Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Revision 0:f96b9b35ac4c, committed 2017-09-28
- Comitter:
- SMART_CLEO
- Date:
- Thu Sep 28 03:29:42 2017 +0000
- Commit message:
- SMART_CLEO
Changed in this revision
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/MPU9250.h Thu Sep 28 03:29:42 2017 +0000
@@ -0,0 +1,874 @@
+#ifndef MPU9250_H
+#define MPU9250_H
+
+#include "mbed.h"
+#include "math.h"
+
+// See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in
+// above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
+//
+//Magnetometer Registers
+#define AK8963_ADDRESS 0x0C<<1
+#define WHO_AM_I_AK8963 0x00 // should return 0x48
+#define INFO 0x01
+#define AK8963_ST1 0x02 // data ready status bit 0
+#define AK8963_XOUT_L 0x03 // data
+#define AK8963_XOUT_H 0x04
+#define AK8963_YOUT_L 0x05
+#define AK8963_YOUT_H 0x06
+#define AK8963_ZOUT_L 0x07
+#define AK8963_ZOUT_H 0x08
+#define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2
+#define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
+#define AK8963_ASTC 0x0C // Self test control
+#define AK8963_I2CDIS 0x0F // I2C disable
+#define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value
+#define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value
+#define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value
+
+#define SELF_TEST_X_GYRO 0x00
+#define SELF_TEST_Y_GYRO 0x01
+#define SELF_TEST_Z_GYRO 0x02
+
+/*#define X_FINE_GAIN 0x03 // [7:0] fine gain
+#define Y_FINE_GAIN 0x04
+#define Z_FINE_GAIN 0x05
+#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
+#define XA_OFFSET_L_TC 0x07
+#define YA_OFFSET_H 0x08
+#define YA_OFFSET_L_TC 0x09
+#define ZA_OFFSET_H 0x0A
+#define ZA_OFFSET_L_TC 0x0B */
+
+#define SELF_TEST_X_ACCEL 0x0D
+#define SELF_TEST_Y_ACCEL 0x0E
+#define SELF_TEST_Z_ACCEL 0x0F
+
+#define SELF_TEST_A 0x10
+
+#define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope
+#define XG_OFFSET_L 0x14
+#define YG_OFFSET_H 0x15
+#define YG_OFFSET_L 0x16
+#define ZG_OFFSET_H 0x17
+#define ZG_OFFSET_L 0x18
+#define SMPLRT_DIV 0x19
+#define CONFIG 0x1A
+#define GYRO_CONFIG 0x1B
+#define ACCEL_CONFIG 0x1C
+#define ACCEL_CONFIG2 0x1D
+#define LP_ACCEL_ODR 0x1E
+#define WOM_THR 0x1F
+
+#define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
+#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
+#define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
+
+#define FIFO_EN 0x23
+#define I2C_MST_CTRL 0x24
+#define I2C_SLV0_ADDR 0x25
+#define I2C_SLV0_REG 0x26
+#define I2C_SLV0_CTRL 0x27
+#define I2C_SLV1_ADDR 0x28
+#define I2C_SLV1_REG 0x29
+#define I2C_SLV1_CTRL 0x2A
+#define I2C_SLV2_ADDR 0x2B
+#define I2C_SLV2_REG 0x2C
+#define I2C_SLV2_CTRL 0x2D
+#define I2C_SLV3_ADDR 0x2E
+#define I2C_SLV3_REG 0x2F
+#define I2C_SLV3_CTRL 0x30
+#define I2C_SLV4_ADDR 0x31
+#define I2C_SLV4_REG 0x32
+#define I2C_SLV4_DO 0x33
+#define I2C_SLV4_CTRL 0x34
+#define I2C_SLV4_DI 0x35
+#define I2C_MST_STATUS 0x36
+#define INT_PIN_CFG 0x37
+#define INT_ENABLE 0x38
+#define DMP_INT_STATUS 0x39 // Check DMP interrupt
+#define INT_STATUS 0x3A
+#define ACCEL_XOUT_H 0x3B
+#define ACCEL_XOUT_L 0x3C
+#define ACCEL_YOUT_H 0x3D
+#define ACCEL_YOUT_L 0x3E
+#define ACCEL_ZOUT_H 0x3F
+#define ACCEL_ZOUT_L 0x40
+#define TEMP_OUT_H 0x41
+#define TEMP_OUT_L 0x42
+#define GYRO_XOUT_H 0x43
+#define GYRO_XOUT_L 0x44
+#define GYRO_YOUT_H 0x45
+#define GYRO_YOUT_L 0x46
+#define GYRO_ZOUT_H 0x47
+#define GYRO_ZOUT_L 0x48
+#define EXT_SENS_DATA_00 0x49
+#define EXT_SENS_DATA_01 0x4A
+#define EXT_SENS_DATA_02 0x4B
+#define EXT_SENS_DATA_03 0x4C
+#define EXT_SENS_DATA_04 0x4D
+#define EXT_SENS_DATA_05 0x4E
+#define EXT_SENS_DATA_06 0x4F
+#define EXT_SENS_DATA_07 0x50
+#define EXT_SENS_DATA_08 0x51
+#define EXT_SENS_DATA_09 0x52
+#define EXT_SENS_DATA_10 0x53
+#define EXT_SENS_DATA_11 0x54
+#define EXT_SENS_DATA_12 0x55
+#define EXT_SENS_DATA_13 0x56
+#define EXT_SENS_DATA_14 0x57
+#define EXT_SENS_DATA_15 0x58
+#define EXT_SENS_DATA_16 0x59
+#define EXT_SENS_DATA_17 0x5A
+#define EXT_SENS_DATA_18 0x5B
+#define EXT_SENS_DATA_19 0x5C
+#define EXT_SENS_DATA_20 0x5D
+#define EXT_SENS_DATA_21 0x5E
+#define EXT_SENS_DATA_22 0x5F
+#define EXT_SENS_DATA_23 0x60
+#define MOT_DETECT_STATUS 0x61
+#define I2C_SLV0_DO 0x63
+#define I2C_SLV1_DO 0x64
+#define I2C_SLV2_DO 0x65
+#define I2C_SLV3_DO 0x66
+#define I2C_MST_DELAY_CTRL 0x67
+#define SIGNAL_PATH_RESET 0x68
+#define MOT_DETECT_CTRL 0x69
+#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
+#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
+#define PWR_MGMT_2 0x6C
+#define DMP_BANK 0x6D // Activates a specific bank in the DMP
+#define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
+#define DMP_REG 0x6F // Register in DMP from which to read or to which to write
+#define DMP_REG_1 0x70
+#define DMP_REG_2 0x71
+#define FIFO_COUNTH 0x72
+#define FIFO_COUNTL 0x73
+#define FIFO_R_W 0x74
+#define WHO_AM_I_MPU9250 0x75 // Should return 0x71
+#define XA_OFFSET_H 0x77
+#define XA_OFFSET_L 0x78
+#define YA_OFFSET_H 0x7A
+#define YA_OFFSET_L 0x7B
+#define ZA_OFFSET_H 0x7D
+#define ZA_OFFSET_L 0x7E
+
+// Using the MSENSR-9250 breakout board, ADO is set to 0
+// Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
+//mbed uses the eight-bit device address, so shift seven-bit addresses left by one!
+#define ADO 0
+#if ADO
+#define MPU9250_ADDRESS 0x69<<1 // Device address when ADO = 1
+#else
+#define MPU9250_ADDRESS 0x68<<1 // Device address when ADO = 0
+#endif
+
+// Set initial input parameters
+enum Ascale {
+ AFS_2G = 0,
+ AFS_4G,
+ AFS_8G,
+ AFS_16G
+};
+
+enum Gscale {
+ GFS_250DPS = 0,
+ GFS_500DPS,
+ GFS_1000DPS,
+ GFS_2000DPS
+};
+
+enum Mscale {
+ MFS_14BITS = 0, // 0.6 mG per LSB
+ MFS_16BITS // 0.15 mG per LSB
+};
+
+uint8_t Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G
+uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
+uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
+uint8_t Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR
+float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
+
+//Set up I2C, (SDA,SCL)
+I2C i2c(I2C_SDA, I2C_SCL);
+
+DigitalOut myled(LED1);
+
+// Pin definitions
+int intPin = PC_2; // These can be changed, 2 and 3 are the Arduinos ext int pins
+
+int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
+int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
