |
ADIJake | 0:85855ecd3257 | 3162 | switch (pDesc->equation) |
ADIJake | 0:85855ecd3257 | 3163 | { |
Vkadaba | 5:0728bde67bdb | 3164 | case ADMW1001_LUT_EQUATION_POLYN: |
Vkadaba | 5:0728bde67bdb | 3165 | case ADMW1001_LUT_EQUATION_POLYNEXP: |
Vkadaba | 5:0728bde67bdb | 3166 | case ADMW1001_LUT_EQUATION_QUADRATIC: |
Vkadaba | 5:0728bde67bdb | 3167 | case ADMW1001_LUT_EQUATION_STEINHART: |
Vkadaba | 5:0728bde67bdb | 3168 | case ADMW1001_LUT_EQUATION_LOGARITHMIC: |
Vkadaba | 5:0728bde67bdb | 3169 | case ADMW1001_LUT_EQUATION_BIVARIATE_POLYN: |
ADIJake | 0:85855ecd3257 | 3170 | break; |
ADIJake | 0:85855ecd3257 | 3171 | default: |
Vkadaba | 5:0728bde67bdb | 3172 | ADMW_LOG_ERROR("Invalid equation %u specified for LUT table %u", |
ADIJake | 0:85855ecd3257 | 3173 | pDesc->equation, i); |
Vkadaba | 5:0728bde67bdb | 3174 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 3175 | } |
ADIJake | 0:85855ecd3257 | 3176 | break; |
Vkadaba | 5:0728bde67bdb | 3177 | case ADMW1001_LUT_GEOMETRY_NES_1D: |
Vkadaba | 5:0728bde67bdb | 3178 | case ADMW1001_LUT_GEOMETRY_NES_2D: |
Vkadaba | 5:0728bde67bdb | 3179 | case ADMW1001_LUT_GEOMETRY_ES_1D: |
Vkadaba | 5:0728bde67bdb | 3180 | case ADMW1001_LUT_GEOMETRY_ES_2D: |
Vkadaba | 5:0728bde67bdb | 3181 | if (pDesc->equation != ADMW1001_LUT_EQUATION_LUT) { |
Vkadaba | 5:0728bde67bdb | 3182 | ADMW_LOG_ERROR("Invalid equation %u specified for LUT table %u", |
ADIJake | 0:85855ecd3257 | 3183 | pDesc->equation, i); |
Vkadaba | 5:0728bde67bdb | 3184 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 3185 | } |
ADIJake | 0:85855ecd3257 | 3186 | break; |
ADIJake | 0:85855ecd3257 | 3187 | default: |
Vkadaba | 5:0728bde67bdb | 3188 | ADMW_LOG_ERROR("Invalid geometry %u specified for LUT table %u", |
ADIJake | 0:85855ecd3257 | 3189 | pDesc->geometry, i); |
Vkadaba | 5:0728bde67bdb | 3190 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 3191 | } |
ADIJake | 0:85855ecd3257 | 3192 | |
ADIJake | 0:85855ecd3257 | 3193 | switch (pDesc->dataType) |
ADIJake | 0:85855ecd3257 | 3194 | { |
Vkadaba | 5:0728bde67bdb | 3195 | case ADMW1001_LUT_DATA_TYPE_FLOAT32: |
Vkadaba | 5:0728bde67bdb | 3196 | case ADMW1001_LUT_DATA_TYPE_FLOAT64: |
ADIJake | 0:85855ecd3257 | 3197 | break; |
ADIJake | 0:85855ecd3257 | 3198 | default: |
Vkadaba | 5:0728bde67bdb | 3199 | ADMW_LOG_ERROR("Invalid vector format %u specified for LUT table %u", |
ADIJake | 0:85855ecd3257 | 3200 | pDesc->dataType, i); |
Vkadaba | 5:0728bde67bdb | 3201 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 3202 | } |
ADIJake | 0:85855ecd3257 | 3203 | |
Vkadaba | 5:0728bde67bdb | 3204 | calculatedCrc = admw_crc16_ccitt(pData, pDesc->length); |
ADIJake | 0:85855ecd3257 | 3205 | if (calculatedCrc != pDesc->crc16) |
ADIJake | 0:85855ecd3257 | 3206 | { |
Vkadaba | 5:0728bde67bdb | 3207 | ADMW_LOG_ERROR("CRC validation failed on LUT table %u (expected 0x%04X, actual 0x%04X)", |
