Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Diff: main.cpp
- Revision:
- 0:f96b9b35ac4c
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/main.cpp Thu Sep 28 03:29:42 2017 +0000
@@ -0,0 +1,246 @@
+#include "mbed.h"
+#include "MPU9250.h"
+#include "TextLCD.h"
+
+struct UART_buf
+{
+ uint8_t STA;
+ uint8_t MODE;
+ uint8_t CMD;
+ uint8_t LEN;
+ uint8_t DATA[32];
+ uint8_t END;
+
+};
+
+union Data_DB{
+ int16_t data16;
+ uint8_t data8[2];
+}Data_Tr;
+
+MPU9250 mpu9250;
+
+Ticker Sensor_Timer;
+
+Serial SerialUART(PA_2, PA_3); // tx, rx
+
+// rs, rw, e, d0-d3
+TextLCD lcd(PB_12, PB_13, PB_14, PB_15, PA_9, PA_10, PA_11);
+
+uint8_t Buffer[37];
+volatile uint8_t Sensor_flag = 0;
+
+UART_buf RX_BUF;
+
+void SerialUARTRX_ISR(void);
+void Timer_setting(uint8_t cmd, uint8_t value);
+void Sensor_Read(void);
+
+int main()
+{
+ SerialUART.baud(115200);
+
+ //Set up I2C
+ i2c.frequency(400000); // use fast (400 kHz) I2C
+
+ // Read the WHO_AM_I register, this is a good test of communication
+ uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250
+ //SerialUART.printf("I AM 0x%x\n\r", whoami); SerialUART.printf("I SHOULD BE 0x71\n\r");
+
+ if (whoami == 0x71) // WHO_AM_I should always be 0x68
+ {
+ /*SerialUART.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
+ SerialUART.printf("MPU9250 is online...\n\r");*/
+ lcd.printf("MPU9250 is 0x%x\n",whoami);
+ lcd.printf(" Connected ");
+
+ wait(1);
+
+ mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
+ mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
+ /*SerialUART.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);
+ SerialUART.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);
+ SerialUART.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);
+ SerialUART.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);
+ SerialUART.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);
+ SerialUART.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]); */
+ mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
+ /*SerialUART.printf("x gyro bias = %f\n\r", gyroBias[0]);
+ SerialUART.printf("y gyro bias = %f\n\r", gyroBias[1]);
+ SerialUART.printf("z gyro bias = %f\n\r", gyroBias[2]);
+ SerialUART.printf("x accel bias = %f\n\r", accelBias[0]);
+ SerialUART.printf("y accel bias = %f\n\r", accelBias[1]);
+ SerialUART.printf("z accel bias = %f\n\r", accelBias[2]);*/
+ wait(2);
+ mpu9250.initMPU9250();
+ //SerialUART.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
+ mpu9250.initAK8963(magCalibration);
+ /*SerialUART.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
+ SerialUART.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale));
+ pSerialUARTc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale));
+ if(Mscale == 0) SerialUART.printf("Magnetometer resolution = 14 bits\n\r");
+ if(Mscale == 1) SerialUART.printf("Magnetometer resolution = 16 bits\n\r");
+ if(Mmode == 2) SerialUART.printf("Magnetometer ODR = 8 Hz\n\r");
+ if(Mmode == 6) SerialUART.printf("Magnetometer ODR = 100 Hz\n\r");*/
+ wait(1);
+ }
+ else
+ {
+ //SerialUART.printf("Could not connect to MPU9250: \n\r");
+ //SerialUART.printf("%#x \n", whoami);
+
+ lcd.printf("MPU9250 is 0x%x\n",whoami);
+ lcd.printf(" No connection ");
+
+ while(1) ; // Loop forever if communication doesn't happen
+ }
+
+ mpu9250.getAres(); // Get accelerometer sensitivity
+ mpu9250.getGres(); // Get gyro sensitivity