+int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
+float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0}; // Factory mag calibration and mag bias
+float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
+float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
+int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
+float temperature;
+float SelfTest[6];
+
+int delt_t = 0; // used to control displhttps://github.com/ARMmbed/mbed-os/ay output rate
+int count = 0; // used to control display output rate
+
+// parameters for 6 DoF sensor fusion calculations
+//float PI = 3.14159265358979323846f;
+float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
+float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
+float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
+float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
+#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
+#define Ki 0.0f
+
+float pitch, yaw, roll;
+float deltat = 0.0f; // integration interval for both filter schemes
+int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
+float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
+float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method
+
+class MPU9250 {
+
+ protected:
+
+ public:
+ //===================================================================================================================
+//====== Set of useful function to access acceleratio, gyroscope, and temperature data
+//===================================================================================================================
+
+ void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
+{
+ char data_write[2];
+ data_write[0] = subAddress;
+ data_write[1] = data;
+ i2c.write(address, data_write, 2, 0);
+}
+
+ char readByte(uint8_t address, uint8_t subAddress)
+{
+ char data[1]; // `data` will store the register data
+ char data_write[1];
+ data_write[0] = subAddress;
+ i2c.write(address, data_write, 1, 1); // no stop
+ i2c.read(address, data, 1, 0);
+ return data[0];
+}
+
+ void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
+{
+ char data[14];
+ char data_write[1];
+ data_write[0] = subAddress;
+ i2c.write(address, data_write, 1, 1); // no stop
+ i2c.read(address, data, count, 0);
+ for(int ii = 0; ii < count; ii++) {
+ dest[ii] = data[ii];
+ }
+}
+
+
+void getMres() {
+ switch (Mscale)
+ {
+ // Possible magnetometer scales (and their register bit settings) are:
+ // 14 bit resolution (0) and 16 bit resolution (1)
+ case MFS_14BITS:
+ mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
+ break;
+ case MFS_16BITS:
+ mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
+ break;
+ }
+}
+
+
+void getGres() {
+ switch (Gscale)
+ {
+ // Possible gyro scales (and their register bit settings) are:
+ // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
+ // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
+ case GFS_250DPS:
+ gRes = 250.0/32768.0;
+ break;
+ case GFS_500DPS:
+ gRes = 500.0/32768.0;
+ break;
+ case GFS_1000DPS:
+ gRes = 1000.0/32768.0;
+ break;
+ case GFS_2000DPS:
+ gRes = 2000.0/32768.0;
+ break;
+ }
+}
+
+
+void getAres() {
+ switch (Ascale)
+ {
+ // Possible accelerometer scales (and their register bit settings) are:
+ // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
+ // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
+ case AFS_2G:
+ aRes = 2.0/32768.0;
+ break;
+ case AFS_4G:
+ aRes = 4.0/32768.0;
+ break;
+ case AFS_8G:
+ aRes = 8.0/32768.0;
+ break;
+ case AFS_16G:
+ aRes = 16.0/32768.0;
+ break;
+ }
+}
+
+
+void readAccelData(int16_t * destination)
+{
+ uint8_t rawData[6]; // x/y/z accel register data stored here
+ readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
+ destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
+ destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+ destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+}
+
+void readGyroData(int16_t * destination)
+{
+ uint8_t rawData[6]; // x/y/z gyro register data stored here
+ readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
+ destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
+ destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+ destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+}
+
+void readMagData(int16_t * destination)
+{
+ uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
+ if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
+ readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array
+ uint8_t c = rawData[6]; // End data read by reading ST2 register
+ if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
+ destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
+ destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ; // Data stored as little Endian
+ destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ;
+ }
+ }
+}
+
+int16_t readTempData()
+{
+ uint8_t rawData[2]; // x/y/z gyro register data stored here
+ readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
+ return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
+}
+
+
+void resetMPU9250() {
+ // reset device
+ writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
+ wait(0.1);
+ }
+
+ void initAK8963(float * destination)
+{
+ // First extract the factory calibration for each magnetometer axis
+ uint8_t rawData[3]; // x/y/z gyro calibration data stored here
+ writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
+ wait(0.01);
+ writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
+ wait(0.01);
+ readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
+ destination[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc.
+ destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f;
+ destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f;
+ writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
+ wait(0.01);
+ // Configure the magnetometer for continuous read and highest resolution
+ // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
+ // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
+ writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
+ wait(0.01);
+}
+
+
+void initMPU9250()
+{
+ // Initialize MPU9250 device
+ // wake up device
+ writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
+ wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
+
+ // get stable time source
+ writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
