Webserver+3d print
cyclone_tcp/drivers/a2fxxxm3_eth.c
- Committer:
- Sergunb
- Date:
- 2017-02-04
- Revision:
- 0:8918a71cdbe9
File content as of revision 0:8918a71cdbe9:
/** * @file a2fxxxm3_eth.c * @brief SmartFusion (A2FxxxM3) Ethernet MAC controller * * @section License * * Copyright (C) 2010-2017 Oryx Embedded SARL. All rights reserved. * * This file is part of CycloneTCP Open. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * @author Oryx Embedded SARL (www.oryx-embedded.com) * @version 1.7.6 **/ //Switch to the appropriate trace level #define TRACE_LEVEL NIC_TRACE_LEVEL //Dependencies #include "a2fxxxm3.h" #include "drivers/mss_ethernet_mac/mss_ethernet_mac_regs.h" #include "drivers/mss_ethernet_mac/mss_ethernet_mac_desc.h" #include "core/net.h" #include "drivers/a2fxxxm3_eth.h" #include "debug.h" //Underlying network interface static NetInterface *nicDriverInterface; //IAR EWARM compiler? #if defined(__ICCARM__) //Transmit buffer #pragma data_alignment = 4 static uint8_t txBuffer[A2FXXXM3_ETH_TX_BUFFER_COUNT][A2FXXXM3_ETH_TX_BUFFER_SIZE]; //Receive buffer #pragma data_alignment = 4 static uint8_t rxBuffer[A2FXXXM3_ETH_RX_BUFFER_COUNT][A2FXXXM3_ETH_RX_BUFFER_SIZE]; //Transmit DMA descriptors #pragma data_alignment = 4 static A2fxxxm3TxDmaDesc txDmaDesc[A2FXXXM3_ETH_TX_BUFFER_COUNT]; //Receive DMA descriptors #pragma data_alignment = 4 static A2fxxxm3RxDmaDesc rxDmaDesc[A2FXXXM3_ETH_RX_BUFFER_COUNT]; //Keil MDK-ARM or GCC compiler? #else //Transmit buffer static uint8_t txBuffer[A2FXXXM3_ETH_TX_BUFFER_COUNT][A2FXXXM3_ETH_TX_BUFFER_SIZE] __attribute__((aligned(4))); //Receive buffer static uint8_t rxBuffer[A2FXXXM3_ETH_RX_BUFFER_COUNT][A2FXXXM3_ETH_RX_BUFFER_SIZE] __attribute__((aligned(4))); //Transmit DMA descriptors static A2fxxxm3TxDmaDesc txDmaDesc[A2FXXXM3_ETH_TX_BUFFER_COUNT] __attribute__((aligned(4))); //Receive DMA descriptors static A2fxxxm3RxDmaDesc rxDmaDesc[A2FXXXM3_ETH_RX_BUFFER_COUNT] __attribute__((aligned(4))); #endif //Pointer to the current TX DMA descriptor static A2fxxxm3TxDmaDesc *txCurDmaDesc; //Pointer to the current RX DMA descriptor static A2fxxxm3RxDmaDesc *rxCurDmaDesc; /** * @brief A2FxxxM3 Ethernet MAC driver **/ const NicDriver a2fxxxm3EthDriver = { NIC_TYPE_ETHERNET, ETH_MTU, a2fxxxm3EthInit, a2fxxxm3EthTick, a2fxxxm3EthEnableIrq, a2fxxxm3EthDisableIrq, a2fxxxm3EthEventHandler, a2fxxxm3EthSendPacket, a2fxxxm3EthSetMulticastFilter, a2fxxxm3EthUpdateMacConfig, a2fxxxm3EthWritePhyReg, a2fxxxm3EthReadPhyReg, TRUE, TRUE, TRUE, FALSE }; /** * @brief A2FxxxM3 Ethernet MAC initialization * @param[in] interface Underlying network interface * @return Error code **/ error_t a2fxxxm3EthInit(NetInterface *interface) { error_t error; //Debug message TRACE_INFO("Initializing A2FxxxM3 Ethernet MAC...\r\n"); //Save underlying network interface nicDriverInterface = interface; //Perform a software reset MAC->CSR0 |= CSR0_SWR_MASK; //Wait for the reset to complete while(MAC->CSR0 & CSR0_SWR_MASK); //PHY transceiver initialization error = interface->phyDriver->init(interface); //Failed to initialize PHY transceiver? if(error) return error; //Enable store and forward mode MAC->CSR6 |= CSR6_SF_MASK; //Initialize DMA descriptor lists a2fxxxm3EthInitDmaDesc(interface); //Enable the desired Ethernet interrupts MAC->CSR7 |= CSR7_NIE_MASK | CSR7_RIE_MASK | CSR7_TIE_MASK; //Set priority grouping (5 bits for