ARM
Diff: MFRC522.cpp
- Revision:
- 0:f266ca250f98
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/MFRC522.cpp Sat Oct 14 12:58:38 2017 +0000 @@ -0,0 +1,1154 @@ +/* +* MFRC522.cpp - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI W AND R BY COOQROBOT. +* _Please_ see the comments in MFRC522.h - they give useful hints and background. +* Released into the public domain. +*/ + +#include "MFRC522.h" + +static const char* const _TypeNamePICC[] = +{ + "Unknown type", + "PICC compliant with ISO/IEC 14443-4", + "PICC compliant with ISO/IEC 18092 (NFC)", + "MIFARE Mini, 320 bytes", + "MIFARE 1KB", + "MIFARE 4KB", + "MIFARE Ultralight or Ultralight C", + "MIFARE Plus", + "MIFARE TNP3XXX", + + /* not complete UID */ + "SAK indicates UID is not complete" +}; + +static const char* const _ErrorMessage[] = +{ + "Unknown error", + "Success", + "Error in communication", + "Collision detected", + "Timeout in communication", + "A buffer is not big enough", + "Internal error in the code, should not happen", + "Invalid argument", + "The CRC_A does not match", + "A MIFARE PICC responded with NAK" +}; + +#define MFRC522_MaxPICCs (sizeof(_TypeNamePICC)/sizeof(_TypeNamePICC[0])) +#define MFRC522_MaxError (sizeof(_ErrorMessage)/sizeof(_ErrorMessage[0])) + +///////////////////////////////////////////////////////////////////////////////////// +// Functions for setting up the driver +///////////////////////////////////////////////////////////////////////////////////// + +/** + * Constructor. + * Prepares the output pins. + */ +MFRC522::MFRC522(PinName mosi, + PinName miso, + PinName sclk, + PinName cs, + PinName reset) : m_SPI(mosi, miso, sclk), m_CS(cs), m_RESET(reset) +{ + /* Configure SPI bus */ + m_SPI.format(8, 0); + m_SPI.frequency(8000000); + + /* Release SPI-CS pin */ + m_CS = 1; + + /* Release RESET pin */ + m_RESET = 1; +} // End constructor + + +/** + * Destructor. + */ +MFRC522::~MFRC522() +{ + +} + + +///////////////////////////////////////////////////////////////////////////////////// +// Basic interface functions for communicating with the MFRC522 +///////////////////////////////////////////////////////////////////////////////////// + +/** + * Writes a byte to the specified register in the MFRC522 chip. + * The interface is described in the datasheet section 8.1.2. + */ +void MFRC522::PCD_WriteRegister(uint8_t reg, uint8_t value) +{ + m_CS = 0; /* Select SPI Chip MFRC522 */ + + // MSB == 0 is for writing. LSB is not used in address. Datasheet section 8.1.2.3. + (void) m_SPI.write(reg & 0x7E); + (void) m_SPI.write(value); + + m_CS = 1; /* Release SPI Chip MFRC522 */ +} // End PCD_WriteRegister() + +/** + * Writes a number of bytes to the specified register in the MFRC522 chip. + * The interface is described in the datasheet section 8.1.2. + */ +void MFRC522::PCD_WriteRegister(uint8_t reg, uint8_t count, uint8_t *values) +{ + m_CS = 0; /* Select SPI Chip MFRC522 */ + + // MSB == 0 is for writing. LSB is not used in address. Datasheet section 8.1.2.3. + (void) m_SPI.write(reg & 0x7E); + for (uint8_t index = 0; index < count; index++) + { + (void) m_SPI.write(values[index]); + } + + m_CS = 1; /* Release SPI Chip MFRC522 */ +} // End PCD_WriteRegister() + +/** + * Reads a byte from the specified register in the MFRC522 chip. + * The interface is described in the datasheet section 8.1.2. + */ +uint8_t MFRC522::PCD_ReadRegister(uint8_t reg) +{ + uint8_t value; + m_CS = 0; /* Select SPI Chip MFRC522 */ + + // MSB == 1 is for reading. LSB is not used in address. Datasheet section 8.1.2.3. + (void) m_SPI.write(0x80 | reg); + + // Read the value back. Send 0 to stop reading. + value = m_SPI.write(0); + + m_CS = 1; /* Release SPI Chip MFRC522 */ + + return value; +} // End PCD_ReadRegister() + +/** + * Reads a number of bytes from the specified register in the MFRC522 chip. + * The interface is described in the datasheet section 8.1.2. + */ +void MFRC522::PCD_ReadRegister(uint8_t reg, uint8_t count, uint8_t *values, uint8_t rxAlign) +{ + if (count == 0) { return; } + + uint8_t address = 0x80 | reg; // MSB == 1 is for reading. LSB is not used in address. Datasheet section 8.1.2.3. + uint8_t index = 0; // Index in values array. + + m_CS = 0; /* Select SPI Chip MFRC522 */ + count--; // One read is performed outside of the loop + (void) m_SPI.write(address); // Tell MFRC522 which address we want to read + + while (index < count) + { + if ((index == 