Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
main.cpp@0:f96b9b35ac4c, 2017-09-28 (annotated)
- Committer:
- SMART_CLEO
- Date:
- Thu Sep 28 03:29:42 2017 +0000
- Revision:
- 0:f96b9b35ac4c
SMART_CLEO
Who changed what in which revision?
| User | Revision | Line number | New contents of line |
|---|---|---|---|
| SMART_CLEO | 0:f96b9b35ac4c | 1 | #include "mbed.h" |
| SMART_CLEO | 0:f96b9b35ac4c | 2 | #include "MPU9250.h" |
| SMART_CLEO | 0:f96b9b35ac4c | 3 | #include "TextLCD.h" |
| SMART_CLEO | 0:f96b9b35ac4c | 4 | |
| SMART_CLEO | 0:f96b9b35ac4c | 5 | struct UART_buf |
| SMART_CLEO | 0:f96b9b35ac4c | 6 | { |
| SMART_CLEO | 0:f96b9b35ac4c | 7 | uint8_t STA; |
| SMART_CLEO | 0:f96b9b35ac4c | 8 | uint8_t MODE; |
| SMART_CLEO | 0:f96b9b35ac4c | 9 | uint8_t CMD; |
| SMART_CLEO | 0:f96b9b35ac4c | 10 | uint8_t LEN; |
| SMART_CLEO | 0:f96b9b35ac4c | 11 | uint8_t DATA[32]; |
| SMART_CLEO | 0:f96b9b35ac4c | 12 | uint8_t END; |
| SMART_CLEO | 0:f96b9b35ac4c | 13 | |
| SMART_CLEO | 0:f96b9b35ac4c | 14 | }; |
| SMART_CLEO | 0:f96b9b35ac4c | 15 | |
| SMART_CLEO | 0:f96b9b35ac4c | 16 | union Data_DB{ |
| SMART_CLEO | 0:f96b9b35ac4c | 17 | int16_t data16; |
| SMART_CLEO | 0:f96b9b35ac4c | 18 | uint8_t data8[2]; |
| SMART_CLEO | 0:f96b9b35ac4c | 19 | }Data_Tr; |
| SMART_CLEO | 0:f96b9b35ac4c | 20 | |
| SMART_CLEO | 0:f96b9b35ac4c | 21 | MPU9250 mpu9250; |
| SMART_CLEO | 0:f96b9b35ac4c | 22 | |
| SMART_CLEO | 0:f96b9b35ac4c | 23 | Ticker Sensor_Timer; |
| SMART_CLEO | 0:f96b9b35ac4c | 24 | |
| SMART_CLEO | 0:f96b9b35ac4c | 25 | Serial SerialUART(PA_2, PA_3); // tx, rx |
| SMART_CLEO | 0:f96b9b35ac4c | 26 | |
| SMART_CLEO | 0:f96b9b35ac4c | 27 | // rs, rw, e, d0-d3 |
| SMART_CLEO | 0:f96b9b35ac4c | 28 | TextLCD lcd(PB_12, PB_13, PB_14, PB_15, PA_9, PA_10, PA_11); |
| SMART_CLEO | 0:f96b9b35ac4c | 29 | |
| SMART_CLEO | 0:f96b9b35ac4c | 30 | uint8_t Buffer[37]; |
| SMART_CLEO | 0:f96b9b35ac4c | 31 | volatile uint8_t Sensor_flag = 0; |
| SMART_CLEO | 0:f96b9b35ac4c | 32 | |
| SMART_CLEO | 0:f96b9b35ac4c | 33 | UART_buf RX_BUF; |
| SMART_CLEO | 0:f96b9b35ac4c | 34 | |
| SMART_CLEO | 0:f96b9b35ac4c | 35 | void SerialUARTRX_ISR(void); |
| SMART_CLEO | 0:f96b9b35ac4c | 36 | void Timer_setting(uint8_t cmd, uint8_t value); |
| SMART_CLEO | 0:f96b9b35ac4c | 37 | void Sensor_Read(void); |
| SMART_CLEO | 0:f96b9b35ac4c | 38 | |
| SMART_CLEO | 0:f96b9b35ac4c | 39 | int main() |
| SMART_CLEO | 0:f96b9b35ac4c | 40 | { |
| SMART_CLEO | 0:f96b9b35ac4c | 41 | SerialUART.baud(115200); |
| SMART_CLEO | 0:f96b9b35ac4c | 42 | |
| SMART_CLEO | 0:f96b9b35ac4c | 43 | //Set up I2C |
| SMART_CLEO | 0:f96b9b35ac4c | 44 | i2c.frequency(400000); // use fast (400 kHz) I2C |