pre-emption priority, no bits for subpriority) NVIC_SetPriorityGrouping(A2FXXXM3_ETH_IRQ_PRIORITY_GROUPING); //Configure Ethernet interrupt priority NVIC_SetPriority(EthernetMAC_IRQn, NVIC_EncodePriority(A2FXXXM3_ETH_IRQ_PRIORITY_GROUPING, A2FXXXM3_ETH_IRQ_GROUP_PRIORITY, A2FXXXM3_ETH_IRQ_SUB_PRIORITY)); //Enable transmission and reception MAC->CSR6 |= CSR6_ST_MASK | CSR6_SR_MASK; //Set MAC address error = a2fxxxm3EthSendSetup(interface); //Any error to report? if(error) return error; //Accept any packets from the upper layer osSetEvent(&interface->nicTxEvent); //Successful initialization return NO_ERROR; } /** * @brief Initialize DMA descriptor lists * @param[in] interface Underlying network interface **/ void a2fxxxm3EthInitDmaDesc(NetInterface *interface) { uint_t i; //Initialize TX DMA descriptor list for(i = 0; i < A2FXXXM3_ETH_TX_BUFFER_COUNT; i++) { //The descriptor is initially owned by the user txDmaDesc[i].tdes0 = 0; //Use chain structure rather than ring structure txDmaDesc[i].tdes1 = TDES1_TCH; //Transmit buffer address txDmaDesc[i].tdes2 = (uint32_t) txBuffer[i]; //Next descriptor address txDmaDesc[i].tdes3 = (uint32_t) &txDmaDesc[i + 1]; } //The last descriptor is chained to the first entry txDmaDesc[i - 1].tdes3 = (uint32_t) &txDmaDesc[0]; //Point to the very first descriptor txCurDmaDesc = &txDmaDesc[0]; //Initialize RX DMA descriptor list for(i = 0; i < A2FXXXM3_ETH_RX_BUFFER_COUNT; i++) { //The descriptor is initially owned by the DMA rxDmaDesc[i].rdes0 = RDES0_OWN; //Use chain structure rather than ring structure rxDmaDesc[i].rdes1 = RDES1_RCH | (A2FXXXM3_ETH_RX_BUFFER_SIZE & RDES1_RBS1_MASK); //Receive buffer address rxDmaDesc[i].rdes2 = (uint32_t) rxBuffer[i]; //Next descriptor address rxDmaDesc[i].rdes3 = (uint32_t) &rxDmaDesc[i + 1]; } //The last descriptor is chained to the first entry rxDmaDesc[i - 1].rdes3 = (uint32_t) &rxDmaDesc[0]; //Point to the very first descriptor rxCurDmaDesc = &rxDmaDesc[0]; //Start location of the TX descriptor list MAC->CSR4 = (uint32_t) txDmaDesc; //Start location of the RX descriptor list MAC->CSR3 = (uint32_t) rxDmaDesc; } /** * @brief A2FxxxM3 Ethernet MAC timer handler * * This routine is periodically called by the TCP/IP stack to * handle periodic operations such as polling the link state * * @param[in] interface Underlying network interface **/ void a2fxxxm3EthTick(NetInterface *interface) { //Handle periodic operations interface->phyDriver->tick(interface); } /** * @brief Enable interrupts * @param[in] interface Underlying network interface **/ void a2fxxxm3EthEnableIrq(NetInterface *interface) { //Enable Ethernet MAC interrupts NVIC_EnableIRQ(EthernetMAC_IRQn); //Enable Ethernet PHY interrupts interface->phyDriver->enableIrq(interface); } /** * @brief Disable interrupts * @param[in] interface Underlying network interface **/ void a2fxxxm3EthDisableIrq(NetInterface *interface) { //Disable Ethernet MAC interrupts NVIC_DisableIRQ(EthernetMAC_IRQn); //Disable Ethernet PHY interrupts interface->phyDriver->disableIrq(interface); } /** * @brief A2FxxxM3 Ethernet MAC interrupt service routine **/ void EthernetMAC_IRQHandler(void) { bool_t flag; uint32_t status; //Enter interrupt service routine osEnterIsr(); //This flag will be set if a higher priority task must be woken flag = FALSE; //Read interrupt status register status = MAC->CSR5; //A packet has been transmitted? if(status & CSR5_TI_MASK) { //Clear TI interrupt flag MAC->CSR5 = CSR5_TI_MASK; //Check whether the TX buffer is available for writing if(!