0) && rxAlign) // Only update bit positions rxAlign..7 in values[0] + { + // Create bit mask for bit positions rxAlign..7 + uint8_t mask = 0; + for (uint8_t i = rxAlign; i <= 7; i++) + { + mask |= (1 << i); + } + + // Read value and tell that we want to read the same address again. + uint8_t value = m_SPI.write(address); + + // Apply mask to both current value of values[0] and the new data in value. + values[0] = (values[index] & ~mask) | (value & mask); + } + else + { + // Read value and tell that we want to read the same address again. + values[index] = m_SPI.write(address); + } + + index++; + } + + values[index] = m_SPI.write(0); // Read the final byte. Send 0 to stop reading. + + m_CS = 1; /* Release SPI Chip MFRC522 */ +} // End PCD_ReadRegister() + +/** + * Sets the bits given in mask in register reg. + */ +void MFRC522::PCD_SetRegisterBits(uint8_t reg, uint8_t mask) +{ + uint8_t tmp = PCD_ReadRegister(reg); + PCD_WriteRegister(reg, tmp | mask); // set bit mask +} // End PCD_SetRegisterBitMask() + +/** + * Clears the bits given in mask from register reg. + */ +void MFRC522::PCD_ClrRegisterBits(uint8_t reg, uint8_t mask) +{ + uint8_t tmp = PCD_ReadRegister(reg); + PCD_WriteRegister(reg, tmp & (~mask)); // clear bit mask +} // End PCD_ClearRegisterBitMask() + + +/** + * Use the CRC coprocessor in the MFRC522 to calculate a CRC_A. + */ +uint8_t MFRC522::PCD_CalculateCRC(uint8_t *data, uint8_t length, uint8_t *result) +{ + PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command. + PCD_WriteRegister(DivIrqReg, 0x04); // Clear the CRCIRq interrupt request bit + PCD_SetRegisterBits(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization + PCD_WriteRegister(FIFODataReg, length, data); // Write data to the FIFO + PCD_WriteRegister(CommandReg, PCD_CalcCRC); // Start the calculation + + // Wait for the CRC calculation to complete. Each iteration of the while-loop takes 17.73us. + uint16_t i = 5000; + uint8_t n; + while (1) + { + n = PCD_ReadRegister(DivIrqReg); // DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved + if (n & 0x04) + { + // CRCIRq bit set - calculation done + break; + } + + if (--i == 0) + { + // The emergency break. We will eventually terminate on this one after 89ms. + // Communication with the MFRC522 might be down. + return STATUS_TIMEOUT; + } + } + + // Stop calculating CRC for new content in the FIFO. + PCD_WriteRegister(CommandReg, PCD_Idle); + + // Transfer the result from the registers to the result buffer + result[0] = PCD_ReadRegister(CRCResultRegL); + result[1] = PCD_ReadRegister(CRCResultRegH); + return STATUS_OK; +} // End PCD_CalculateCRC() + + +///////////////////////////////////////////////////////////////////////////////////// +// Functions for manipulating the MFRC522 +///////////////////////////////////////////////////////////////////////////////////// + +/** + * Initializes the MFRC522 chip. + */ +void MFRC522::PCD_Init() +{ + /* Reset MFRC522 */ + m_RESET = 0; + wait_ms(10); + m_RESET = 1; + + // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74us. Let us be generous: 50ms. + wait_ms(50); + + // When communicating with a PICC we need a timeout if something goes wrong. + // f_timer = 13.56 MHz / (2*TPreScaler+1) where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo]. + // TPrescaler_Hi are the four low bits in TModeReg. TPrescaler_Lo is TPrescalerReg. + PCD_WriteRegister(TModeReg, 0x80); // TAuto=1; timer starts automatically at the end of the transmission in all communication modes at all speeds + PCD_WriteRegister(TPrescalerReg, 0xA9); // TPreScaler = TModeReg[3..0]:TPrescalerReg, ie 0x0A9 = 169 => f_timer=40kHz, ie a timer period of 25us. + PCD_WriteRegister(TReloadRegH, 0x03); // Reload timer with 0x3E8 = 1000, ie 25ms before timeout. + PCD_WriteRegister(TReloadRegL, 0xE8); + + PCD_WriteRegister(TxASKReg, 0x40); // Default 0x00. Force a 100 % ASK modulation independent of the ModGsPReg register setting + PCD_WriteRegister(ModeReg, 0x3D); // Default 0x3F. Set the preset value for the CRC coprocessor for the CalcCRC command to 0x6363 (ISO 14443-3 part 6.2.4) + + PCD_WriteRegister(RFCfgReg, (0x07<<4)); // Set Rx Gain to max + + PCD_AntennaOn(); // Enable the antenna driver pins TX1 and TX2 (they were disabled by the reset) +} // End PCD_Init() + +/** + * Performs a soft reset on the MFRC522 chip and waits for it to be ready again. + */ +void MFRC522::PCD_Reset() +{ + PCD_WriteRegister(CommandReg, PCD_SoftReset); // Issue the SoftReset command. + // The datasheet does not mention how long the SoftRest command takes to complete. + // But the MFRC522 might have been in soft power-down mode (triggered by bit 4 of CommandReg) + // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74us. Let us be generous: 50ms. + wait_ms(50); + + // Wait for the PowerDown bit in CommandReg to be cleared + while (PCD_ReadRegister(CommandReg) & (1<<4)) + { + // PCD still restarting - unlikely after waiting 50ms, but better safe than sorry. + } +} // End PCD_Reset() + +/** + * Turns the antenna on by enabling pins TX1 and TX2. + * After a reset these pins disabled. + */ +void MFRC522::PCD_AntennaOn() +{ + uint8_t value = PCD_ReadRegister(TxControlReg); + if ((value & 0x03) != 0x03) + { + PCD_WriteRegister(TxControlReg, value | 0x03); + } +} // End PCD_AntennaOn() + +///////////////////////////////////////////////////////////////////////////////////// +// Functions for communicating with PICCs +///////////////////////////////////////////////////////////////////////////////////// + +/** + * Executes the Transceive command. + * CRC validation can only be done if backData and backLen are specified. + */ +uint8_t MFRC522::PCD_TransceiveData(uint8_t *sendData, + uint8_t sendLen, + uint8_t *backData, + uint8_t *backLen, + uint8_t *validBits, + uint8_t rxAlign, + bool checkCRC) +{ + uint8_t waitIRq = 0x30; // RxIRq and IdleIRq + return PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, sendData, sendLen, backData, backLen, validBits, rxAlign, checkCRC); +} // End PCD_TransceiveData() + +/** + * Transfers data to the MFRC522 FIFO, executes a commend, waits for completion and transfers data back from the FIFO. + * CRC validation can only be done if backData and backLen are specified. + */ +uint8_t MFRC522::PCD_CommunicateWithPICC(uint8_t command, + uint8_t waitIRq, + uint8_t *sendData, + uint8_t sendLen, + uint8_t *backData, + uint8_t *backLen, + uint8_t *validBits, + uint8_t rxAlign, + bool checkCRC) +{ + uint8_t n, _validBits = 0; + uint32_t i; + + // Prepare values for BitFramingReg + uint8_t txLastBits = validBits ? *validBits : 0; + uint8_t bitFraming = (rxAlign << 4) + txLastBits; // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0] + + PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command. + PCD_WriteRegister(ComIrqReg, 0x7F); // Clear all seven interrupt request bits + PCD_SetRegisterBits(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization + PCD_WriteRegister(FIFODataReg, sendLen, sendData); // Write sendData to the FIFO + PCD_WriteRegister(BitFramingReg, bitFraming); // Bit adjustments + PCD_WriteRegister(CommandReg, command); // Execute the command + if (command == PCD_Transceive) + { + PCD_SetRegisterBits(BitFramingReg, 0x80); // StartSend=1, transmission of data starts + } + + // Wait for the command to complete. + // In PCD_Init() we set the TAuto flag in TModeReg. This means the timer automatically starts when the PCD stops transmitting. + // Each iteration of the do-while-loop takes 17.86us. + i = 2000; + while (1) + { + n = PCD_ReadRegister(ComIrqReg); // ComIrqReg[7..0] bits are: Set1 TxIRq RxIRq IdleIRq HiAlertIRq LoAlertIRq ErrIRq TimerIRq + if (n & waitIRq) + { // One of the interrupts that signal success has been set. + break; + } + + if (n & 0x01) + { // Timer interrupt - nothing received in 25ms + return STATUS_TIMEOUT; + } + + if (--i == 0) + { // The emergency break. If all other condions fail we will eventually terminate on this one after 35.7ms. Communication with the MFRC522 might be down. + return STATUS_TIMEOUT; + } + } + + // Stop now if any errors except collisions were detected. + uint8_t errorRegValue = PCD_ReadRegister(ErrorReg); // ErrorReg[7..0] bits are: WrErr TempErr reserved BufferOvfl CollErr CRCErr ParityErr ProtocolErr + if (errorRegValue & 0x13) + { // BufferOvfl ParityErr ProtocolErr + return STATUS_ERROR; + } + + // If the caller wants data back, get it from the MFRC522. + if (backData && backLen) + { + n = PCD_ReadRegister(FIFOLevelReg); // Number of bytes in the FIFO + if (n > *backLen) + { + return STATUS_NO_ROOM; + } + + *backLen = n; // Number of bytes returned + PCD_ReadRegister(FIFODataReg, n, backData, rxAlign); // Get received data from FIFO + _validBits = PCD_ReadRegister(ControlReg) & 0x07; // RxLastBits[2:0] indicates the number of valid bits in the last received