| SMART_CLEO | 0:f96b9b35ac4c | 45 | |
| SMART_CLEO | 0:f96b9b35ac4c | 46 | // Read the WHO_AM_I register, this is a good test of communication |
| SMART_CLEO | 0:f96b9b35ac4c | 47 | uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250 |
| SMART_CLEO | 0:f96b9b35ac4c | 48 | //SerialUART.printf("I AM 0x%x\n\r", whoami); SerialUART.printf("I SHOULD BE 0x71\n\r"); |
| SMART_CLEO | 0:f96b9b35ac4c | 49 | |
| SMART_CLEO | 0:f96b9b35ac4c | 50 | if (whoami == 0x71) // WHO_AM_I should always be 0x68 |
| SMART_CLEO | 0:f96b9b35ac4c | 51 | { |
| SMART_CLEO | 0:f96b9b35ac4c | 52 | /*SerialUART.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami); |
| SMART_CLEO | 0:f96b9b35ac4c | 53 | SerialUART.printf("MPU9250 is online...\n\r");*/ |
| SMART_CLEO | 0:f96b9b35ac4c | 54 | lcd.printf("MPU9250 is 0x%x\n",whoami); |
| SMART_CLEO | 0:f96b9b35ac4c | 55 | lcd.printf(" Connected "); |
| SMART_CLEO | 0:f96b9b35ac4c | 56 | |
| SMART_CLEO | 0:f96b9b35ac4c | 57 | wait(1); |
| SMART_CLEO | 0:f96b9b35ac4c | 58 | |
| SMART_CLEO | 0:f96b9b35ac4c | 59 | mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration |
| SMART_CLEO | 0:f96b9b35ac4c | 60 | mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values |
| SMART_CLEO | 0:f96b9b35ac4c | 61 | /*SerialUART.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]); |
| SMART_CLEO | 0:f96b9b35ac4c | 62 | SerialUART.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]); |
| SMART_CLEO | 0:f96b9b35ac4c | 63 | SerialUART.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]); |
| SMART_CLEO | 0:f96b9b35ac4c | 64 | SerialUART.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]); |
| SMART_CLEO | 0:f96b9b35ac4c | 65 | SerialUART.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]); |
| SMART_CLEO | 0:f96b9b35ac4c | 66 | SerialUART.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]); */ |
| SMART_CLEO | 0:f96b9b35ac4c | 67 | mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers |
| SMART_CLEO | 0:f96b9b35ac4c | 68 | /*SerialUART.printf("x gyro bias = %f\n\r", gyroBias[0]); |
| SMART_CLEO | 0:f96b9b35ac4c | 69 | SerialUART.printf("y gyro bias = %f\n\r", gyroBias[1]); |
| SMART_CLEO | 0:f96b9b35ac4c | 70 | SerialUART.printf("z gyro bias = %f\n\r", gyroBias[2]); |
| SMART_CLEO | 0:f96b9b35ac4c | 71 | SerialUART.printf("x accel bias = %f\n\r", accelBias[0]); |
| SMART_CLEO | 0:f96b9b35ac4c | 72 | SerialUART.printf("y accel bias = %f\n\r", accelBias[1]); |
| SMART_CLEO | 0:f96b9b35ac4c | 73 | SerialUART.printf("z accel bias = %f\n\r", accelBias[2]);*/ |
| SMART_CLEO | 0:f96b9b35ac4c | 74 | wait(2); |
| SMART_CLEO | 0:f96b9b35ac4c | 75 | mpu9250.initMPU9250(); |
| SMART_CLEO | 0:f96b9b35ac4c | 76 | //SerialUART.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature |
| SMART_CLEO | 0:f96b9b35ac4c | 77 | mpu9250.initAK8963(magCalibration); |
| SMART_CLEO | 0:f96b9b35ac4c | 78 | /*SerialUART.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer |
| SMART_CLEO | 0:f96b9b35ac4c | 79 | SerialUART.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale)); |
| SMART_CLEO | 0:f96b9b35ac4c | 80 | pSerialUARTc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale)); |
| SMART_CLEO | 0:f96b9b35ac4c | 81 | if(Mscale == 0) SerialUART.printf("Magnetometer resolution = 14 bits\n\r"); |
| SMART_CLEO | 0:f96b9b35ac4c | 82 | if(Mscale == 1) SerialUART.printf("Magnetometer resolution = 16 bits\n\r"); |
| SMART_CLEO | 0:f96b9b35ac4c | 83 | if(Mmode == 2) SerialUART.printf("Magnetometer ODR = 8 Hz\n\r"); |
| SMART_CLEO | 0:f96b9b35ac4c | 84 | if(Mmode == 6) SerialUART.printf("Magnetometer ODR = 100 Hz\n\r");*/ |
| SMART_CLEO | 0:f96b9b35ac4c | 85 | wait(1); |
| SMART_CLEO | 0:f96b9b35ac4c | 86 | } |
| SMART_CLEO | 0:f96b9b35ac4c | 87 | else |
| SMART_CLEO | 0:f96b9b35ac4c | 88 | { |
| SMART_CLEO | 0:f96b9b35ac4c | 89 | //SerialUART.printf("Could not connect to MPU9250: \n\r"); |
| SMART_CLEO | 0:f96b9b35ac4c | 90 | //SerialUART.printf("%#x \n", whoami); |
| SMART_CLEO | 0:f96b9b35ac4c | 91 | |
| SMART_CLEO | 0:f96b9b35ac4c | 92 | lcd.printf("MPU9250 is 0x%x\n",whoami); |
| SMART_CLEO | 0:f96b9b35ac4c | 93 | lcd.printf(" No connection "); |
| SMART_CLEO | 0:f96b9b35ac4c | 94 | |
| SMART_CLEO | 0:f96b9b35ac4c | 95 | while(1) ; // Loop forever if communication doesn't happen |
| SMART_CLEO | 0:f96b9b35ac4c | 96 | } |
| SMART_CLEO | 0:f96b9b35ac4c | 97 | |
| SMART_CLEO | 0:f96b9b35ac4c | 98 | mpu9250.getAres(); // Get accelerometer sensitivity |
| SMART_CLEO | 0:f96b9b35ac4c | 99 | mpu9250.getGres(); // Get gyro sensitivity |
| SMART_CLEO | 0:f96b9b35ac4c | 100 | mpu9250.getMres(); // Get magnetometer sensitivity |
| SMART_CLEO | 0:f96b9b35ac4c | 101 | /* pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes); |
| SMART_CLEO | 0:f96b9b35ac4c | 102 | pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes); |
| SMART_CLEO | 0:f96b9b35ac4c | 103 | pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);*/ |
| SMART_CLEO | 0:f96b9b35ac4c | 104 | // magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated |
| SMART_CLEO | 0:f96b9b35ac4c | 105 | // magbias[1] = +120.; // User environmental x-axis correction in milliGauss |
| SMART_CLEO | 0:f96b9b35ac4c | 106 | // magbias[2] = +125.; // User environmental x-axis correction in milliGauss |
| SMART_CLEO | 0:f96b9b35ac4c | 107 | |
| SMART_CLEO | 0:f96b9b35ac4c | 108 | SerialUART.attach(&SerialUARTRX_ISR); |
| SMART_CLEO | 0:f96b9b35ac4c | 109 | |