(txCurDmaDesc->tdes0 & TDES0_OWN)) { //Notify the TCP/IP stack that the transmitter is ready to send flag |= osSetEventFromIsr(&nicDriverInterface->nicTxEvent); } } //A packet has been received? if(status & CSR5_RI_MASK) { //Disable RIE interrupt MAC->CSR7 &= ~CSR7_RIE_MASK; //Set event flag nicDriverInterface->nicEvent = TRUE; //Notify the TCP/IP stack of the event flag |= osSetEventFromIsr(&netEvent); } //Clear NIS interrupt flag MAC->CSR5 = CSR5_NIS_MASK; //Leave interrupt service routine osExitIsr(flag); } /** * @brief A2FxxxM3 Ethernet MAC event handler * @param[in] interface Underlying network interface **/ void a2fxxxm3EthEventHandler(NetInterface *interface) { error_t error; //Packet received? if(MAC->CSR5 & CSR5_RI_MASK) { //Clear interrupt flag MAC->CSR5 = CSR5_RI_MASK; //Process all pending packets do { //Read incoming packet error = a2fxxxm3EthReceivePacket(interface); //No more data in the receive buffer? } while(error != ERROR_BUFFER_EMPTY); } //Re-enable Ethernet interrupts MAC->CSR7 |= CSR7_NIE_MASK | CSR7_RIE_MASK | CSR7_TIE_MASK; } /** * @brief Send a setup frame * @param[in] interface Underlying network interface * @return Error code **/ error_t a2fxxxm3EthSendSetup(NetInterface *interface) { A2fxxxm3HashTableSetupFrame *setupFrame; //Make sure the current buffer is available for writing if(txCurDmaDesc->tdes0 & TDES0_OWN) return ERROR_FAILURE; //Point to the buffer where to format the setup frame setupFrame = (A2fxxxm3HashTableSetupFrame *) txCurDmaDesc->tdes2; //Clear contents memset(setupFrame, 0, sizeof(A2fxxxm3HashTableSetupFrame)); //Set MAC address setupFrame->physicalAddr[0] = interface->macAddr.w[0]; setupFrame->physicalAddr[1] = interface->macAddr.w[1]; setupFrame->physicalAddr[2] = interface->macAddr.w[2]; //Write the number of bytes to send txCurDmaDesc->tdes1 = sizeof(A2fxxxm3HashTableSetupFrame) & TDES1_TBS1_MASK; //The SET flag indicates that this is a setup frame descriptor txCurDmaDesc->tdes1 |= TDES1_SET | TDES1_TCH | TDES1_FT0; //Give the ownership of the descriptor to the DMA txCurDmaDesc->tdes0 |= TDES0_OWN; //Instruct the DMA to poll the transmit descriptor list MAC->CSR1 = 1; //Point to the next descriptor in the list txCurDmaDesc = (A2fxxxm3TxDmaDesc *) txCurDmaDesc->tdes3; //Data successfully written return NO_ERROR; } /** * @brief Send a packet * @param[in] interface Underlying network interface * @param[in] buffer Multi-part buffer containing the data to send * @param[in] offset Offset to the first data byte * @return Error code **/ error_t a2fxxxm3EthSendPacket(NetInterface *interface, const NetBuffer *buffer, size_t offset) { size_t length; //Retrieve the length of the packet length = netBufferGetLength(buffer) - offset; //Check the frame length if(length > A2FXXXM3_ETH_TX_BUFFER_SIZE) { //The transmitter can accept another packet osSetEvent(&interface->nicTxEvent); //Report an error return ERROR_INVALID_LENGTH; } //Make sure the current buffer is available for writing if(txCurDmaDesc->tdes0 & TDES0_OWN) return ERROR_FAILURE; //Copy user data to the transmit buffer netBufferRead((uint8_t *) txCurDmaDesc->tdes2, buffer, offset, length); //Write the number of bytes to send txCurDmaDesc->tdes1 = length & TDES1_TBS1_MASK; //Set LS and FS flags as the data fits in a single buffer txCurDmaDesc->tdes1 |= TDES1_IC | TDES1_LS | TDES1_FS | TDES1_TCH; //Give the ownership of the descriptor to the DMA txCurDmaDesc->tdes0 |= TDES0_OWN; //Instruct the DMA to poll the transmit descriptor list MAC->CSR1 = 1; //Point to the next descriptor in the list txCurDmaDesc = (A2fxxxm3TxDmaDesc *) txCurDmaDesc->tdes3; //Check whether the next buffer is available for writing if(!