byte. If this value is 000b, the whole byte is valid. + if (validBits) + { + *validBits = _validBits; + } + } + + // Tell about collisions + if (errorRegValue & 0x08) + { // CollErr + return STATUS_COLLISION; + } + + // Perform CRC_A validation if requested. + if (backData && backLen && checkCRC) + { + // In this case a MIFARE Classic NAK is not OK. + if ((*backLen == 1) && (_validBits == 4)) + { + return STATUS_MIFARE_NACK; + } + + // We need at least the CRC_A value and all 8 bits of the last byte must be received. + if ((*backLen < 2) || (_validBits != 0)) + { + return STATUS_CRC_WRONG; + } + + // Verify CRC_A - do our own calculation and store the control in controlBuffer. + uint8_t controlBuffer[2]; + n = PCD_CalculateCRC(&backData[0], *backLen - 2, &controlBuffer[0]); + if (n != STATUS_OK) + { + return n; + } + + if ((backData[*backLen - 2] != controlBuffer[0]) || (backData[*backLen - 1] != controlBuffer[1])) + { + return STATUS_CRC_WRONG; + } + } + + return STATUS_OK; +} // End PCD_CommunicateWithPICC() + +/* + * Transmits a REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame. + * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. + */ +uint8_t MFRC522::PICC_RequestA(uint8_t *bufferATQA, uint8_t *bufferSize) +{ + return PICC_REQA_or_WUPA(PICC_CMD_REQA, bufferATQA, bufferSize); +} // End PICC_RequestA() + +/** + * Transmits a Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame. + * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. + */ +uint8_t MFRC522::PICC_WakeupA(uint8_t *bufferATQA, uint8_t *bufferSize) +{ + return PICC_REQA_or_WUPA(PICC_CMD_WUPA, bufferATQA, bufferSize); +} // End PICC_WakeupA() + +/* + * Transmits REQA or WUPA commands. + * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. + */ +uint8_t MFRC522::PICC_REQA_or_WUPA(uint8_t command, uint8_t *bufferATQA, uint8_t *bufferSize) +{ + uint8_t validBits; + uint8_t status; + + if (bufferATQA == NULL || *bufferSize < 2) + { // The ATQA response is 2 bytes long. + return STATUS_NO_ROOM; + } + + // ValuesAfterColl=1 => Bits received after collision are cleared. + PCD_ClrRegisterBits(CollReg, 0x80); + + // For REQA and WUPA we need the short frame format + // - transmit only 7 bits of the last (and only) byte. TxLastBits = BitFramingReg[2..0] + validBits = 7; + + status = PCD_TransceiveData(&command, 1, bufferATQA, bufferSize, &validBits); + if (status != STATUS_OK) + { + return status; + } + + if ((*bufferSize != 2) || (validBits != 0)) + { // ATQA must be exactly 16 bits. + return STATUS_ERROR; + } + + return STATUS_OK; +} // End PICC_REQA_or_WUPA() + +/* + * Transmits SELECT/ANTICOLLISION commands to select a single PICC. + */ +uint8_t MFRC522::PICC_Select(Uid *uid, uint8_t validBits) +{ + bool uidComplete; + bool selectDone; + bool useCascadeTag; + uint8_t cascadeLevel = 1; + uint8_t result; + uint8_t count; + uint8_t index; + uint8_t uidIndex; // The first index in uid->uidByte[] that is used in the current Cascade Level. + uint8_t currentLevelKnownBits; // The number of known UID bits in the current Cascade Level. + uint8_t buffer[9]; // The SELECT/ANTICOLLISION commands uses a 7 byte standard frame + 2 bytes CRC_A + uint8_t bufferUsed; // The number of bytes used in the buffer, ie the number of bytes to transfer to the FIFO. + uint8_t rxAlign; // Used in BitFramingReg. Defines the bit position for the first bit received. + uint8_t txLastBits; // Used in BitFramingReg. The number of valid bits in the last transmitted byte. + uint8_t *responseBuffer; + uint8_t responseLength; + + // Description of buffer structure: + // Byte 0: SEL Indicates the Cascade Level: PICC_CMD_SEL_CL1, PICC_CMD_SEL_CL2 or PICC_CMD_SEL_CL3 + // Byte 1: NVB Number of Valid Bits (in complete command, not just the UID): High nibble: complete bytes, Low nibble: Extra bits. + // Byte 2: UID-data or CT See explanation below. CT means Cascade Tag. + // Byte 3: UID-data + // Byte 4: UID-data + // Byte 5: UID-data + // Byte 6: BCC Block Check Character - XOR of bytes 2-5 + // Byte 7: CRC_A + // Byte 8: CRC_A + // The BCC and CRC_A is only transmitted if we know all the UID bits of the current Cascade Level. + // + // Description of bytes 2-5: (Section 6.5.4 of the ISO/IEC 14443-3 draft: UID contents and cascade levels) + // UID size Cascade level Byte2 Byte3 Byte4 Byte5 + // ======== ============= ===== ===== ===== ===== + // 4 bytes 1 uid0 uid1 uid2 uid3 + // 7 bytes 1 CT uid0 uid1 