| SMART_CLEO | 0:f96b9b35ac4c | 110 | Timer_setting(0x06, 1); |
| SMART_CLEO | 0:f96b9b35ac4c | 111 | |
| SMART_CLEO | 0:f96b9b35ac4c | 112 | while(1) |
| SMART_CLEO | 0:f96b9b35ac4c | 113 | { |
| SMART_CLEO | 0:f96b9b35ac4c | 114 | if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt |
| SMART_CLEO | 0:f96b9b35ac4c | 115 | |
| SMART_CLEO | 0:f96b9b35ac4c | 116 | mpu9250.readAccelData(accelCount); // Read the x/y/z adc values |
| SMART_CLEO | 0:f96b9b35ac4c | 117 | mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values |
| SMART_CLEO | 0:f96b9b35ac4c | 118 | mpu9250.readMagData(magCount); // Read the x/y/z adc values |
| SMART_CLEO | 0:f96b9b35ac4c | 119 | // Now we'll calculate the accleration value into actual g's |
| SMART_CLEO | 0:f96b9b35ac4c | 120 | if(Sensor_flag) |
| SMART_CLEO | 0:f96b9b35ac4c | 121 | { |
| SMART_CLEO | 0:f96b9b35ac4c | 122 | Sensor_flag = 0; |
| SMART_CLEO | 0:f96b9b35ac4c | 123 | |
| SMART_CLEO | 0:f96b9b35ac4c | 124 | ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set |
| SMART_CLEO | 0:f96b9b35ac4c | 125 | ay = (float)accelCount[1]*aRes - accelBias[1]; |
| SMART_CLEO | 0:f96b9b35ac4c | 126 | az = (float)accelCount[2]*aRes - accelBias[2]; |
| SMART_CLEO | 0:f96b9b35ac4c | 127 | /* |
| SMART_CLEO | 0:f96b9b35ac4c | 128 | // Calculate the gyro value into actual degrees per second |
| SMART_CLEO | 0:f96b9b35ac4c | 129 | gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set |
| SMART_CLEO | 0:f96b9b35ac4c | 130 | gy = (float)gyroCount[1]*gRes - gyroBias[1]; |
| SMART_CLEO | 0:f96b9b35ac4c | 131 | gz = (float)gyroCount[2]*gRes - gyroBias[2]; |
| SMART_CLEO | 0:f96b9b35ac4c | 132 | |
| SMART_CLEO | 0:f96b9b35ac4c | 133 | // Calculate the magnetometer values in milliGauss |
| SMART_CLEO | 0:f96b9b35ac4c | 134 | // Include factory calibration per data sheet and user environmental corrections |
| SMART_CLEO | 0:f96b9b35ac4c | 135 | mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set |
| SMART_CLEO | 0:f96b9b35ac4c | 136 | my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]; |
| SMART_CLEO | 0:f96b9b35ac4c | 137 | mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];*/ |
| SMART_CLEO | 0:f96b9b35ac4c | 138 | |
| SMART_CLEO | 0:f96b9b35ac4c | 139 | Buffer[0] = 0x76; |
| SMART_CLEO | 0:f96b9b35ac4c | 140 | Buffer[1] = 0x01; |
| SMART_CLEO | 0:f96b9b35ac4c | 141 | Buffer[2] = 0x02; |
| SMART_CLEO | 0:f96b9b35ac4c | 142 | Buffer[3] = 6; |
| SMART_CLEO | 0:f96b9b35ac4c | 143 | Data_Tr.data16 = (int16_t)(ax * 1000); |
| SMART_CLEO | 0:f96b9b35ac4c | 144 | Buffer[4] = Data_Tr.data8[1]; |
| SMART_CLEO | 0:f96b9b35ac4c | 145 | Buffer[5] = Data_Tr.data8[0]; |
