Suchakhree Srisukprom
/
Test_Megre
k
Diff: GetAcceloroY.cpp
- Revision:
- 1:426fbd0d126a
diff -r 238df339023b -r 426fbd0d126a GetAcceloroY.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/GetAcceloroY.cpp Wed Dec 09 10:19:11 2015 +0000 @@ -0,0 +1,125 @@ +/* +//int main() + t.start(); + //___ Set up I2C: use fast (400 kHz) I2C ___ + i2c.frequency(400000); + // Read the WHO_AM_I register, this is a good test of communication + whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); + pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r"); + if (I2Cstate != 0) // error on I2C + pc.printf("I2C failure while reading WHO_AM_I register"); + + if (whoami == 0x71) // WHO_AM_I should always be 0x71 + { + pc.printf("MPU9250 is online...\n\r"); + sprintf(buffer, "0x%x", whoami); + wait(1); + mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration + mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values (accelerometer and gyroscope self test) + mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometer, load biases in bias registers + wait(2); + //Initialize device for active mode read of acclerometer, gyroscope, and temperature + mpu9250.initMPU9250(); + pc.printf("MPU9250 initialized for active data mode....\n\r"); + //Initialize device for active mode read of magnetometer, 16 bit resolution, 100Hz. + mpu9250.initAK8963(magCalibration); + wait(1); + } + + else // Connection failure + { + pc.printf("Could not connect to MPU9250: \n\r"); + pc.printf("%#x \n", whoami); + sprintf(buffer, "WHO_AM_I 0x%x", whoami); + //while(1) ; // Loop forever if communication doesn't happen + } + + mpu9250.getAres(); // Get accelerometer sensitivity + mpu9250.getGres(); // Get gyro sensitivity + mpu9250.getMres(); // Get magnetometer sensitivity + magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated + magbias[1] = +120.; // User environmental x-axis correction in milliGauss + magbias[2] = +125.; // User environmental x-axis correction in milliGauss + + + Ay[0]=GetAcceloroY(); pc.printf("1: %d\n",Ay[0]); + Ay[1]=GetAcceloroY(); pc.printf("2: %d\n",Ay[1]); + if( Ay[1]+Ay[0]< -20 ) pc.printf("#BR$\n\n\n"); + + +//Function 4 GetAcceloroY + +int GetAcceloroY() +{ + // If intPin goes high, all data registers have new data + if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt + mpu9250.readAccelData(accelCount); // Read the x/y/z adc values + // Now we'll calculate the accleration value into actual g's + if (I2Cstate != 0) //error on I2C + pc.printf("I2C error ocurred while reading accelerometer data. I2Cstate = %d \n\r", I2Cstate); + else{ // I2C read or write ok + I2Cstate = 1; + ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set + ay = (float)accelCount[1]*aRes - accelBias[1]; + az = (float)accelCount[2]*aRes - accelBias[2]; + } + mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values + // Calculate the gyro value into actual degrees per second + if (I2Cstate != 0) //error on I2C + pc.printf("I2C error ocurred while reading gyrometer data. I2Cstate = %d \n\r", I2Cstate); + else{ // I2C read or write ok + I2Cstate = 1; + gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set + gy = (float)gyroCount[1]*gRes - gyroBias[1]; + gz = (float)gyroCount[2]*gRes - gyroBias[2]; + } + mpu9250.readMagData(magCount); // Read the x/y/z adc values + // Calculate the magnetometer values in milliGauss + // Include factory calibration per data sheet and user environmental corrections + if (I2Cstate != 0) //error on I2C + pc.printf("I2C error ocurred while reading magnetometer data. I2Cstate = %d \n\r", I2Cstate); + else{ // I2C read or write ok + I2Cstate = 1; + mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set + my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]; + mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2]; + } + + mpu9250.getCompassOrientation(orientation); + } + + Now = t.read_us(); + deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update + lastUpdate = Now; + sum += deltat; + sumCount++; + + // Pass gyro rate as rad/s + // mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); + mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); + + // Serial print and/or display at 1.5 s rate independent of data rates + delt_t = t.read_ms() - count; + if (delt_t > 500) { // update LCD once per half-second independent of read rate + mpu9250.MadgwickQuaternionUpdate(ax,ay,az,gx,gy,gz,mx,my,mz); + pc.printf(" ay = %.2f\n", 1000*ay); + tempCount = mpu9250.readTempData(); // Read the adc values + if (I2Cstate != 0) //error on I2C + pc.printf("I2C error ocurred while reading sensor temp. I2Cstate = %d \n\r", I2Cstate); + else{ // I2C read or write ok + I2Cstate = 1; + temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade + //pc.printf(" temperature = %f C\n\r", temperature); + } + count = t.read_ms(); + if(count > 1<<21) { + t.start(); // start the timer over again if ~30 minutes has passed + count = 0; + deltat= 0; + lastUpdate = t.read_us(); + } + sum = 0; + sumCount = 0; + } + return ay*1000; +}*/ \ No newline at end of file