uid2 + // 2 uid3 uid4 uid5 uid6 + // 10 bytes 1 CT uid0 uid1 uid2 + // 2 CT uid3 uid4 uid5 + // 3 uid6 uid7 uid8 uid9 + + // Sanity checks + if (validBits > 80) + { + return STATUS_INVALID; + } + + // Prepare MFRC522 + // ValuesAfterColl=1 => Bits received after collision are cleared. + PCD_ClrRegisterBits(CollReg, 0x80); + + // Repeat Cascade Level loop until we have a complete UID. + uidComplete = false; + while ( ! uidComplete) + { + // Set the Cascade Level in the SEL byte, find out if we need to use the Cascade Tag in byte 2. + switch (cascadeLevel) + { + case 1: + buffer[0] = PICC_CMD_SEL_CL1; + uidIndex = 0; + useCascadeTag = validBits && (uid->size > 4); // When we know that the UID has more than 4 bytes + break; + + case 2: + buffer[0] = PICC_CMD_SEL_CL2; + uidIndex = 3; + useCascadeTag = validBits && (uid->size > 7); // When we know that the UID has more than 7 bytes + break; + + case 3: + buffer[0] = PICC_CMD_SEL_CL3; + uidIndex = 6; + useCascadeTag = false; // Never used in CL3. + break; + + default: + return STATUS_INTERNAL_ERROR; + //break; + } + + // How many UID bits are known in this Cascade Level? + if(validBits > (8 * uidIndex)) + { + currentLevelKnownBits = validBits - (8 * uidIndex); + } + else + { + currentLevelKnownBits = 0; + } + + // Copy the known bits from uid->uidByte[] to buffer[] + index = 2; // destination index in buffer[] + if (useCascadeTag) + { + buffer[index++] = PICC_CMD_CT; + } + + uint8_t bytesToCopy = currentLevelKnownBits / 8 + (currentLevelKnownBits % 8 ? 1 : 0); // The number of bytes needed to represent the known bits for this level. + if (bytesToCopy) + { + // Max 4 bytes in each Cascade Level. Only 3 left if we use the Cascade Tag + uint8_t maxBytes = useCascadeTag ? 3 : 4; + if (bytesToCopy > maxBytes) + { + bytesToCopy = maxBytes; + } + + for (count = 0; count < bytesToCopy; count++) + { + buffer[index++] = uid->uidByte[uidIndex + count]; + } + } + + // Now that the data has been copied we need to include the 8 bits in CT in currentLevelKnownBits + if (useCascadeTag) + { + currentLevelKnownBits += 8; + } + + // Repeat anti collision loop until we can transmit all UID bits + BCC and receive a SAK - max 32 iterations. + selectDone = false; + while ( ! selectDone) + { + // Find out how many bits and bytes to send and receive. + if (currentLevelKnownBits >= 32) + { // All UID bits in this Cascade Level are known. This is a SELECT. + //Serial.print("SELECT: currentLevelKnownBits="); Serial.println(currentLevelKnownBits, DEC); + buffer[1] = 0x70; // NVB - Number of Valid Bits: Seven whole bytes + + // Calulate BCC - Block Check Character + buffer[6] = buffer[2] ^ buffer[3] ^ buffer[4] ^ buffer[5]; + + // Calculate CRC_A + result = PCD_CalculateCRC(buffer, 7, &buffer[7]); + if (result != STATUS_OK) + { + return result; + } + + txLastBits = 0; // 0 => All 8 bits are valid. + bufferUsed = 9; + + // Store response in the last 3 bytes of buffer (BCC and CRC_A - not needed after tx) + responseBuffer = &buffer[6]; + responseLength = 3; + } + else + { // This is an ANTICOLLISION. + //Serial.print("ANTICOLLISION: currentLevelKnownBits="); Serial.println(currentLevelKnownBits, DEC); + txLastBits = currentLevelKnownBits % 8; + count = currentLevelKnownBits / 8; // Number of whole bytes in the UID part. + index = 2 + count; // Number of whole bytes: SEL + NVB + UIDs + buffer[1] = (index << 4) + txLastBits; // NVB - Number of Valid Bits + bufferUsed = index + (txLastBits ? 1 : 0); + + // Store response in the unused part of buffer + responseBuffer = &buffer[index]; + responseLength = sizeof(buffer) - index; + } + + // Set bit adjustments + rxAlign = txLastBits; // Having a seperate variable is overkill. But it makes the next line easier to read. + PCD_WriteRegister(BitFramingReg, (rxAlign << 4) + txLastBits); // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0] + + // Transmit the buffer and receive the response. + result = PCD_TransceiveData(buffer, bufferUsed, responseBuffer, &responseLength, &txLastBits, rxAlign); + if (result == STATUS_COLLISION) + { // More than one PICC in the field => collision. + result = PCD_ReadRegister(CollReg); // CollReg[7..0] bits are: ValuesAfterColl reserved CollPosNotValid CollPos[4:0] + if (result & 0x20) + { // CollPosNotValid + return STATUS_COLLISION; // Without a valid collision position we cannot continue + } + + uint8_t collisionPos = result & 0x1F; // Values 0-31, 0 means bit 32. + if (collisionPos == 0) + { + collisionPos = 32; + } + + if (collisionPos <= currentLevelKnownBits) + { // No progress - should not happen + return STATUS_INTERNAL_ERROR; + } + + // Choose the PICC with the bit set. + currentLevelKnownBits = collisionPos; + count = (currentLevelKnownBits - 1) % 8; // The bit to modify + index = 1 + (currentLevelKnownBits / 8) + (count ? 