(txCurDmaDesc->tdes0 & TDES0_OWN)) { //The transmitter can accept another packet osSetEvent(&interface->nicTxEvent); } //Data successfully written return NO_ERROR; } /** * @brief Receive a packet * @param[in] interface Underlying network interface * @return Error code **/ error_t a2fxxxm3EthReceivePacket(NetInterface *interface) { error_t error; size_t n; //The current buffer is available for reading? if(!(rxCurDmaDesc->rdes0 & RDES0_OWN)) { //FS and LS flags should be set if((rxCurDmaDesc->rdes0 & RDES0_FS) && (rxCurDmaDesc->rdes0 & RDES0_LS)) { //Make sure no error occurred if(!(rxCurDmaDesc->rdes0 & RDES0_ES)) { //Retrieve the length of the frame n = (rxCurDmaDesc->rdes0 >> RDES0_FL_OFFSET) & RDES0_FL_MASK; //Limit the number of data to read n = MIN(n, A2FXXXM3_ETH_RX_BUFFER_SIZE); //Pass the packet to the upper layer nicProcessPacket(interface, (uint8_t *) rxCurDmaDesc->rdes2, n); //Valid packet received error = NO_ERROR; } else { //The received packet contains an error error = ERROR_INVALID_PACKET; } } else { //The packet is not valid error = ERROR_INVALID_PACKET; } //Give the ownership of the descriptor back to the DMA rxCurDmaDesc->rdes0 = RDES0_OWN; //Point to the next descriptor in the list rxCurDmaDesc = (A2fxxxm3RxDmaDesc *) rxCurDmaDesc->rdes3; } else { //No more data in the receive buffer error = ERROR_BUFFER_EMPTY; } //Instruct the DMA to poll the receive descriptor list MAC->CSR2 = 1; //Return status code return error; } /** * @brief Configure multicast MAC address filtering * @param[in] interface Underlying network interface * @return Error code **/ error_t a2fxxxm3EthSetMulticastFilter(NetInterface *interface) { uint_t i; bool_t acceptMulticast; //This flag will be set if multicast addresses should be accepted acceptMulticast = FALSE; //The MAC filter table contains the multicast MAC addresses //to accept when receiving an Ethernet frame for(i = 0; i < MAC_MULTICAST_FILTER_SIZE; i++) { //Valid entry? if(interface->macMulticastFilter[i].refCount > 0) { //Accept multicast addresses acceptMulticast = TRUE; //We are done break; } } //Enable the reception of multicast frames if necessary if(acceptMulticast) MAC->CSR6 |= CSR6_PM_MASK; else MAC->CSR6 &= ~CSR6_PM_MASK; //Successful processing return NO_ERROR; } /** * @brief Adjust MAC configuration parameters for proper operation * @param[in] interface Underlying network interface * @return Error code **/ error_t a2fxxxm3EthUpdateMacConfig(NetInterface *interface) { //Stop transmission while(((MAC->CSR5 & CSR5_TS_MASK) >> CSR5_TS_SHIFT) != CSR5_TS_STOPPED) MAC->CSR6 &= ~CSR6_ST_MASK; //Stop reception while(((MAC->CSR5 & CSR5_RS_MASK) >> CSR5_RS_SHIFT) != CSR5_RS_STOPPED) MAC->CSR6 &= ~CSR6_SR_MASK; //10BASE-T or 100BASE-TX operation mode? if(interface->linkSpeed == NIC_LINK_SPEED_100MBPS) MAC->CSR6 |= CSR6_TTM_MASK; else MAC->CSR6 &= ~CSR6_TTM_MASK; //Half-duplex or full-duplex mode? if(interface->duplexMode == NIC_FULL_DUPLEX_MODE) MAC->CSR6 |= CSR6_FD_MASK; else MAC->CSR6 &= ~CSR6_FD_MASK; //Restart transmission and reception MAC->CSR6 |= CSR6_ST_MASK | CSR6_SR_MASK; //Successful processing return NO_ERROR; } /** * @brief Write PHY register * @param[in] phyAddr PHY address * @param[in] regAddr Register address * @param[in] data Register value **/ void a2fxxxm3EthWritePhyReg(uint8_t phyAddr, uint8_t regAddr, uint16_t data) { //Synchronization pattern a2fxxxm3EthWriteSmi(SMI_SYNC, 32); //Start of frame a2fxxxm3EthWriteSmi(SMI_START, 2); //Set up a write operation a2fxxxm3EthWriteSmi(SMI_WRITE, 2); //Write PHY address a2fxxxm3EthWriteSmi(phyAddr, 5); //Write register address a2fxxxm3EthWriteSmi(regAddr, 5); //Turnaround a2fxxxm3EthWriteSmi(SMI_TA, 2); //Write register value a2fxxxm3EthWriteSmi(data, 16); //Release MDIO a2fxxxm3EthReadSmi(1); } /** * @brief Read PHY register * @param[in] phyAddr PHY address * @param[in] regAddr Register address * @return Register value **/ uint16_t a2fxxxm3EthReadPhyReg(uint8_t phyAddr, uint8_t regAddr) { uint16_t data; //Synchronization pattern a2fxxxm3EthWriteSmi(SMI_SYNC, 32); //Start of frame a2fxxxm3EthWriteSmi(SMI_START, 2); //Set up a read operation a2fxxxm3EthWriteSmi(SMI_READ, 2); //Write PHY address a2fxxxm3EthWriteSmi(phyAddr, 5); //Write register address a2fxxxm3EthWriteSmi(regAddr, 5); //Turnaround to avoid contention a2fxxxm3EthReadSmi(1); //Read register value data = a2fxxxm3EthReadSmi(16); //Force the PHY to release the MDIO pin a2fxxxm3EthReadSmi(1); //Return PHY register contents return data; } /** * @brief SMI write operation * @param[in] data Raw data to be written * @param[in] length Number of bits to be written **/ void a2fxxxm3EthWriteSmi(uint32_t data, uint_t length) { //Skip the most significant bits since they are meaningless data <<= 32 - length; //Configure MDIO as an output MAC->CSR9 |= CSR9_MDEN_MASK; //Write the specified number of bits while(length--) { //Write MDIO if(data & 0x80000000) MAC->CSR9 |= CSR9_MDO_MASK; else MAC->CSR9 &= ~CSR9_MDO_MASK; //Assert MDC usleep(1); MAC->CSR9 |= CSR9_MDC_MASK; //Deassert MDC usleep(1); MAC->CSR9 &= ~CSR9_MDC_MASK; //Rotate data data <<= 1; } } /** * @brief SMI read operation * @param[in] length Number of bits to be read * @return Data resulting from the MDIO read operation **/ uint32_t a2fxxxm3EthReadSmi(uint_t length) { uint32_t data = 0; //Configure MDIO as an input MAC->CSR9 &= ~CSR9_MDEN_MASK; //Read the specified number of bits while(length--) { //Rotate data data <<= 1; //Assert MDC MAC->CSR9 |= CSR9_MDC_MASK; usleep(1); //Deassert MDC MAC->CSR9 &= ~CSR9_MDC_MASK; usleep(1); //Check MDIO state if(MAC->CSR9 & CSR9_MDI_MASK) data |= 0x00000001; } //Return the received data return data; } /** * @brief CRC calculation * @param[in] data Pointer to the data over which to calculate the CRC * @param[in] length Number of bytes to process * @return Resulting CRC value **/ uint32_t a2fxxxm3EthCalcCrc(const void *data, size_t length) { uint_t i; uint_t j; //Point to the data over which to calculate the CRC const uint8_t *p = (uint8_t *) data; //CRC preset value uint32_t crc = 0xFFFFFFFF; //Loop through data for(i = 0; i < length; i++) { //Update CRC value crc ^= p[i]; //The message is processed bit by bit for(j = 0; j < 8; j++) { //Update CRC value if(crc & 0x00000001) crc = (crc >> 1) ^ 0xEDB88320; else crc = crc >> 1; } } //Return CRC value return crc; }