| SMART_CLEO | 0:f96b9b35ac4c | 146 | Data_Tr.data16 = (int16_t)(ay * 1000); |
| SMART_CLEO | 0:f96b9b35ac4c | 147 | Buffer[6] = Data_Tr.data8[1]; |
| SMART_CLEO | 0:f96b9b35ac4c | 148 | Buffer[7] = Data_Tr.data8[0]; |
| SMART_CLEO | 0:f96b9b35ac4c | 149 | Data_Tr.data16 = (int16_t)(az * 1000); |
| SMART_CLEO | 0:f96b9b35ac4c | 150 | Buffer[8] = Data_Tr.data8[1]; |
| SMART_CLEO | 0:f96b9b35ac4c | 151 | Buffer[9] = Data_Tr.data8[0]; |
| SMART_CLEO | 0:f96b9b35ac4c | 152 | Buffer[10] = 0x3E; |
| SMART_CLEO | 0:f96b9b35ac4c | 153 | |
| SMART_CLEO | 0:f96b9b35ac4c | 154 | for(int i=0; i<11; i++) |
| SMART_CLEO | 0:f96b9b35ac4c | 155 | SerialUART.putc(Buffer[i]); |
| SMART_CLEO | 0:f96b9b35ac4c | 156 | } |
| SMART_CLEO | 0:f96b9b35ac4c | 157 | } |
| SMART_CLEO | 0:f96b9b35ac4c | 158 | } |
| SMART_CLEO | 0:f96b9b35ac4c | 159 | } |
| SMART_CLEO | 0:f96b9b35ac4c | 160 | |
| SMART_CLEO | 0:f96b9b35ac4c | 161 | void SerialUARTRX_ISR(void) |
| SMART_CLEO | 0:f96b9b35ac4c | 162 | { |
| SMART_CLEO | 0:f96b9b35ac4c | 163 | static uint8_t RX_count = 0, RX_Len = 32, RX_Status = 0; |
| SMART_CLEO | 0:f96b9b35ac4c | 164 | uint8_t rx_da = SerialUART.getc(); |
| SMART_CLEO | 0:f96b9b35ac4c | 165 | switch(RX_Status) |
| SMART_CLEO | 0:f96b9b35ac4c | 166 | { |
| SMART_CLEO | 0:f96b9b35ac4c | 167 | case 0: |
| SMART_CLEO | 0:f96b9b35ac4c | 168 | if(rx_da == 0x76) |
| SMART_CLEO | 0:f96b9b35ac4c | 169 | { |
| SMART_CLEO | 0:f96b9b35ac4c | 170 | RX_BUF.STA = rx_da; |
| SMART_CLEO | 0:f96b9b35ac4c | 171 | RX_Status++; |
| SMART_CLEO | 0:f96b9b35ac4c | 172 | } |
| SMART_CLEO | 0:f96b9b35ac4c | 173 | break; |
| SMART_CLEO | 0:f96b9b35ac4c | 174 | case 1: |
| SMART_CLEO | 0:f96b9b35ac4c | 175 | RX_BUF.MODE = rx_da; |
| SMART_CLEO | 0:f96b9b35ac4c | 176 | RX_Status++; |
| SMART_CLEO | 0:f96b9b35ac4c | 177 | break; |
| SMART_CLEO | 0:f96b9b35ac4c | 178 | case 2: |
| SMART_CLEO | 0:f96b9b35ac4c | 179 | RX_BUF.CMD = rx_da; |
| SMART_CLEO | 0:f96b9b35ac4c | 180 | RX_Status++; |
| SMART_CLEO | 0:f96b9b35ac4c | 181 | break; |
| SMART_CLEO | 0:f96b9b35ac4c | 182 | case 3: |
| SMART_CLEO | 0:f96b9b35ac4c | 183 | RX_BUF.LEN = rx_da; |
| SMART_CLEO | 0:f96b9b35ac4c | 184 | RX_Len = RX_BUF.LEN; |
| SMART_CLEO | 0:f96b9b35ac4c | 185 | RX_Status++; |
| SMART_CLEO | 0:f96b9b35ac4c | 186 | if(RX_Len == 0) |
| SMART_CLEO | 0:f96b9b35ac4c | 187 | RX_Status++; |
| SMART_CLEO | 0:f96b9b35ac4c | 188 | break; |
| SMART_CLEO | 0:f96b9b35ac4c | 189 | case 4: |
| SMART_CLEO | 0:f96b9b35ac4c | 190 | RX_BUF.DATA[RX_count] = rx_da; |
| SMART_CLEO | 0:f96b9b35ac4c | 191 | RX_count++; |
| SMART_CLEO | 0:f96b9b35ac4c | 192 | if(RX_count == RX_Len) |
| SMART_CLEO | 0:f96b9b35ac4c | 193 | { |
| SMART_CLEO | 0:f96b9b35ac4c | 194 | RX_Status++; |