1 : 0); // First byte is index 0. + buffer[index] |= (1 << count); + } + else if (result != STATUS_OK) + { + return result; + } + else + { // STATUS_OK + if (currentLevelKnownBits >= 32) + { // This was a SELECT. + selectDone = true; // No more anticollision + // We continue below outside the while. + } + else + { // This was an ANTICOLLISION. + // We now have all 32 bits of the UID in this Cascade Level + currentLevelKnownBits = 32; + // Run loop again to do the SELECT. + } + } + } // End of while ( ! selectDone) + + // We do not check the CBB - it was constructed by us above. + + // Copy the found UID bytes from buffer[] to uid->uidByte[] + index = (buffer[2] == PICC_CMD_CT) ? 3 : 2; // source index in buffer[] + bytesToCopy = (buffer[2] == PICC_CMD_CT) ? 3 : 4; + for (count = 0; count < bytesToCopy; count++) + { + uid->uidByte[uidIndex + count] = buffer[index++]; + } + + // Check response SAK (Select Acknowledge) + if (responseLength != 3 || txLastBits != 0) + { // SAK must be exactly 24 bits (1 byte + CRC_A). + return STATUS_ERROR; + } + + // Verify CRC_A - do our own calculation and store the control in buffer[2..3] - those bytes are not needed anymore. + result = PCD_CalculateCRC(responseBuffer, 1, &buffer[2]); + if (result != STATUS_OK) + { + return result; + } + + if ((buffer[2] != responseBuffer[1]) || (buffer[3] != responseBuffer[2])) + { + return STATUS_CRC_WRONG; + } + + if (responseBuffer[0] & 0x04) + { // Cascade bit set - UID not complete yes + cascadeLevel++; + } + else + { + uidComplete = true; + uid->sak = responseBuffer[0]; + } + } // End of while ( ! uidComplete) + + // Set correct uid->size + uid->size = 3 * cascadeLevel + 1; + + return STATUS_OK; +} // End PICC_Select() + +/* + * Instructs a PICC in state ACTIVE(*) to go to state HALT. + */ +uint8_t MFRC522::PICC_HaltA() +{ + uint8_t result; + uint8_t buffer[4]; + + // Build command buffer + buffer[0] = PICC_CMD_HLTA; + buffer[1] = 0; + + // Calculate CRC_A + result = PCD_CalculateCRC(buffer, 2, &buffer[2]); + if (result == STATUS_OK) + { + // Send the command. + // The standard says: + // If the PICC responds with any modulation during a period of 1 ms after the end of the frame containing the + // HLTA command, this response shall be interpreted as 'not acknowledge'. + // We interpret that this way: Only STATUS_TIMEOUT is an success. + result = PCD_TransceiveData(buffer, sizeof(buffer), NULL, 0); + if (result == STATUS_TIMEOUT) + { + result = STATUS_OK; + } + else if (result == STATUS_OK) + { // That is ironically NOT ok in this case ;-) + result = STATUS_ERROR; + } + } + + return result; +} // End PICC_HaltA() + + +///////////////////////////////////////////////////////////////////////////////////// +// Functions for communicating with MIFARE PICCs +///////////////////////////////////////////////////////////////////////////////////// + +/* + * Executes the MFRC522 MFAuthent command. + */ +uint8_t MFRC522::PCD_Authenticate(uint8_t command, uint8_t blockAddr, MIFARE_Key *key, Uid *uid) +{ + uint8_t i, waitIRq = 0x10; // IdleIRq + + // Build command buffer + uint8_t sendData[12]; + sendData[0] = command; + sendData[1] = blockAddr; + + for (i = 0; i < MF_KEY_SIZE; i++) + { // 6 key bytes + sendData[2+i] = key->keyByte[i]; + } + + for (i = 0; i < 4; i++) + { // The first 4 bytes of the UID + sendData[8+i] = uid->uidByte[i]; + } + + // Start the authentication. + return PCD_CommunicateWithPICC(PCD_MFAuthent, waitIRq, &sendData[0], sizeof(sendData)); +} // End PCD_Authenticate() + +/* + * Used to exit the PCD from its authenticated state. + * Remember to call this function after communicating with an authenticated PICC - otherwise no new communications can start. + */ +void MFRC522::PCD_StopCrypto1() +{ + // Clear MFCrypto1On bit + PCD_ClrRegisterBits(Status2Reg, 0x08); // Status2Reg[7..0] bits are: TempSensClear I2CForceHS reserved reserved MFCrypto1On ModemState[2:0] +} // End PCD_StopCrypto1() + +/* + * Reads 16 bytes (+ 2 bytes CRC_A) from the active PICC. + */ +uint8_t MFRC522::MIFARE_Read(uint8_t