Webserver+3d print
cyclone_tcp/drivers/lpc18xx_eth.c
- Committer:
- Sergunb
- Date:
- 2017-02-04
- Revision:
- 0:8918a71cdbe9
File content as of revision 0:8918a71cdbe9:
/** * @file lpc18xx_eth.c * @brief LPC1800 Ethernet MAC controller * * @section License * * Copyright (C) 2010-2017 Oryx Embedded SARL. All rights reserved. * * This file is part of CycloneTCP Open. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * @author Oryx Embedded SARL (www.oryx-embedded.com) * @version 1.7.6 **/ //Switch to the appropriate trace level #define TRACE_LEVEL NIC_TRACE_LEVEL //Dependencies #include "lpc18xx.h" #include "core/net.h" #include "drivers/lpc18xx_eth.h" #include "debug.h" //Underlying network interface static NetInterface *nicDriverInterface; //IAR EWARM compiler? #if defined(__ICCARM__) //Transmit buffer #pragma data_alignment = 4 static uint8_t txBuffer[LPC18XX_ETH_TX_BUFFER_COUNT][LPC18XX_ETH_TX_BUFFER_SIZE]; //Receive buffer #pragma data_alignment = 4 static uint8_t rxBuffer[LPC18XX_ETH_RX_BUFFER_COUNT][LPC18XX_ETH_RX_BUFFER_SIZE]; //Transmit DMA descriptors #pragma data_alignment = 4 static Lpc18xxTxDmaDesc txDmaDesc[LPC18XX_ETH_TX_BUFFER_COUNT]; //Receive DMA descriptors #pragma data_alignment = 4 static Lpc18xxRxDmaDesc rxDmaDesc[LPC18XX_ETH_RX_BUFFER_COUNT]; //ARM or GCC compiler? #else //Transmit buffer static uint8_t txBuffer[LPC18XX_ETH_TX_BUFFER_COUNT][LPC18XX_ETH_TX_BUFFER_SIZE] __attribute__((aligned(4))); //Receive buffer static uint8_t rxBuffer[LPC18XX_ETH_RX_BUFFER_COUNT][LPC18XX_ETH_RX_BUFFER_SIZE] __attribute__((aligned(4))); //Transmit DMA descriptors static Lpc18xxTxDmaDesc txDmaDesc[LPC18XX_ETH_TX_BUFFER_COUNT] __attribute__((aligned(4))); //Receive DMA descriptors static Lpc18xxRxDmaDesc rxDmaDesc[LPC18XX_ETH_RX_BUFFER_COUNT] __attribute__((aligned(4))); #endif //Pointer to the current TX DMA descriptor static Lpc18xxTxDmaDesc *txCurDmaDesc; //Pointer to the current RX DMA descriptor static Lpc18xxRxDmaDesc *rxCurDmaDesc; /** * @brief LPC18xx Ethernet MAC driver **/ const NicDriver lpc18xxEthDriver = { NIC_TYPE_ETHERNET, ETH_MTU, lpc18xxEthInit, lpc18xxEthTick, lpc18xxEthEnableIrq, lpc18xxEthDisableIrq, lpc18xxEthEventHandler, lpc18xxEthSendPacket, lpc18xxEthSetMulticastFilter, lpc18xxEthUpdateMacConfig, lpc18xxEthWritePhyReg, lpc18xxEthReadPhyReg, TRUE, TRUE, TRUE, FALSE }; /** * @brief LPC18xx Ethernet MAC initialization * @param[in] interface Underlying network interface * @return Error code **/ error_t lpc18xxEthInit(NetInterface *interface) { error_t error; //Debug message TRACE_INFO("Initializing LPC18xx Ethernet MAC...\r\n"); //Save underlying network interface nicDriverInterface = interface; //Enable Ethernet peripheral clock LPC_CCU1->CLK_M3_ETHERNET_CFG |= CCU1_CLK_M3_ETHERNET_CFG_RUN_Msk; while(!