ADIJake | 0:85855ecd3257 | 3208 | i, pDesc->crc16, calculatedCrc); |
Vkadaba | 5:0728bde67bdb | 3209 | return ADMW_CRC_ERROR; |
ADIJake | 0:85855ecd3257 | 3210 | } |
ADIJake | 0:85855ecd3257 | 3211 | |
ADIJake | 0:85855ecd3257 | 3212 | actualLength += sizeof(*pDesc) + pDesc->length; |
ADIJake | 0:85855ecd3257 | 3213 | |
ADIJake | 0:85855ecd3257 | 3214 | /* Move to the next look-up table */ |
Vkadaba | 5:0728bde67bdb | 3215 | pLutTable = (ADMW1001_LUT_TABLE *)((uint8_t *)pLutTable + sizeof(*pDesc) + pDesc->length); |
ADIJake | 0:85855ecd3257 | 3216 | } |
ADIJake | 0:85855ecd3257 | 3217 | |
ADIJake | 0:85855ecd3257 | 3218 | if (actualLength != pLutHeader->totalLength) |
ADIJake | 0:85855ecd3257 | 3219 | { |
Vkadaba | 5:0728bde67bdb | 3220 | ADMW_LOG_ERROR("LUT table length mismatch (expected %u, actual %u)", |
ADIJake | 0:85855ecd3257 | 3221 | pLutHeader->totalLength, actualLength); |
Vkadaba | 5:0728bde67bdb | 3222 | return ADMW_WRONG_SIZE; |
ADIJake | 0:85855ecd3257 | 3223 | } |
ADIJake | 0:85855ecd3257 | 3224 | |
Vkadaba | 5:0728bde67bdb | 3225 | if (sizeof(*pLutHeader) + pLutHeader->totalLength > ADMW_LUT_MAX_SIZE) |
ADIJake | 0:85855ecd3257 | 3226 | { |
Vkadaba | 5:0728bde67bdb | 3227 | ADMW_LOG_ERROR("Maximum LUT table length (%u bytes) exceeded", |
Vkadaba | 5:0728bde67bdb | 3228 | ADMW_LUT_MAX_SIZE); |
Vkadaba | 5:0728bde67bdb | 3229 | return ADMW_WRONG_SIZE; |
ADIJake | 0:85855ecd3257 | 3230 | } |
ADIJake | 0:85855ecd3257 | 3231 | |
ADIJake | 0:85855ecd3257 | 3232 | /* Write the LUT data to the device */ |
ADIJake | 0:85855ecd3257 | 3233 | unsigned lutSize = sizeof(*pLutHeader) + pLutHeader->totalLength; |
ADIJake | 0:85855ecd3257 | 3234 | WRITE_REG_U16(hDevice, 0, CORE_LUT_OFFSET); |
ADIJake | 0:85855ecd3257 | 3235 | WRITE_REG_U8_ARRAY(hDevice, (uint8_t *)pLutData, lutSize, CORE_LUT_DATA); |
ADIJake | 0:85855ecd3257 | 3236 | |
Vkadaba | 5:0728bde67bdb | 3237 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 3238 | } |
ADIJake | 0:85855ecd3257 | 3239 | |
Vkadaba | 5:0728bde67bdb | 3240 | ADMW_RESULT admw1001_SetLutDataRaw( |
Vkadaba | 5:0728bde67bdb | 3241 | ADMW_DEVICE_HANDLE const hDevice, |
Vkadaba | 5:0728bde67bdb | 3242 | ADMW1001_LUT_RAW * const pLutData) |
ADIJake | 0:85855ecd3257 | 3243 | { |
Vkadaba | 5:0728bde67bdb | 3244 | return admw1001_SetLutData(hDevice, |
Vkadaba | 5:0728bde67bdb | 3245 | (ADMW1001_LUT *)pLutData); |
ADIJake | 0:85855ecd3257 | 3246 | } |
ADIJake | 0:85855ecd3257 | 3247 | |
Vkadaba | 5:0728bde67bdb | 3248 | static ADMW_RESULT getLutTableSize( |
Vkadaba | 5:0728bde67bdb | 3249 | ADMW1001_LUT_DESCRIPTOR * const pDesc, |
Vkadaba | 5:0728bde67bdb | 3250 | ADMW1001_LUT_TABLE_DATA * const pData, |
ADIJake | 0:85855ecd3257 | 3251 | unsigned *pLength) |
ADIJake | 0:85855ecd3257 | 3252 | { |