blockAddr, uint8_t *buffer, uint8_t *bufferSize) +{ + uint8_t result = STATUS_NO_ROOM; + + // Sanity check + if ((buffer == NULL) || (*bufferSize < 18)) + { + return result; + } + + // Build command buffer + buffer[0] = PICC_CMD_MF_READ; + buffer[1] = blockAddr; + + // Calculate CRC_A + result = PCD_CalculateCRC(buffer, 2, &buffer[2]); + if (result != STATUS_OK) + { + return result; + } + + // Transmit the buffer and receive the response, validate CRC_A. + return PCD_TransceiveData(buffer, 4, buffer, bufferSize, NULL, 0, true); +} // End MIFARE_Read() + +/* + * Writes 16 bytes to the active PICC. + */ +uint8_t MFRC522::MIFARE_Write(uint8_t blockAddr, uint8_t *buffer, uint8_t bufferSize) +{ + uint8_t result; + + // Sanity check + if (buffer == NULL || bufferSize < 16) + { + return STATUS_INVALID; + } + + // Mifare Classic protocol requires two communications to perform a write. + // Step 1: Tell the PICC we want to write to block blockAddr. + uint8_t cmdBuffer[2]; + cmdBuffer[0] = PICC_CMD_MF_WRITE; + cmdBuffer[1] = blockAddr; + // Adds CRC_A and checks that the response is MF_ACK. + result = PCD_MIFARE_Transceive(cmdBuffer, 2); + if (result != STATUS_OK) + { + return result; + } + + // Step 2: Transfer the data + // Adds CRC_A and checks that the response is MF_ACK. + result = PCD_MIFARE_Transceive(buffer, bufferSize); + if (result != STATUS_OK) + { + return result; + } + + return STATUS_OK; +} // End MIFARE_Write() + +/* + * Writes a 4 byte page to the active MIFARE Ultralight PICC. + */ +uint8_t MFRC522::MIFARE_UltralightWrite(uint8_t page, uint8_t *buffer, uint8_t bufferSize) +{ + uint8_t result; + + // Sanity check + if (buffer == NULL || bufferSize < 4) + { + return STATUS_INVALID; + } + + // Build commmand buffer + uint8_t cmdBuffer[6]; + cmdBuffer[0] = PICC_CMD_UL_WRITE; + cmdBuffer[1] = page; + memcpy(&cmdBuffer[2], buffer, 4); + + // Perform the write + result = PCD_MIFARE_Transceive(cmdBuffer, 6); // Adds CRC_A and checks that the response is MF_ACK. + if (result != STATUS_OK) + { + return result; + } + + return STATUS_OK; +} // End MIFARE_Ultralight_Write() + +/* + * MIFARE Decrement subtracts the delta from the value of the addressed block, and stores the result in a volatile memory. + */ +uint8_t MFRC522::MIFARE_Decrement(uint8_t blockAddr, uint32_t delta) +{ + return MIFARE_TwoStepHelper(PICC_CMD_MF_DECREMENT, blockAddr, delta); +} // End MIFARE_Decrement() + +/* + * MIFARE Increment adds the delta to the value of the addressed block, and stores the result in a volatile memory. + */ +uint8_t MFRC522::MIFARE_Increment(uint8_t blockAddr, uint32_t delta) +{ + return MIFARE_TwoStepHelper(PICC_CMD_MF_INCREMENT, blockAddr, delta); +} // End MIFARE_Increment() + +/** + * MIFARE Restore copies the value of the addressed block into a volatile memory. + */ +uint8_t MFRC522::MIFARE_Restore(uint8_t blockAddr) +{ + // The datasheet describes Restore as a two step operation, but does not explain what data to transfer in step 2. + // Doing only a single step does not work, so I chose to transfer 0L in step two. + return MIFARE_TwoStepHelper(PICC_CMD_MF_RESTORE, blockAddr, 0L); +} // End MIFARE_Restore() + +/* + * Helper function for the two-step MIFARE Classic protocol operations Decrement, Increment and Restore. + */ +uint8_t MFRC522::MIFARE_TwoStepHelper(uint8_t command, uint8_t blockAddr, uint32_t data) +{ + uint8_t result; + uint8_t cmdBuffer[2]; // We only need room for 2 bytes. + + // Step 1: Tell the PICC the command and block address + cmdBuffer[0] = command; + cmdBuffer[1] = blockAddr; + + // Adds CRC_A and checks that the response is MF_ACK. + result = PCD_MIFARE_Transceive(cmdBuffer, 2); + if (result != STATUS_OK) + { + return result; + } + + // Step 2: Transfer the data + // Adds CRC_A and accept timeout as success. + result = PCD_MIFARE_Transceive((uint8_t *) &data, 4, true); + if (result != STATUS_OK) + { + return result; + } + + return STATUS_OK; +} // End MIFARE_TwoStepHelper() + +/* + * MIFARE Transfer writes the value stored in the volatile memory into one MIFARE Classic block. + */ +uint8_t MFRC522::MIFARE_Transfer(uint8_t blockAddr) +{ + uint8_t cmdBuffer[2]; // We only need room for 2 bytes. + + // Tell the PICC we want to transfer the result into block blockAddr. + cmdBuffer[0] = PICC_CMD_MF_TRANSFER; + cmdBuffer[1] = blockAddr; + + // Adds CRC_A and checks that the response is MF_ACK. + return