+
+ // Configure Gyro and Accelerometer
+ // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
+ // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
+ // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
+ writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
+
+ // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
+ writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
+
+ // Set gyroscope full scale range
+ // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
+ uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG);
+ writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
+ writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
+ writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
+
+ // Set accelerometer configuration
+ c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG);
+ writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
+ writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
+ writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
+
+ // Set accelerometer sample rate configuration
+ // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
+ // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
+ c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2);
+ writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
+ writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
+
+ // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
+ // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
+
+ // Configure Interrupts and Bypass Enable
+ // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
+ // can join the I2C bus and all can be controlled by the Arduino as master
+ writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
+ writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
+}
+
+// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
+// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
+void calibrateMPU9250(float * dest1, float * dest2)
+{
+ uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
+ uint16_t ii, packet_count, fifo_count;
+ int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
+
+// reset device, reset all registers, clear gyro and accelerometer bias registers
+ writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
+ wait(0.1);
+
+// get stable time source
+// Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
+ writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
+ writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
+ wait(0.2);
+
+// Configure device for bias calculation
+ writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
+ writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
+ writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
+ writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
+ writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
+ writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
+ wait(0.015);
+
+// Configure MPU9250 gyro and accelerometer for bias calculation
+ writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
+ writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
+ writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
+ writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
+
+ uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
+ uint16_t accelsensitivity = 16384; // = 16384 LSB/g
+
+// Configure FIFO to capture accelerometer and gyro data for bias calculation
+ writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
+ writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
+ wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
+
+// At end of sample accumulation, turn off FIFO sensor read
+ writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
+ readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
+ fifo_count = ((uint16_t)data[0] << 8) | data[1];
+ packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
+
+ for (ii = 0; ii < packet_count; ii++) {
+ int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
+ readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
+ accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
+ accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
+ accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
+ gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
+ gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
+ gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
+
+ accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
+ accel_bias[1] += (int32_t) accel_temp[1];
+ accel_bias[2] += (int32_t) accel_temp[2];
+ gyro_bias[0] += (int32_t) gyro_temp[0];
+ gyro_bias[1] += (int32_t) gyro_temp[1];
+ gyro_bias[2] += (int32_t) gyro_temp[2];
+
+}
+ accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
+ accel_bias[1] /= (int32_t) packet_count;
+ accel_bias[2] /= (int32_t) packet_count;
+ gyro_bias[0] /= (int32_t) packet_count;
+ gyro_bias[1] /= (int32_t) packet_count;
+ gyro_bias[2] /= (int32_t) packet_count;
+
+ if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
+ else {accel_bias[2] += (int32_t) accelsensitivity;}
+
+// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
+ data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
+ data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
+ data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
+ data[3] = (-gyro_bias[1]/4) & 0xFF;
+ data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
+ data[5] = (-gyro_bias[2]/4) & 0xFF;
+
+/// Push gyro biases to hardware registers
+/* writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
+ writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
+ writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
+ writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
+ writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
+ writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
+*/
+ dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
+ dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
+ dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
+
+// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
+// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
+// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
+// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
+// the accelerometer biases calculated above must be divided by 8.