(LPC_CCU1->CLK_M3_ETHERNET_STAT & CCU1_CLK_M3_ETHERNET_STAT_RUN_Msk)); //Reset DMA LPC_RGU->RESET_EXT_STAT19 |= RGU_RESET_EXT_STAT19_MASTER_RESET_Msk; LPC_RGU->RESET_EXT_STAT19 &= ~RGU_RESET_EXT_STAT19_MASTER_RESET_Msk; //Reset Ethernet peripheral LPC_RGU->RESET_EXT_STAT22 |= RGU_RESET_EXT_STAT22_MASTER_RESET_Msk; LPC_RGU->RESET_EXT_STAT22 &= ~RGU_RESET_EXT_STAT22_MASTER_RESET_Msk; //GPIO configuration lpc18xxEthInitGpio(interface); //Reset Ethernet peripheral LPC_RGU->RESET_CTRL0 = RGU_RESET_CTRL0_ETHERNET_RST_Msk; while(!(LPC_RGU->RESET_ACTIVE_STATUS0 & RGU_RESET_ACTIVE_STATUS0_ETHERNET_RST_Msk)); //Perform a software reset LPC_ETHERNET->DMA_BUS_MODE |= ETHERNET_DMA_BUS_MODE_SWR_Msk; //Wait for the reset to complete while(LPC_ETHERNET->DMA_BUS_MODE & ETHERNET_DMA_BUS_MODE_SWR_Msk); //Adjust MDC clock range LPC_ETHERNET->MAC_MII_ADDR = ETHERNET_MAC_MII_ADDR_CR_DIV62; //PHY transceiver initialization error = interface->phyDriver->init(interface); //Failed to initialize PHY transceiver? if(error) return error; //Use default MAC configuration LPC_ETHERNET->MAC_CONFIG = ETHERNET_MAC_CONFIG_DO_Msk; //Set the MAC address LPC_ETHERNET->MAC_ADDR0_LOW = interface->macAddr.w[0] | (interface->macAddr.w[1] << 16); LPC_ETHERNET->MAC_ADDR0_HIGH = interface->macAddr.w[2]; //Initialize hash table LPC_ETHERNET->MAC_HASHTABLE_LOW = 0; LPC_ETHERNET->MAC_HASHTABLE_HIGH = 0; //Configure the receive filter LPC_ETHERNET->MAC_FRAME_FILTER = ETHERNET_MAC_FRAME_FILTER_HPF_Msk | ETHERNET_MAC_FRAME_FILTER_HMC_Msk; //Disable flow control LPC_ETHERNET->MAC_FLOW_CTRL = 0; //Set the threshold level of the transmit and receive FIFOs LPC_ETHERNET->DMA_OP_MODE = ETHERNET_DMA_OP_MODE_TTC_64 | ETHERNET_DMA_OP_MODE_RTC_32; //Configure DMA bus mode LPC_ETHERNET->DMA_BUS_MODE = ETHERNET_DMA_BUS_MODE_AAL_Msk | ETHERNET_DMA_BUS_MODE_USP_Msk | ETHERNET_DMA_BUS_MODE_RPBL_1 | ETHERNET_DMA_BUS_MODE_PR_1_1 | ETHERNET_DMA_BUS_MODE_PBL_1 | ETHERNET_DMA_BUS_MODE_ATDS_Msk; //Initialize DMA descriptor lists lpc18xxEthInitDmaDesc(interface); //Disable MAC interrupts LPC_ETHERNET->MAC_INTR_MASK = ETHERNET_MAC_INTR_MASK_TSIM_Msk | ETHERNET_MAC_INTR_MASK_PMTIM_Msk; //Enable the desired DMA interrupts LPC_ETHERNET->DMA_INT_EN = ETHERNET_DMA_INT_EN_NIE_Msk | ETHERNET_DMA_INT_EN_RIE_Msk | ETHERNET_DMA_INT_EN_TIE_Msk; //Set priority grouping (3 bits for pre-emption priority, no bits for subpriority) NVIC_SetPriorityGrouping(LPC18XX_ETH_IRQ_PRIORITY_GROUPING); //Configure Ethernet interrupt priority NVIC_SetPriority(ETHERNET_IRQn, NVIC_EncodePriority(LPC18XX_ETH_IRQ_PRIORITY_GROUPING, LPC18XX_ETH_IRQ_GROUP_PRIORITY, LPC18XX_ETH_IRQ_SUB_PRIORITY)); //Enable MAC transmission and reception LPC_ETHERNET->MAC_CONFIG |= ETHERNET_MAC_CONFIG_TE_Msk | ETHERNET_MAC_CONFIG_RE_Msk; //Enable DMA transmission and reception LPC_ETHERNET->DMA_OP_MODE |= ETHERNET_DMA_OP_MODE_ST_Msk | ETHERNET_DMA_OP_MODE_SR_Msk; //Accept any packets from the upper layer osSetEvent(&interface->nicTxEvent); //Successful initialization return NO_ERROR; } //LPC1830-Xplorer evaluation board? #if defined(USE_LPC1830_XPLORER) /** * @brief GPIO configuration * @param[in] interface Underlying network interface **/ void lpc18xxEthInitGpio(NetInterface *interface) { //Enable GPIO peripheral clock LPC_CCU1->CLK_M3_GPIO_CFG |= CCU1_CLK_M3_GPIO_CFG_RUN_Msk; while(!(LPC_CCU1->CLK_M3_GPIO_STAT & CCU1_CLK_M3_GPIO_STAT_RUN_Msk)); //Select RMII operation mode LPC_CREG->CREG6 &= ~CREG_CREG6_ETHMODE_Msk; LPC_CREG->CREG6 |= CREG6_ETHMODE_RMII; //Configure P0.0 (ENET_RXD1) LPC_SCU->SFSP0_0 = SCU_SFSP0_0_EZI_Msk | SCU_SFSP0_0_EHS_Msk | (2 & SCU_SFSP0_0_MODE_Msk); //Configure P0.1 (ENET_TX_EN) LPC_SCU->SFSP0_1 = SCU_SFSP0_1_EHS_Msk | (6 & SCU_SFSP0_1_MODE_Msk); //Configure P1.15 (ENET_RXD0) LPC_SCU->SFSP1_15 = SCU_SFSP1_15_EZI_Msk | SCU_SFSP1_15_EHS_Msk | (3 & SCU_SFSP1_15_MODE_Msk); //Configure P1.16 (ENET_RX_DV) LPC_SCU->SFSP1_16 = SCU_SFSP1_16_EZI_Msk | SCU_SFSP1_16_EHS_Msk | (7 & SCU_SFSP1_16_MODE_Msk); //Configure P1.17 (ENET_MDIO) LPC_SCU->SFSP1_17 = SCU_SFSP1_17_EZI_Msk | (3 & SCU_SFSP1_17_MODE_Msk); //Configure P1.18 (ENET_TXD0) LPC_SCU->SFSP1_18 = SCU_SFSP1_18_EHS_Msk | (3 & SCU_SFSP1_18_MODE_Msk); //Configure P1.19 (ENET_REF_CLK) LPC_SCU->SFSP1_19 = SCU_SFSP1_19_EZI_Msk | SCU_SFSP1_19_EHS_Msk | (0 & SCU_SFSP1_19_MODE_Msk); //Configure P1.20 (ENET_TXD1) LPC_SCU->SFSP1_20 = SCU_SFSP1_20_EHS_Msk | (3 & SCU_SFSP1_20_MODE_Msk); //Configure P2.0 (ENET_MDC) LPC_SCU->SFSP2_0 = (7 & SCU_SFSP2_0_MODE_Msk); } #endif /** * @brief Initialize DMA descriptor lists * @param[in] interface Underlying network interface **/ void lpc18xxEthInitDmaDesc(NetInterface *interface) { uint_t i; //Initialize TX DMA descriptor list for(i = 0; i < LPC18XX_ETH_TX_BUFFER_COUNT; i++) { //Use chain structure rather than ring structure txDmaDesc[i].tdes0 = ETH_TDES0_IC | ETH_TDES0_TCH; //Initialize transmit buffer size txDmaDesc[i].tdes1 = 0; //Transmit buffer address txDmaDesc[i].tdes2 = (uint32_t) txBuffer[i]; //Next descriptor address txDmaDesc[i].tdes3 = (uint32_t) &txDmaDesc[i + 1]; //Reserved fields txDmaDesc[i].tdes4 = 0; txDmaDesc[i].tdes5 = 0; //Transmit frame time stamp txDmaDesc[i].tdes6 = 0; txDmaDesc[i].tdes7 = 0; } //The last descriptor is chained to the first entry txDmaDesc[i - 1].tdes3 = (uint32_t) &txDmaDesc[0]; //Point to the very first descriptor txCurDmaDesc = &txDmaDesc[0]; //Initialize RX DMA descriptor list for(i = 0; i < LPC18XX_ETH_RX_BUFFER_COUNT; i++) { //The descriptor is initially owned by the DMA