| SMART_CLEO | 0:f96b9b35ac4c | 195 | RX_count = 0; |
| SMART_CLEO | 0:f96b9b35ac4c | 196 | RX_Len = 32; |
| SMART_CLEO | 0:f96b9b35ac4c | 197 | } |
| SMART_CLEO | 0:f96b9b35ac4c | 198 | break; |
| SMART_CLEO | 0:f96b9b35ac4c | 199 | case 5: |
| SMART_CLEO | 0:f96b9b35ac4c | 200 | if(rx_da == 0x3E) |
| SMART_CLEO | 0:f96b9b35ac4c | 201 | { |
| SMART_CLEO | 0:f96b9b35ac4c | 202 | RX_BUF.END = rx_da; |
| SMART_CLEO | 0:f96b9b35ac4c | 203 | RX_Status = 0; |
| SMART_CLEO | 0:f96b9b35ac4c | 204 | switch(RX_BUF.MODE) |
| SMART_CLEO | 0:f96b9b35ac4c | 205 | { |
| SMART_CLEO | 0:f96b9b35ac4c | 206 | case 0x04: |
| SMART_CLEO | 0:f96b9b35ac4c | 207 | Timer_setting(RX_BUF.CMD, RX_BUF.DATA[0]); |
| SMART_CLEO | 0:f96b9b35ac4c | 208 | break; |
| SMART_CLEO | 0:f96b9b35ac4c | 209 | } |
| SMART_CLEO | 0:f96b9b35ac4c | 210 | } |
| SMART_CLEO | 0:f96b9b35ac4c | 211 | break; |
| SMART_CLEO | 0:f96b9b35ac4c | 212 | } |
| SMART_CLEO | 0:f96b9b35ac4c | 213 | } |
| SMART_CLEO | 0:f96b9b35ac4c | 214 | |
| SMART_CLEO | 0:f96b9b35ac4c | 215 | void Timer_setting(uint8_t cmd, uint8_t value) |
| SMART_CLEO | 0:f96b9b35ac4c | 216 | { |
| SMART_CLEO | 0:f96b9b35ac4c | 217 | double Time_value = 0; |
| SMART_CLEO | 0:f96b9b35ac4c | 218 | switch(cmd) |
| SMART_CLEO | 0:f96b9b35ac4c | 219 | { |
| SMART_CLEO | 0:f96b9b35ac4c | 220 | case 0x01: |
| SMART_CLEO | 0:f96b9b35ac4c | 221 | Time_value = 30; |
| SMART_CLEO | 0:f96b9b35ac4c | 222 | break; |
| SMART_CLEO | 0:f96b9b35ac4c | 223 | case 0x02: |
| SMART_CLEO | 0:f96b9b35ac4c | 224 | Time_value = 60; |
| SMART_CLEO | 0:f96b9b35ac4c | 225 | break; |
| SMART_CLEO | 0:f96b9b35ac4c | 226 | case 0x03: |
| SMART_CLEO | 0:f96b9b35ac4c | 227 | Time_value = 120; |
| SMART_CLEO | 0:f96b9b35ac4c | 228 | break; |
| SMART_CLEO | 0:f96b9b35ac4c | 229 | case 0x04: |
| SMART_CLEO | 0:f96b9b35ac4c | 230 | Time_value = 300; |
| SMART_CLEO | 0:f96b9b35ac4c | 231 | break; |
| SMART_CLEO | 0:f96b9b35ac4c | 232 | case 0x05: |
| SMART_CLEO | 0:f96b9b35ac4c | 233 | Time_value = 600; |
| SMART_CLEO | 0:f96b9b35ac4c | 234 | break; |
| SMART_CLEO | 0:f96b9b35ac4c | 235 | case 0x06: |
| SMART_CLEO | 0:f96b9b35ac4c | 236 | Time_value = value; |
| SMART_CLEO | 0:f96b9b35ac4c | 237 | Time_value = 1.0/Time_value; |
| SMART_CLEO | 0:f96b9b35ac4c | 238 | break; |
| SMART_CLEO | 0:f96b9b35ac4c | 239 | } |
| SMART_CLEO | 0:f96b9b35ac4c | 240 | Sensor_Timer.attach(&Sensor_Read, Time_value); |
| SMART_CLEO | 0:f96b9b35ac4c | 241 | } |
| SMART_CLEO | 0:f96b9b35ac4c | 242 | |
| SMART_CLEO | 0:f96b9b35ac4c | 243 | void Sensor_Read(void) |
| SMART_CLEO | 0:f96b9b35ac4c | 244 | { |
| SMART_CLEO | 0:f96b9b35ac4c | 245 | Sensor_flag = 1; |
| SMART_CLEO | 0:f96b9b35ac4c | 246 | } |