+ mpu9250.getMres(); // Get magnetometer sensitivity
+/* pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
+ pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
+ pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);*/
+// magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated
+// magbias[1] = +120.; // User environmental x-axis correction in milliGauss
+// magbias[2] = +125.; // User environmental x-axis correction in milliGauss
+
+ SerialUART.attach(&SerialUARTRX_ISR);
+
+ Timer_setting(0x06, 1);
+
+ while(1)
+ {
+ if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt
+
+ mpu9250.readAccelData(accelCount); // Read the x/y/z adc values
+ mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values
+ mpu9250.readMagData(magCount); // Read the x/y/z adc values
+ // Now we'll calculate the accleration value into actual g's
+ if(Sensor_flag)
+ {
+ Sensor_flag = 0;
+
+ ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
+ ay = (float)accelCount[1]*aRes - accelBias[1];
+ az = (float)accelCount[2]*aRes - accelBias[2];
+ /*
+ // Calculate the gyro value into actual degrees per second
+ gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set
+ gy = (float)gyroCount[1]*gRes - gyroBias[1];
+ gz = (float)gyroCount[2]*gRes - gyroBias[2];
+
+ // Calculate the magnetometer values in milliGauss
+ // Include factory calibration per data sheet and user environmental corrections
+ mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set
+ my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
+ mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];*/
+
+ Buffer[0] = 0x76;
+ Buffer[1] = 0x01;
+ Buffer[2] = 0x02;
+ Buffer[3] = 6;
+ Data_Tr.data16 = (int16_t)(ax * 1000);
+ Buffer[4] = Data_Tr.data8[1];
+ Buffer[5] = Data_Tr.data8[0];
+ Data_Tr.data16 = (int16_t)(ay * 1000);
+ Buffer[6] = Data_Tr.data8[1];
+ Buffer[7] = Data_Tr.data8[0];
+ Data_Tr.data16 = (int16_t)(az * 1000);
+ Buffer[8] = Data_Tr.data8[1];
+ Buffer[9] = Data_Tr.data8[0];
+ Buffer[10] = 0x3E;
+
+ for(int i=0; i<11; i++)
+ SerialUART.putc(Buffer[i]);
+ }
+ }
+ }
+}
+
+void SerialUARTRX_ISR(void)
+{
+ static uint8_t RX_count = 0, RX_Len = 32, RX_Status = 0;
+ uint8_t rx_da = SerialUART.getc();
+ switch(RX_Status)
+ {
+ case 0:
+ if(rx_da == 0x76)
+ {
+ RX_BUF.STA = rx_da;
+ RX_Status++;
+ }
+ break;
+ case 1:
+ RX_BUF.MODE = rx_da;
+ RX_Status++;
+ break;
+ case 2:
+ RX_BUF.CMD = rx_da;
+ RX_Status++;
+ break;
+ case 3:
+ RX_BUF.LEN = rx_da;
+ RX_Len = RX_BUF.LEN;
+ RX_Status++;
+ if(RX_Len == 0)
+ RX_Status++;
+ break;
+ case 4:
+ RX_BUF.DATA[RX_count] = rx_da;
+ RX_count++;
+ if(RX_count == RX_Len)
+ {
+ RX_Status++;
+ RX_count = 0;
+ RX_Len = 32;
+ }
+ break;
+ case 5:
+ if(rx_da == 0x3E)
+ {
+ RX_BUF.END = rx_da;
+ RX_Status = 0;
+ switch(RX_BUF.MODE)
+ {
+ case 0x04:
+ Timer_setting(RX_BUF.CMD, RX_BUF.DATA[0]);
+ break;
+ }
+ }
+ break;
+ }
+}
+
+void Timer_setting(uint8_t cmd, uint8_t value)
+{
+ double Time_value = 0;
+ switch(cmd)
+ {
+ case 0x01:
+ Time_value = 30;
+ break;
+ case 0x02:
+ Time_value = 60;
+ break;
+ case 0x03:
+ Time_value = 120;
+ break;
+ case 0x04:
+ Time_value = 300;
+ break;
+ case 0x05:
+ Time_value = 600;
+ break;
+ case 0x06:
+ Time_value = value;
+ Time_value = 1.0/Time_value;
+ break;
+ }
+ Sensor_Timer.attach(&Sensor_Read, Time_value);
+}
+
+void Sensor_Read(void)
+{
+ Sensor_flag = 1;
+}
\ No newline at end of file