rxDmaDesc[i].rdes0 = ETH_RDES0_OWN; //Use chain structure rather than ring structure rxDmaDesc[i].rdes1 = ETH_RDES1_RCH | (LPC18XX_ETH_RX_BUFFER_SIZE & ETH_RDES1_RBS1); //Receive buffer address rxDmaDesc[i].rdes2 = (uint32_t) rxBuffer[i]; //Next descriptor address rxDmaDesc[i].rdes3 = (uint32_t) &rxDmaDesc[i + 1]; //Extended status rxDmaDesc[i].rdes4 = 0; //Reserved field rxDmaDesc[i].rdes5 = 0; //Receive frame time stamp rxDmaDesc[i].rdes6 = 0; rxDmaDesc[i].rdes7 = 0; } //The last descriptor is chained to the first entry rxDmaDesc[i - 1].rdes3 = (uint32_t) &rxDmaDesc[0]; //Point to the very first descriptor rxCurDmaDesc = &rxDmaDesc[0]; //Start location of the TX descriptor list LPC_ETHERNET->DMA_TRANS_DES_ADDR = (uint32_t) txDmaDesc; //Start location of the RX descriptor list LPC_ETHERNET->DMA_REC_DES_ADDR = (uint32_t) rxDmaDesc; } /** * @brief LPC18xx Ethernet MAC timer handler * * This routine is periodically called by the TCP/IP stack to * handle periodic operations such as polling the link state * * @param[in] interface Underlying network interface **/ void lpc18xxEthTick(NetInterface *interface) { //Handle periodic operations interface->phyDriver->tick(interface); } /** * @brief Enable interrupts * @param[in] interface Underlying network interface **/ void lpc18xxEthEnableIrq(NetInterface *interface) { //Enable Ethernet MAC interrupts NVIC_EnableIRQ(ETHERNET_IRQn); //Enable Ethernet PHY interrupts interface->phyDriver->enableIrq(interface); } /** * @brief Disable interrupts * @param[in] interface Underlying network interface **/ void lpc18xxEthDisableIrq(NetInterface *interface) { //Disable Ethernet MAC interrupts NVIC_DisableIRQ(ETHERNET_IRQn); //Disable Ethernet PHY interrupts interface->phyDriver->disableIrq(interface); } /** * @brief LPC18xx Ethernet MAC interrupt service routine **/ void ETHERNET_IRQHandler(void) { bool_t flag; uint32_t status; //Enter interrupt service routine osEnterIsr(); //This flag will be set if a higher priority task must be woken flag = FALSE; //Read DMA status register status = LPC_ETHERNET->DMA_STAT; //A packet has been transmitted? if(status & ETHERNET_DMA_STAT_TI_Msk) { //Clear TI interrupt flag LPC_ETHERNET->DMA_STAT = ETHERNET_DMA_STAT_TI_Msk; //Check whether the TX buffer is available for writing if(!(txCurDmaDesc->tdes0 & ETH_TDES0_OWN)) { //Notify the TCP/IP stack that the transmitter is ready to send flag |= osSetEventFromIsr(&nicDriverInterface->nicTxEvent); } } //A packet has been received? if(status & ETHERNET_DMA_STAT_RI_Msk) { //Disable RIE interrupt LPC_ETHERNET->DMA_INT_EN &= ~ETHERNET_DMA_INT_EN_RIE_Msk; //Set event flag nicDriverInterface->nicEvent = TRUE; //Notify the TCP/IP stack of the event flag |= osSetEventFromIsr(&netEvent); } //Clear NIS interrupt flag