ADIJake | 0:85855ecd3257 | 3253 | switch (pDesc->geometry) |
ADIJake | 0:85855ecd3257 | 3254 | { |
Vkadaba | 5:0728bde67bdb | 3255 | case ADMW1001_LUT_GEOMETRY_COEFFS: |
Vkadaba | 5:0728bde67bdb | 3256 | if (pDesc->equation == ADMW1001_LUT_EQUATION_BIVARIATE_POLYN) |
Vkadaba | 5:0728bde67bdb | 3257 | *pLength = ADMW1001_LUT_2D_POLYN_COEFF_LIST_SIZE(pData->coeffList2d); |
ADIJake | 0:85855ecd3257 | 3258 | else |
Vkadaba | 5:0728bde67bdb | 3259 | *pLength = ADMW1001_LUT_COEFF_LIST_SIZE(pData->coeffList); |
ADIJake | 0:85855ecd3257 | 3260 | break; |
Vkadaba | 5:0728bde67bdb | 3261 | case ADMW1001_LUT_GEOMETRY_NES_1D: |
Vkadaba | 5:0728bde67bdb | 3262 | *pLength = ADMW1001_LUT_1D_NES_SIZE(pData->lut1dNes); |
ADIJake | 0:85855ecd3257 | 3263 | break; |
Vkadaba | 5:0728bde67bdb | 3264 | case ADMW1001_LUT_GEOMETRY_NES_2D: |
Vkadaba | 5:0728bde67bdb | 3265 | *pLength = ADMW1001_LUT_2D_NES_SIZE(pData->lut2dNes); |
ADIJake | 0:85855ecd3257 | 3266 | break; |
Vkadaba | 5:0728bde67bdb | 3267 | case ADMW1001_LUT_GEOMETRY_ES_1D: |
Vkadaba | 5:0728bde67bdb | 3268 | *pLength = ADMW1001_LUT_1D_ES_SIZE(pData->lut1dEs); |
ADIJake | 0:85855ecd3257 | 3269 | break; |
Vkadaba | 5:0728bde67bdb | 3270 | case ADMW1001_LUT_GEOMETRY_ES_2D: |
Vkadaba | 5:0728bde67bdb | 3271 | *pLength = ADMW1001_LUT_2D_ES_SIZE(pData->lut2dEs); |
ADIJake | 0:85855ecd3257 | 3272 | break; |
ADIJake | 0:85855ecd3257 | 3273 | default: |
Vkadaba | 5:0728bde67bdb | 3274 | ADMW_LOG_ERROR("Invalid LUT table geometry %d specified\r\n", |
ADIJake | 0:85855ecd3257 | 3275 | pDesc->geometry); |
Vkadaba | 5:0728bde67bdb | 3276 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 3277 | } |
ADIJake | 0:85855ecd3257 | 3278 | |
Vkadaba | 5:0728bde67bdb | 3279 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 3280 | } |
ADIJake | 0:85855ecd3257 | 3281 | |
Vkadaba | 5:0728bde67bdb | 3282 | ADMW_RESULT admw1001_AssembleLutData( |
Vkadaba | 5:0728bde67bdb | 3283 | ADMW1001_LUT * pLutBuffer, |
ADIJake | 0:85855ecd3257 | 3284 | unsigned nLutBufferSize, |
ADIJake | 0:85855ecd3257 | 3285 | unsigned const nNumTables, |
Vkadaba | 5:0728bde67bdb | 3286 | ADMW1001_LUT_DESCRIPTOR * const ppDesc[], |
Vkadaba | 5:0728bde67bdb | 3287 | ADMW1001_LUT_TABLE_DATA * const ppData[]) |
ADIJake | 0:85855ecd3257 | 3288 | { |
Vkadaba | 5:0728bde67bdb | 3289 | ADMW1001_LUT_HEADER *pHdr = &pLutBuffer->header; |
ADIJake | 0:85855ecd3257 | 3290 | uint8_t *pLutTableData = (uint8_t *)pLutBuffer + sizeof(*pHdr); |
ADIJake | 0:85855ecd3257 | 3291 | |
ADIJake | 0:85855ecd3257 | 3292 | if (sizeof(*pHdr) > nLutBufferSize) |
ADIJake | 0:85855ecd3257 | 3293 | { |
Vkadaba | 5:0728bde67bdb | 3294 | ADMW_LOG_ERROR("Insufficient LUT buffer size provided"); |
Vkadaba | 5:0728bde67bdb | 3295 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 3296 | } |
ADIJake | 0:85855ecd3257 | 3297 | |