+
+ int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
+ readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
+ accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+ readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
+ accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+ readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
+ accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+
+ uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
+ uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
+
+ for(ii = 0; ii < 3; ii++) {
+ if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
+ }
+
+ // Construct total accelerometer bias, including calculated average accelerometer bias from above
+ accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
+ accel_bias_reg[1] -= (accel_bias[1]/8);
+ accel_bias_reg[2] -= (accel_bias[2]/8);
+
+ data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
+ data[1] = (accel_bias_reg[0]) & 0xFF;
+ data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+ data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
+ data[3] = (accel_bias_reg[1]) & 0xFF;
+ data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+ data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
+ data[5] = (accel_bias_reg[2]) & 0xFF;
+ data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+
+// Apparently this is not working for the acceleration biases in the MPU-9250
+// Are we handling the temperature correction bit properly?
+// Push accelerometer biases to hardware registers
+/* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
+ writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
+ writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
+ writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
+ writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
+ writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
+*/
+// Output scaled accelerometer biases for manual subtraction in the main program
+ dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
+ dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
+ dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
+}
+
+
+// Accelerometer and gyroscope self test; check calibration wrt factory settings
+void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
+{
+ uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
+ uint8_t selfTest[6];
+ int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
+ float factoryTrim[6];
+ uint8_t FS = 0;
+
+ writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
+ writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
+ writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
+ writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
+ writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
+
+ for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
+
+ readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
+ aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
+ aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+ aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+
+ readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
+ gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
+ gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+ gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+ }
+
+ for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
+ aAvg[ii] /= 200;
+ gAvg[ii] /= 200;
+ }
+
+// Configure the accelerometer for self-test
+ writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
+ writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
+ wait_ms(25); // Delay a while to let the device stabilize
+
+ for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
+
+ readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
+ aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
+ aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+ aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+
+ readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
+ gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
+ gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+ gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+ }
+
+ for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
+ aSTAvg[ii] /= 200;
+ gSTAvg[ii] /= 200;
+ }
+
+ // Configure the gyro and accelerometer for normal operation
+ writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
+ writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
+ wait_ms(25); // Delay a while to let the device stabilize
+
+ // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
+ selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
+ selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
+ selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
+ selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
+ selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
+ selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
+
+ // Retrieve factory self-test value from self-test code reads
+ factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
+ factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
+ factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
+ factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
+ factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
+ factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
+
+ // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
+ // To get percent, must multiply by 100
+ for (int i = 0; i < 3; i++) {
+ destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
+ destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
+ }
+
+}
+
+
+
+// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
+// (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
+// which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
+// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
+// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
+// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
+ void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
+ {
+ float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
+ float norm;
+ float hx, hy, _2bx, _2bz;
+ float s1, s2, s3, s4;
+ float qDot1, qDot2, qDot3, qDot4;
+
+ // Auxiliary variables to avoid repeated arithmetic
+ float _2q1mx;
+ float _2q1my;
+ float _2q1mz;
+ float _2q2mx;
+ float _4bx;
+ float _4bz;
+ float _2q1 = 2.0f * q1;
+ float _2q2 = 2.0f * q2;
+ float _2q3 = 2.0f * q3;
+ float _2q4 = 2.0f * q4;
+ float _2q1q3 = 2.0f * q1 * q3;
+ float _2q3q4 = 2.0f * q3 * q4;
+ float q1q1 = q1 * q1;
+ float q1q2 = q1 * q2;
+ float q1q3 = q1 * q3;
+ float q1q4 = q1 * q4;
+ float q2q2 = q2 * q2;
+ float q2q3 = q2 * q3;
+ float q2q4 = q2 * q4;
+ float q3q3 = q3 * q3;
+ float q3q4 = q3 * q4;
+ float q4q4 = q4 * q4;
+
+ // Normalise accelerometer measurement
+ norm = sqrt(ax * ax + ay * ay + az * az);
+ if (norm == 0.0f) return; // handle NaN
+ norm = 1.0f/norm;
+ ax *= norm;
+ ay *= norm;
+ az *= norm;
+
+ // Normalise magnetometer measurement
+ norm = sqrt(mx * mx + my * my + mz * mz);
+ if (norm == 0.0f) return; // handle NaN
+ norm = 1.0f/norm;
+ mx *= norm;
+ my *= norm;
+ mz *= norm;
+
+ // Reference direction of Earth's magnetic field
+ _2q1mx = 2.0f * q1 * mx;
+ _2q1my = 2.0f * q1 * my;
+ _2q1mz = 2.0f * q1 * mz;
+ _2q2mx = 2.0f * q2 * mx;
+ hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
+ hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
+ _2bx = sqrt(hx * hx + hy * hy);
+ _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
+ _4bx = 2.0f * _2bx;
+ _4bz = 2.0f * _2bz;
+
+ // Gradient decent algorithm corrective step
+ s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+ s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+ s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+ s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+ norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
+ norm = 1.0f/norm;
+ s1 *= norm;
+ s2 *= norm;
+ s3 *= norm;
+ s4 *= norm;
+
+ // Compute rate of change of quaternion
+ qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
+ qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
+ qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
+ qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
+
+ // Integrate to yield quaternion
+ q1 += qDot1 * deltat;
+ q2 += qDot2 * deltat;
+ q3 += qDot3 * deltat;
+ q4 += qDot4 * deltat;
+ norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
+ norm = 1.0f/norm;
+ q[0] = q1 * norm;
+ q[1] = q2 * norm;
+ q[2] = q3 * norm;
+ q[3] = q4 * norm;
+
+ }
+
+
+
+ // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
+ // measured ones.
+ void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
+ {
+ float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
+ float norm;
+ float hx, hy, bx, bz;
+ float vx, vy, vz, wx, wy, wz;
+ float ex, ey, ez;
+ float pa, pb, pc;
+
+ // Auxiliary variables to avoid repeated arithmetic
+ float q1q1 = q1 * q1;
+ float q1q2 = q1 * q2;
+ float q1q3 = q1 * q3;
+ float q1q4 = q1 * q4;
+ float q2q2 = q2 * q2;
+ float q2q3 = q2 * q3;
+ float q2q4 = q2 * q4;
+ float q3q3 = q3 * q3;
+ float q3q4 = q3 * q4;
+ float q4q4 = q4 * q4;
+
+ // Normalise accelerometer measurement
+ norm = sqrt(ax * ax + ay * ay + az * az);
+ if (norm == 0.0f) return; // handle NaN
+ norm = 1.0f / norm; // use reciprocal for division
+ ax *= norm;
+ ay *= norm;
+ az *= norm;
+
+ // Normalise magnetometer measurement
+ norm = sqrt(mx * mx + my * my + mz * mz);
+ if (norm == 0.0f) return; // handle NaN
+ norm = 1.0f / norm; // use reciprocal for division
+ mx *= norm;
+ my *= norm;
+ mz *= norm;
+
+ // Reference direction of Earth's magnetic field
+ hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
+ hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
+ bx = sqrt((hx * hx) + (hy * hy));
+ bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
+
+ // Estimated direction of gravity and magnetic field
+ vx = 2.0f * (q2q4 - q1q3);
+ vy = 2.0f * (q1q2 + q3q4);
+ vz = q1q1 - q2q2 - q3q3 + q4q4;
+ wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
+ wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
+ wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);
+
+ // Error is cross product between estimated direction and measured direction of gravity
+ ex = (ay * vz - az * vy) + (my * wz - mz * wy);
+ ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
+ ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
+ if (Ki > 0.0f)
+ {
+ eInt[0] += ex; // accumulate integral error