LPC_ETHERNET->DMA_STAT = ETHERNET_DMA_STAT_NIS_Msk; //Leave interrupt service routine osExitIsr(flag); } /** * @brief LPC18xx Ethernet MAC event handler * @param[in] interface Underlying network interface **/ void lpc18xxEthEventHandler(NetInterface *interface) { error_t error; //Packet received? if(LPC_ETHERNET->DMA_STAT & ETHERNET_DMA_STAT_RI_Msk) { //Clear interrupt flag LPC_ETHERNET->DMA_STAT = ETHERNET_DMA_STAT_RI_Msk; //Process all pending packets do { //Read incoming packet error = lpc18xxEthReceivePacket(interface); //No more data in the receive buffer? } while(error != ERROR_BUFFER_EMPTY); } //Re-enable DMA interrupts LPC_ETHERNET->DMA_INT_EN |= ETHERNET_DMA_INT_EN_NIE_Msk | ETHERNET_DMA_INT_EN_RIE_Msk | ETHERNET_DMA_INT_EN_TIE_Msk; } /** * @brief Send a packet * @param[in] interface Underlying network interface * @param[in] buffer Multi-part buffer containing the data to send * @param[in] offset Offset to the first data byte * @return Error code **/ error_t lpc18xxEthSendPacket(NetInterface *interface, const NetBuffer *buffer, size_t offset) { size_t length; //Retrieve the length of the packet length = netBufferGetLength(buffer) - offset; //Check the frame length if(length > LPC18XX_ETH_TX_BUFFER_SIZE) { //The transmitter can accept another packet osSetEvent(&interface->nicTxEvent); //Report an error return ERROR_INVALID_LENGTH; } //Make sure the current buffer is available for writing if(txCurDmaDesc->tdes0 & ETH_TDES0_OWN) return ERROR_FAILURE; //Copy user data to the transmit buffer netBufferRead((uint8_t *) txCurDmaDesc->tdes2, buffer, offset, length); //Write the number of bytes to send txCurDmaDesc->tdes1 = length & ETH_TDES1_TBS1; //Set LS and FS flags as the data fits in a single buffer txCurDmaDesc->tdes0 |= ETH_TDES0_LS | ETH_TDES0_FS; //Give the ownership of the descriptor to the DMA txCurDmaDesc->tdes0 |= ETH_TDES0_OWN; //Clear TU flag to resume processing LPC_ETHERNET->DMA_STAT = ETHERNET_DMA_STAT_TU_Msk; //Instruct the DMA to poll the transmit descriptor list LPC_ETHERNET->DMA_TRANS_POLL_DEMAND = 0; //Point to the next descriptor in the list txCurDmaDesc = (Lpc18xxTxDmaDesc *) txCurDmaDesc->tdes3; //Check whether the next buffer is available for writing if(!(txCurDmaDesc->tdes0 & ETH_TDES0_OWN)) { //The transmitter can accept another packet osSetEvent(&interface->nicTxEvent); } //Data successfully written return NO_ERROR; } /** * @brief Receive a packet * @param[in] interface Underlying network interface * @return Error code **/ error_t lpc18xxEthReceivePacket(NetInterface *interface) { error_t error; size_t n; //The current buffer is available for reading? if(!(rxCurDmaDesc->rdes0 & ETH_RDES0_OWN)) { //FS and LS flags should be set if((rxCurDmaDesc->rdes0 & ETH_RDES0_FS) && (rxCurDmaDesc->rdes0 & ETH_RDES0_LS)) { //Make sure no error occurred if(!