ADIJake | 0:85855ecd3257 | 3298 | /* First initialise the top-level header */ |
Vkadaba | 5:0728bde67bdb | 3299 | pHdr->signature = ADMW_LUT_SIGNATURE; |
ADIJake | 0:85855ecd3257 | 3300 | pHdr->version.major = 1; |
ADIJake | 0:85855ecd3257 | 3301 | pHdr->version.minor = 0; |
ADIJake | 0:85855ecd3257 | 3302 | pHdr->numTables = 0; |
ADIJake | 0:85855ecd3257 | 3303 | pHdr->totalLength = 0; |
ADIJake | 0:85855ecd3257 | 3304 | |
ADIJake | 0:85855ecd3257 | 3305 | /* |
ADIJake | 0:85855ecd3257 | 3306 | * Walk through the list of table pointers provided, appending the table |
ADIJake | 0:85855ecd3257 | 3307 | * descriptor+data from each one to the provided LUT buffer |
ADIJake | 0:85855ecd3257 | 3308 | */ |
ADIJake | 0:85855ecd3257 | 3309 | for (unsigned i = 0; i < nNumTables; i++) |
ADIJake | 0:85855ecd3257 | 3310 | { |
Vkadaba | 5:0728bde67bdb | 3311 | ADMW1001_LUT_DESCRIPTOR * const pDesc = ppDesc[i]; |
Vkadaba | 5:0728bde67bdb | 3312 | ADMW1001_LUT_TABLE_DATA * const pData = ppData[i]; |
Vkadaba | 5:0728bde67bdb | 3313 | ADMW_RESULT res; |
ADIJake | 0:85855ecd3257 | 3314 | unsigned dataLength = 0; |
ADIJake | 0:85855ecd3257 | 3315 | |
ADIJake | 0:85855ecd3257 | 3316 | /* Calculate the length of the table data */ |
ADIJake | 0:85855ecd3257 | 3317 | res = getLutTableSize(pDesc, pData, &dataLength); |
Vkadaba | 5:0728bde67bdb | 3318 | if (res != ADMW_SUCCESS) |
ADIJake | 0:85855ecd3257 | 3319 | return res; |
ADIJake | 0:85855ecd3257 | 3320 | |
ADIJake | 0:85855ecd3257 | 3321 | /* Fill in the table descriptor length and CRC fields */ |
ADIJake | 0:85855ecd3257 | 3322 | pDesc->length = dataLength; |
Vkadaba | 5:0728bde67bdb | 3323 | pDesc->crc16 = admw_crc16_ccitt(pData, dataLength); |
ADIJake | 0:85855ecd3257 | 3324 | |
ADIJake | 0:85855ecd3257 | 3325 | if ((sizeof(*pHdr) + pHdr->totalLength + sizeof(*pDesc) + dataLength) > nLutBufferSize) |
ADIJake | 0:85855ecd3257 | 3326 | { |
Vkadaba | 5:0728bde67bdb | 3327 | ADMW_LOG_ERROR("Insufficient LUT buffer size provided"); |
Vkadaba | 5:0728bde67bdb | 3328 | return ADMW_INVALID_PARAM; |
ADIJake | 0:85855ecd3257 | 3329 | } |
ADIJake | 0:85855ecd3257 | 3330 | |
ADIJake | 0:85855ecd3257 | 3331 | /* Append the table to the LUT buffer (desc + data) */ |
ADIJake | 0:85855ecd3257 | 3332 | memcpy(pLutTableData + pHdr->totalLength, pDesc, sizeof(*pDesc)); |
ADIJake | 0:85855ecd3257 | 3333 | pHdr->totalLength += sizeof(*pDesc); |
ADIJake | 0:85855ecd3257 | 3334 | memcpy(pLutTableData + pHdr->totalLength, pData, dataLength); |
ADIJake | 0:85855ecd3257 | 3335 | pHdr->totalLength += dataLength; |
ADIJake | 0:85855ecd3257 | 3336 | |
ADIJake | 0:85855ecd3257 | 3337 | pHdr->numTables++; |
ADIJake | 0:85855ecd3257 | 3338 | } |
ADIJake | 0:85855ecd3257 | 3339 | |
Vkadaba | 5:0728bde67bdb | 3340 | return ADMW_SUCCESS; |
ADIJake | 0:85855ecd3257 | 3341 | } |
ADIJake | 0:85855ecd3257 | 3342 |