+ eInt[1] += ey;
+ eInt[2] += ez;
+ }
+ else
+ {
+ eInt[0] = 0.0f; // prevent integral wind up
+ eInt[1] = 0.0f;
+ eInt[2] = 0.0f;
+ }
+
+ // Apply feedback terms
+ gx = gx + Kp * ex + Ki * eInt[0];
+ gy = gy + Kp * ey + Ki * eInt[1];
+ gz = gz + Kp * ez + Ki * eInt[2];
+
+ // Integrate rate of change of quaternion
+ pa = q2;
+ pb = q3;
+ pc = q4;
+ q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
+ q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
+ q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
+ q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
+
+ // Normalise quaternion
+ norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
+ norm = 1.0f / norm;
+ q[0] = q1 * norm;
+ q[1] = q2 * norm;
+ q[2] = q3 * norm;
+ q[3] = q4 * norm;
+
+ }
+ };
+#endif
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/TextLCD/TextLCD.cpp Thu Sep 28 03:29:42 2017 +0000
@@ -0,0 +1,163 @@
+/* mbed TextLCD Library, for a 4-bit LCD based on HD44780
+ * Copyright (c) 2007-2010, sford
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include "TextLCD.h"
+#include "mbed.h"
+
+TextLCD::TextLCD(PinName rs, PinName rw, PinName e, PinName d0, PinName d1,
+ PinName d2, PinName d3, LCDType type) : _rs(rs), _rw(rw),
+ _e(e), _d(d0, d1, d2, d3),
+ _type(type) {
+
+ _rw = 0;
+ _e = 1;
+ _rs = 0; // command mode
+ _d.output();
+
+ wait(0.015); // Wait 15ms to ensure powered up
+
+ // send "Display Settings" 3 times (Only top nibble of 0x30 as we've got 4-bit bus)
+ for (int i=0; i<3; i++) {
+ writeByte(0x3);
+ wait(0.00164); // this command takes 1.64ms, so wait for it
+ }
+ writeByte(0x2); // 4-bit mode
+ wait(0.000040f); // most instructions take 40us
+
+ writeCommand(0x28); // Function set 001 BW N F - -
+ writeCommand(0x0C);
+ writeCommand(0x6); // Cursor Direction and Display Shift : 0000 01 CD S (CD 0-left, 1-right S(hift) 0-no, 1-yes
+ cls();
+}
+
+void TextLCD::character(int column, int row, int c) {
+ int a = address(column, row);
+ writeCommand(a);
+ writeData(c);
+}
+
+void TextLCD::cls() {
+ writeCommand(0x01); // cls, and set cursor to 0
+ wait(0.00164f); // This command takes 1.64 ms
+ locate(0, 0);
+}
+
+void TextLCD::locate(int column, int row) {
+ _column = column;
+ _row = row;
+}
+
+int TextLCD::_putc(int value) {
+ if (value == '\n') {
+ _column = 0;
+ _row++;
+ if (_row >= rows()) {
+ _row = 0;
+ }
+ } else {
+ character(_column, _row, value);
+ _column++;
+ if (_column >= columns()) {
+ _column = 0;
+ _row++;
+ if (_row >= rows()) {
+ _row = 0;
+ }
+ }
+ }
+ return value;
+}
+
+int TextLCD::_getc() {
+ return -1;
+}
+
+void TextLCD::writeByte(int value) {
+ _rw = 0;
+
+ _d = value >> 4;
+ wait(0.000040f); // most instructions take 40us
+ _e = 0;
+ wait(0.000040f);
+ _e = 1;
+ _d = value >> 0;
+ wait(0.000040f);
+ _e = 0;
+ wait(0.000040f); // most instructions take 40us
+ _e = 1;
+}
+
+void TextLCD::writeCommand(int command) {
+ _rs = 0;
+ writeByte(command);
+}
+
+void TextLCD::writeData(int data) {
+ _rs = 1;
+ writeByte(data);
+}
+
+int TextLCD::address(int column, int row) {
+ switch (_type) {
+ case LCD20x4:
+ switch (row) {
+ case 0:
+ return 0x80 + column;
+ case 1:
+ return 0xc0 + column;
+ case 2:
+ return 0x94 + column;
+ case 3:
+ return 0xd4 + column;
+ }
+ case LCD16x2B:
+ return 0x80 + (row * 40) + column;
+ case LCD16x2:
+ case LCD20x2:
+ default:
+ return 0x80 + (row * 0x40) + column;
+ }
+}
+
+int TextLCD::columns() {
+ switch (_type) {
+ case LCD20x4:
+ case LCD20x2:
+ return 20;
+ case LCD16x2:
+ case LCD16x2B:
+ default:
+ return 16;
+ }
+}
+
+int TextLCD::rows() {
+ switch (_type) {
+ case LCD20x4:
+ return 4;
+ case LCD16x2:
+ case LCD16x2B:
+ case LCD20x2:
+ default:
+ return 2;
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/TextLCD/TextLCD.h Thu Sep 28 03:29:42 2017 +0000
@@ -0,0 +1,111 @@
+/* mbed TextLCD Library, for a 4-bit LCD based on HD44780
+ * Copyright (c) 2007-2010, sford
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#ifndef MBED_TEXTLCD_H
+#define MBED_TEXTLCD_H
+
+#include "mbed.h"
+
+/** A TextLCD interface for driving 4-bit HD44780-based LCDs
+ *
+ * Currently supports 16x2, 20x2 and 20x4 panels
+ *
+ * @code
+ * #include "mbed.h"
+ * #include "TextLCD.h"
+ *
+ * TextLCD lcd(p10, p12, p15, p16, p29, p30); // rs, e, d0-d3
+ *
+ * int main() {
+ * lcd.printf("Hello World!\n");
+ * }
+ * @endcode
+ */
+class TextLCD : public Stream {
+public:
+
+ /** LCD panel format */
+ enum LCDType {
+ LCD16x2 /**< 16x2 LCD panel (default) */
+ , LCD16x2B /**< 16x2 LCD panel alternate addressing */
+ , LCD20x2 /**< 20x2 LCD panel */
+ , LCD20x4 /**< 20x4 LCD panel */
+ };
+
+ /** Create a TextLCD interface
+ *
+ * @param rs Instruction/data control line
+ * @param e Enable line (clock)
+ * @param d0-d3 Data lines
+ * @param type Sets the panel size/addressing mode (default = LCD16x2)
+ */
+ TextLCD(PinName rs, PinName rw, PinName e, PinName d0, PinName d1, PinName d2, PinName d3, LCDType type = LCD16x2);
+
+#if DOXYGEN_ONLY
+ /** Write a character to the LCD
+ *
+ * @param c The character to write to the display
+ */
+ int putc(int c);
+
+ /** Write a formated string to the LCD
+ *
+ * @param format A printf-style format string, followed by the
+ * variables to use in formating the string.
