k

Dependencies:   mbed

GetAcceloroY.cpp

Committer:
Suchakhree
Date:
2015-12-09
Revision:
1:426fbd0d126a

File content as of revision 1:426fbd0d126a:

/*
//int main()
  t.start();
  //___ Set up I2C: use fast (400 kHz) I2C ___
  i2c.frequency(400000);  
  // Read the WHO_AM_I register, this is a good test of communication
  whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);
  pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r");
  if (I2Cstate != 0) // error on I2C
    pc.printf("I2C failure while reading WHO_AM_I register");
  
  if (whoami == 0x71) // WHO_AM_I should always be 0x71
  {  
        pc.printf("MPU9250 is online...\n\r");
        sprintf(buffer, "0x%x", whoami);
        wait(1);
        mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
        mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values (accelerometer and gyroscope self test)
        mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometer, load biases in bias registers  
        wait(2);
        //Initialize device for active mode read of acclerometer, gyroscope, and temperature
        mpu9250.initMPU9250();
        pc.printf("MPU9250 initialized for active data mode....\n\r");
        //Initialize device for active mode read of magnetometer, 16 bit resolution, 100Hz.
        mpu9250.initAK8963(magCalibration);
        wait(1);
   }
   
   else // Connection failure
   {
    pc.printf("Could not connect to MPU9250: \n\r");
    pc.printf("%#x \n",  whoami);    
    sprintf(buffer, "WHO_AM_I 0x%x", whoami);
    //while(1) ; // Loop forever if communication doesn't happen
    }
  
    mpu9250.getAres(); // Get accelerometer sensitivity
    mpu9250.getGres(); // Get gyro sensitivity
    mpu9250.getMres(); // Get magnetometer sensitivity
    magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
    magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
    magbias[2] = +125.;  // User environmental x-axis correction in milliGauss
    
    
      Ay[0]=GetAcceloroY(); pc.printf("1: %d\n",Ay[0]);
      Ay[1]=GetAcceloroY(); pc.printf("2: %d\n",Ay[1]);
      if( Ay[1]+Ay[0]< -20 ) pc.printf("#BR$\n\n\n");


//Function 4 GetAcceloroY

int GetAcceloroY()
{
         // If intPin goes high, all data registers have new data
        if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt   
            mpu9250.readAccelData(accelCount);  // Read the x/y/z adc values   
            // Now we'll calculate the accleration value into actual g's
            if (I2Cstate != 0) //error on I2C
                pc.printf("I2C error ocurred while reading accelerometer data. I2Cstate = %d \n\r", I2Cstate);
            else{ // I2C read or write ok
                I2Cstate = 1;
                ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
                ay = (float)accelCount[1]*aRes - accelBias[1];
                az = (float)accelCount[2]*aRes - accelBias[2];
            }   
            mpu9250.readGyroData(gyroCount);  // Read the x/y/z adc values
            // Calculate the gyro value into actual degrees per second
            if (I2Cstate != 0) //error on I2C
                pc.printf("I2C error ocurred while reading gyrometer data. I2Cstate = %d \n\r", I2Cstate);
            else{ // I2C read or write ok
                I2Cstate = 1;
                gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
                gy = (float)gyroCount[1]*gRes - gyroBias[1]; 
                gz = (float)gyroCount[2]*gRes - gyroBias[2];
            }
            mpu9250.readMagData(magCount);  // Read the x/y/z adc values   
            // Calculate the magnetometer values in milliGauss
            // Include factory calibration per data sheet and user environmental corrections
            if (I2Cstate != 0) //error on I2C
                pc.printf("I2C error ocurred while reading magnetometer data. I2Cstate = %d \n\r", I2Cstate);
            else{ // I2C read or write ok
                I2Cstate = 1;
                mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
                my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];  
                mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
            }
                       
            mpu9250.getCompassOrientation(orientation);
        }
   
        Now = t.read_us();
        deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
        lastUpdate = Now;    
        sum += deltat;
        sumCount++;
    
        // Pass gyro rate as rad/s
        // mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
         mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);

        // Serial print and/or display at 1.5 s rate independent of data rates
        delt_t = t.read_ms() - count;
        if (delt_t > 500) { // update LCD once per half-second independent of read rate
            mpu9250.MadgwickQuaternionUpdate(ax,ay,az,gx,gy,gz,mx,my,mz);  
            pc.printf(" ay = %.2f\n", 1000*ay);
            tempCount = mpu9250.readTempData();  // Read the adc values
            if (I2Cstate != 0) //error on I2C
                pc.printf("I2C error ocurred while reading sensor temp. I2Cstate = %d \n\r", I2Cstate);
            else{ // I2C read or write ok                
                I2Cstate = 1;
                temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
                //pc.printf(" temperature = %f  C\n\r", temperature);
            }
            count = t.read_ms(); 
            if(count > 1<<21) {
                t.start(); // start the timer over again if ~30 minutes has passed
                count = 0;
                deltat= 0;
                lastUpdate = t.read_us();
            }
        sum = 0;
        sumCount = 0; 
        }
        return ay*1000;
}*/