(rxCurDmaDesc->rdes0 & ETH_RDES0_ES)) { //Retrieve the length of the frame n = (rxCurDmaDesc->rdes0 & ETH_RDES0_FL) >> 16; //Limit the number of data to read n = MIN(n, LPC18XX_ETH_RX_BUFFER_SIZE); //Pass the packet to the upper layer nicProcessPacket(interface, (uint8_t *) rxCurDmaDesc->rdes2, n); //Valid packet received error = NO_ERROR; } else { //The received packet contains an error error = ERROR_INVALID_PACKET; } } else { //The packet is not valid error = ERROR_INVALID_PACKET; } //Give the ownership of the descriptor back to the DMA rxCurDmaDesc->rdes0 = ETH_RDES0_OWN; //Point to the next descriptor in the list rxCurDmaDesc = (Lpc18xxRxDmaDesc *) rxCurDmaDesc->rdes3; } else { //No more data in the receive buffer error = ERROR_BUFFER_EMPTY; } //Clear RU flag to resume processing LPC_ETHERNET->DMA_STAT = ETHERNET_DMA_STAT_RU_Msk; //Instruct the DMA to poll the receive descriptor list LPC_ETHERNET->DMA_REC_POLL_DEMAND = 0; //Return status code return error; } /** * @brief Configure multicast MAC address filtering * @param[in] interface Underlying network interface * @return Error code **/ error_t lpc18xxEthSetMulticastFilter(NetInterface *interface) { uint_t i; uint_t k; uint32_t crc; uint32_t hashTable[2]; MacFilterEntry *entry; //Debug message TRACE_DEBUG("Updating LPC18xx hash table...\r\n"); //Clear hash table hashTable[0] = 0; hashTable[1] = 0; //The MAC filter table contains the multicast MAC addresses //to accept when receiving an Ethernet frame for(i = 0; i < MAC_MULTICAST_FILTER_SIZE; i++) { //Point to the current entry entry = &interface->macMulticastFilter[i]; //Valid entry? if(entry->refCount > 0) { //Compute CRC over the current MAC address crc = lpc18xxEthCalcCrc(&entry->addr, sizeof(MacAddr)); //The upper 6 bits in the CRC register are used to index the //contents of the hash table k = (crc >> 26) & 0x3F; //Update hash table contents hashTable[k / 32] |= (1 << (k % 32)); } } //Write the hash table LPC_ETHERNET->MAC_HASHTABLE_LOW = hashTable[0]; LPC_ETHERNET->MAC_HASHTABLE_HIGH = hashTable[1]; //Debug message TRACE_DEBUG(" MAC_HASHTABLE_LOW = %08" PRIX32 "\r\n", LPC_ETHERNET->MAC_HASHTABLE_LOW); TRACE_DEBUG(" MAC_HASHTABLE_HIGH = %08" PRIX32 "\r\n", LPC_ETHERNET->MAC_HASHTABLE_HIGH); //Successful processing return NO_ERROR; } /** * @brief Adjust MAC configuration parameters for proper operation * @param[in] interface Underlying network interface * @return Error code **/ error_t lpc18xxEthUpdateMacConfig(NetInterface *interface) { uint32_t config; //Read current MAC configuration config = LPC_ETHERNET->MAC_CONFIG; //10BASE-T or 100BASE-TX operation mode? if(interface->linkSpeed == NIC_LINK_SPEED_100MBPS) config |= ETHERNET_MAC_CONFIG_FES_Msk; else