+ */
+ int printf(const char* format, ...);
+#endif
+
+ /** Locate to a screen column and row
+ *
+ * @param column The horizontal position from the left, indexed from 0
+ * @param row The vertical position from the top, indexed from 0
+ */
+ void locate(int column, int row);
+
+ /** Clear the screen and locate to 0,0 */
+ void cls();
+
+ int rows();
+ int columns();
+
+protected:
+
+ // Stream implementation functions
+ virtual int _putc(int value);
+ virtual int _getc();
+
+ int address(int column, int row);
+ void character(int column, int row, int c);
+ void writeByte(int value);
+ void writeCommand(int command);
+ void writeData(int data);
+
+ DigitalOut _rs, _rw, _e;
+ BusInOut _d;
+ LCDType _type;
+
+ int _column;
+ int _row;
+};
+
+#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/main.cpp Thu Sep 28 03:29:42 2017 +0000
@@ -0,0 +1,246 @@
+#include "mbed.h"
+#include "MPU9250.h"
+#include "TextLCD.h"
+
+struct UART_buf
+{
+ uint8_t STA;
+ uint8_t MODE;
+ uint8_t CMD;
+ uint8_t LEN;
+ uint8_t DATA[32];
+ uint8_t END;
+
+};
+
+union Data_DB{
+ int16_t data16;
+ uint8_t data8[2];
+}Data_Tr;
+
+MPU9250 mpu9250;
+
+Ticker Sensor_Timer;
+
+Serial SerialUART(PA_2, PA_3); // tx, rx
+
+// rs, rw, e, d0-d3
+TextLCD lcd(PB_12, PB_13, PB_14, PB_15, PA_9, PA_10, PA_11);
+
+uint8_t Buffer[37];
+volatile uint8_t Sensor_flag = 0;
+
+UART_buf RX_BUF;
+
+void SerialUARTRX_ISR(void);
+void Timer_setting(uint8_t cmd, uint8_t value);
+void Sensor_Read(void);
+
+int main()
+{
+ SerialUART.baud(115200);
+
+ //Set up I2C
+ i2c.frequency(400000); // use fast (400 kHz) I2C
+
+ // Read the WHO_AM_I register, this is a good test of communication
+ uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250
+ //SerialUART.printf("I AM 0x%x\n\r", whoami); SerialUART.printf("I SHOULD BE 0x71\n\r");
+
+ if (whoami == 0x71) // WHO_AM_I should always be 0x68
+ {
+ /*SerialUART.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
+ SerialUART.printf("MPU9250 is online...\n\r");*/
+ lcd.printf("MPU9250 is 0x%x\n",whoami);
+ lcd.printf(" Connected ");
+
+ wait(1);
+
+ mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
+ mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
+ /*SerialUART.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);
+ SerialUART.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);
+ SerialUART.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);
+ SerialUART.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);
+ SerialUART.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);
+ SerialUART.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]); */
+ mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
+ /*SerialUART.printf("x gyro bias = %f\n\r", gyroBias[0]);
+ SerialUART.printf("y gyro bias = %f\n\r", gyroBias[1]);
+ SerialUART.printf("z gyro bias = %f\n\r", gyroBias[2]);
+ SerialUART.printf("x accel bias = %f\n\r", accelBias[0]);
+ SerialUART.printf("y accel bias = %f\n\r", accelBias[1]);
+ SerialUART.printf("z accel bias = %f\n\r", accelBias[2]);*/
+ wait(2);
+ mpu9250.initMPU9250();
+ //SerialUART.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
+ mpu9250.initAK8963(magCalibration);
+ /*SerialUART.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
+ SerialUART.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale));
+ pSerialUARTc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale));
+ if(Mscale == 0) SerialUART.printf("Magnetometer resolution = 14 bits\n\r");
+ if(Mscale == 1) SerialUART.printf("Magnetometer resolution = 16 bits\n\r");
+ if(Mmode == 2) SerialUART.printf("Magnetometer ODR = 8 Hz\n\r");
+ if(Mmode == 6) SerialUART.printf("Magnetometer ODR = 100 Hz\n\r");*/
+ wait(1);
+ }
+ else
+ {
+ //SerialUART.printf("Could not connect to MPU9250: \n\r");
+ //SerialUART.printf("%#x \n", whoami);