PCD_MIFARE_Transceive(cmdBuffer, 2); +} // End MIFARE_Transfer() + + +///////////////////////////////////////////////////////////////////////////////////// +// Support functions +///////////////////////////////////////////////////////////////////////////////////// + +/* + * Wrapper for MIFARE protocol communication. + * Adds CRC_A, executes the Transceive command and checks that the response is MF_ACK or a timeout. + */ +uint8_t MFRC522::PCD_MIFARE_Transceive(uint8_t *sendData, uint8_t sendLen, bool acceptTimeout) +{ + uint8_t result; + uint8_t cmdBuffer[18]; // We need room for 16 bytes data and 2 bytes CRC_A. + + // Sanity check + if (sendData == NULL || sendLen > 16) + { + return STATUS_INVALID; + } + + // Copy sendData[] to cmdBuffer[] and add CRC_A + memcpy(cmdBuffer, sendData, sendLen); + result = PCD_CalculateCRC(cmdBuffer, sendLen, &cmdBuffer[sendLen]); + if (result != STATUS_OK) + { + return result; + } + + sendLen += 2; + + // Transceive the data, store the reply in cmdBuffer[] + uint8_t waitIRq = 0x30; // RxIRq and IdleIRq + uint8_t cmdBufferSize = sizeof(cmdBuffer); + uint8_t validBits = 0; + result = PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, cmdBuffer, sendLen, cmdBuffer, &cmdBufferSize, &validBits); + if (acceptTimeout && result == STATUS_TIMEOUT) + { + return STATUS_OK; + } + + if (result != STATUS_OK) + { + return result; + } + + // The PICC must reply with a 4 bit ACK + if (cmdBufferSize != 1 || validBits != 4) + { + return STATUS_ERROR; + } + + if (cmdBuffer[0] != MF_ACK) + { + return STATUS_MIFARE_NACK; + } + + return STATUS_OK; +} // End PCD_MIFARE_Transceive() + + +/* + * Translates the SAK (Select Acknowledge) to a PICC type. + */ +uint8_t MFRC522::PICC_GetType(uint8_t sak) +{ + uint8_t retType = PICC_TYPE_UNKNOWN; + + if (sak & 0x04) + { // UID not complete + retType = PICC_TYPE_NOT_COMPLETE; + } + else + { + switch (sak) + { + case 0x09: retType = PICC_TYPE_MIFARE_MINI; break; + case 0x08: retType = PICC_TYPE_MIFARE_1K; break; + case 0x18: retType = PICC_TYPE_MIFARE_4K; break; + case 0x00: retType = PICC_TYPE_MIFARE_UL; break; + case 0x10: + case 0x11: retType = PICC_TYPE_MIFARE_PLUS; break; + case 0x01: retType = PICC_TYPE_TNP3XXX; break; + default: + if (sak & 0x20) + { + retType = PICC_TYPE_ISO_14443_4; + } + else if (sak & 0x40) + { + retType = PICC_TYPE_ISO_18092; + } + break; + } + } + + return (retType); +} // End PICC_GetType() + +/* + * Returns a string pointer to the PICC type name. + */ +char* MFRC522::PICC_GetTypeName(uint8_t piccType) +{ + if(piccType == PICC_TYPE_NOT_COMPLETE) + { + piccType = MFRC522_MaxPICCs - 1; + } + + return((char *) _TypeNamePICC[piccType]); +} // End PICC_GetTypeName() + +/* + * Returns a string pointer to a status code name. + */ +char* MFRC522::GetStatusCodeName(uint8_t code) +{ + return((char *) _ErrorMessage[code]); +} // End GetStatusCodeName() + +/* + * Calculates the bit pattern needed for the specified access bits. In the [C1 C2 C3] tupples C1 is MSB (=4) and C3 is LSB (=1). + */ +void MFRC522::MIFARE_SetAccessBits(uint8_t *accessBitBuffer, + uint8_t g0, + uint8_t g1, + uint8_t g2, + uint8_t g3) +{ + uint8_t c1 = ((g3 & 4) << 1) | ((g2 & 4) << 0) | ((g1 & 4) >> 1) | ((g0 & 4) >> 2); + uint8_t c2 = ((g3 & 2) << 2) | ((g2 & 2) << 1) | ((g1 & 2) << 0) | ((g0 & 2) >> 1); + uint8_t c3 = ((g3 & 1) << 3) | ((g2 & 1) << 2) | ((g1 & 1) << 1) | ((g0 & 1) << 0); + + accessBitBuffer[0] = (~c2 & 0xF) << 4 | (~c1 & 0xF); + accessBitBuffer[1] = c1 << 4 | (~c3 & 0xF); + accessBitBuffer[2] = c3 << 4 | c2; +} // End MIFARE_SetAccessBits() + +///////////////////////////////////////////////////////////////////////////////////// +// Convenience functions - does not add extra functionality +///////////////////////////////////////////////////////////////////////////////////// + +/* + * Returns true if a PICC responds to PICC_CMD_REQA. + * Only "new" cards in state IDLE are invited. Sleeping cards in state HALT are ignored. + */ +bool MFRC522::PICC_IsNewCardPresent(void) +{ + uint8_t bufferATQA[2]; + uint8_t bufferSize = sizeof(bufferATQA); + uint8_t result = PICC_RequestA(bufferATQA, &bufferSize); + return ((result == STATUS_OK) || (result == STATUS_COLLISION)); +} // End PICC_IsNewCardPresent() + +/* + * Simple wrapper around PICC_Select. + */ +bool MFRC522::PICC_ReadCardSerial(void) +{ + uint8_t result = PICC_Select(&uid); + return (result == STATUS_OK); +} // End PICC_ReadCardSerial()