config &= ~ETHERNET_MAC_CONFIG_FES_Msk; //Half-duplex or full-duplex mode? if(interface->duplexMode == NIC_FULL_DUPLEX_MODE) config |= ETHERNET_MAC_CONFIG_DM_Msk; else config &= ~ETHERNET_MAC_CONFIG_DM_Msk; //Update MAC configuration register LPC_ETHERNET->MAC_CONFIG = config; //Successful processing return NO_ERROR; } /** * @brief Write PHY register * @param[in] phyAddr PHY address * @param[in] regAddr Register address * @param[in] data Register value **/ void lpc18xxEthWritePhyReg(uint8_t phyAddr, uint8_t regAddr, uint16_t data) { uint32_t value; //Take care not to alter MDC clock configuration value = LPC_ETHERNET->MAC_MII_ADDR & ETHERNET_MAC_MII_ADDR_CR_Msk; //Set up a write operation value |= ETHERNET_MAC_MII_ADDR_W_Msk | ETHERNET_MAC_MII_ADDR_GB_Msk; //PHY address value |= (phyAddr << ETHERNET_MAC_MII_ADDR_PA_Pos) & ETHERNET_MAC_MII_ADDR_PA_Msk; //Register address value |= (regAddr << ETHERNET_MAC_MII_ADDR_GR_Pos) & ETHERNET_MAC_MII_ADDR_GR_Msk; //Data to be written in the PHY register LPC_ETHERNET->MAC_MII_DATA = data & ETHERNET_MAC_MII_DATA_GD_Msk; //Start a write operation LPC_ETHERNET->MAC_MII_ADDR = value; //Wait for the write to complete while(LPC_ETHERNET->MAC_MII_ADDR & ETHERNET_MAC_MII_ADDR_GB_Msk); } /** * @brief Read PHY register * @param[in] phyAddr PHY address * @param[in] regAddr Register address * @return Register value **/ uint16_t lpc18xxEthReadPhyReg(uint8_t phyAddr, uint8_t regAddr) { uint32_t value; //Take care not to alter MDC clock configuration value = LPC_ETHERNET->MAC_MII_ADDR & ETHERNET_MAC_MII_ADDR_CR_Msk; //Set up a read operation value |= ETHERNET_MAC_MII_ADDR_GB_Msk; //PHY address value |= (phyAddr << ETHERNET_MAC_MII_ADDR_PA_Pos) & ETHERNET_MAC_MII_ADDR_PA_Msk; //Register address value |= (regAddr << ETHERNET_MAC_MII_ADDR_GR_Pos) & ETHERNET_MAC_MII_ADDR_GR_Msk; //Start a read operation LPC_ETHERNET->MAC_MII_ADDR = value; //Wait for the read to complete while(LPC_ETHERNET->MAC_MII_ADDR & ETHERNET_MAC_MII_ADDR_GB_Msk); //Return PHY register contents return LPC_ETHERNET->MAC_MII_DATA & ETHERNET_MAC_MII_DATA_GD_Msk; } /** * @brief CRC calculation * @param[in] data Pointer to the data over which to calculate the CRC * @param[in] length Number of bytes to process * @return Resulting CRC value **/ uint32_t lpc18xxEthCalcCrc(const void *data, size_t length) { uint_t i; uint_t j; //Point to the data over which to calculate the CRC const uint8_t *p = (uint8_t *) data; //CRC preset value uint32_t crc = 0xFFFFFFFF; //Loop through data for(i = 0; i < length; i++) { //The message is processed bit by bit for(j = 0; j < 8; j++) { //Update CRC value if(((crc >> 31) ^ (p[i] >> j)) & 0x01) crc = (crc << 1) ^ 0x04C11DB7; else crc = crc << 1; } } //Return CRC value return ~crc; }