+
+ lcd.printf("MPU9250 is 0x%x\n",whoami);
+ lcd.printf(" No connection ");
+
+ while(1) ; // Loop forever if communication doesn't happen
+ }
+
+ mpu9250.getAres(); // Get accelerometer sensitivity
+ mpu9250.getGres(); // Get gyro sensitivity
+ mpu9250.getMres(); // Get magnetometer sensitivity
+/* pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
+ pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
+ pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);*/
+// magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated
+// magbias[1] = +120.; // User environmental x-axis correction in milliGauss
+// magbias[2] = +125.; // User environmental x-axis correction in milliGauss
+
+ SerialUART.attach(&SerialUARTRX_ISR);
+
+ Timer_setting(0x06, 1);
+
+ while(1)
+ {
+ if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt
+
+ mpu9250.readAccelData(accelCount); // Read the x/y/z adc values
+ mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values
+ mpu9250.readMagData(magCount); // Read the x/y/z adc values
+ // Now we'll calculate the accleration value into actual g's
+ if(Sensor_flag)
+ {
+ Sensor_flag = 0;
+
+ ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
+ ay = (float)accelCount[1]*aRes - accelBias[1];
+ az = (float)accelCount[2]*aRes - accelBias[2];
+ /*
+ // Calculate the gyro value into actual degrees per second
+ gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set
+ gy = (float)gyroCount[1]*gRes - gyroBias[1];
+ gz = (float)gyroCount[2]*gRes - gyroBias[2];
+
+ // Calculate the magnetometer values in milliGauss
+ // Include factory calibration per data sheet and user environmental corrections
+ mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set
+ my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
+ mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];*/
+
+ Buffer[0] = 0x76;
+ Buffer[1] = 0x01;
+ Buffer[2] = 0x02;
+ Buffer[3] = 6;
+ Data_Tr.data16 = (int16_t)(ax * 1000);
+ Buffer[4] = Data_Tr.data8[1];
+ Buffer[5] = Data_Tr.data8[0];
+ Data_Tr.data16 = (int16_t)(ay * 1000);
+ Buffer[6] = Data_Tr.data8[1];
+ Buffer[7] = Data_Tr.data8[0];
+ Data_Tr.data16 = (int16_t)(az * 1000);
+ Buffer[8] = Data_Tr.data8[1];
+ Buffer[9] = Data_Tr.data8[0];
+ Buffer[10] = 0x3E;
+
+ for(int i=0; i<11; i++)
+ SerialUART.putc(Buffer[i]);
+ }
+ }
+ }
+}
+
+void SerialUARTRX_ISR(void)
+{
+ static uint8_t RX_count = 0, RX_Len = 32, RX_Status = 0;
+ uint8_t rx_da = SerialUART.getc();
+ switch(RX_Status)
+ {
+ case 0:
+ if(rx_da == 0x76)
+ {
+ RX_BUF.STA = rx_da;
+ RX_Status++;
+ }
+ break;
+ case 1:
+ RX_BUF.MODE = rx_da;
+ RX_Status++;
+ break;
+ case 2:
+ RX_BUF.CMD = rx_da;
+ RX_Status++;
+ break;
+ case 3:
+ RX_BUF.LEN = rx_da;
+ RX_Len = RX_BUF.LEN;
+ RX_Status++;
+ if(RX_Len == 0)
+ RX_Status++;
+ break;
+ case 4:
+ RX_BUF.DATA[RX_count] = rx_da;
+ RX_count++;
+ if(RX_count == RX_Len)
+ {
+ RX_Status++;
+ RX_count = 0;
+ RX_Len = 32;
+ }
+ break;
+ case 5:
+ if(rx_da == 0x3E)
+ {
+ RX_BUF.END = rx_da;
+ RX_Status = 0;
+ switch(RX_BUF.MODE)
+ {
+ case 0x04:
+ Timer_setting(RX_BUF.CMD, RX_BUF.DATA[0]);
+ break;
+ }
+ }
+ break;
+ }
+}
+
+void Timer_setting(uint8_t cmd, uint8_t value)
+{
+ double Time_value = 0;
+ switch(cmd)
+ {
+ case 0x01:
+ Time_value = 30;
+ break;
+ case 0x02:
+ Time_value = 60;
+ break;
+ case 0x03:
+ Time_value = 120;
+ break;
+ case 0x04:
+ Time_value = 300;
+ break;
+ case 0x05:
+ Time_value = 600;
+ break;
+ case 0x06:
+ Time_value = value;
+ Time_value = 1.0/Time_value;
+ break;
+ }
+ Sensor_Timer.attach(&Sensor_Read, Time_value);
+}
+
+void Sensor_Read(void)
+{
+ Sensor_flag = 1;
+}
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mbed-os.lib Thu Sep 28 03:29:42 2017 +0000 @@ -0,0 +1,1 @@ +https://github.com/ARMmbed/mbed-os/#ca661f9d28526ca8f874b05432493a489c9671ea