Rohan Gurav
/
Sean_AdiSense1000_V21
ADISense1000 Version 2.1 code base
Fork of AdiSense1000_V21 by
Diff: src/adi_sense_1000.c
- Revision:
- 16:e4f2689363bb
- Child:
- 17:fd5ab3d27b15
diff -r 78f3f517417f -r e4f2689363bb src/adi_sense_1000.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/adi_sense_1000.c Tue Dec 05 19:08:53 2017 +0000 @@ -0,0 +1,2332 @@ +/*! + ****************************************************************************** + * @file: adi_sense_1000.c + * @brief: ADI Sense API implementation for ADI Sense 1000 + *----------------------------------------------------------------------------- + */ + +/****************************************************************************** +Copyright (c) 2017 Emutex Ltd. / Analog Devices, Inc. + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + - Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + - Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + - Modified versions of the software must be conspicuously marked as such. + - This software is licensed solely and exclusively for use with processors + manufactured by or for Analog Devices, Inc. + - This software may not be combined or merged with other code in any manner + that would cause the software to become subject to terms and conditions + which differ from those listed here. + - Neither the name of Analog Devices, Inc. nor the names of its + contributors may be used to endorse or promote products derived + from this software without specific prior written permission. + - The use of this software may or may not infringe the patent rights of one + or more patent holders. This license does not release you from the + requirement that you obtain separate licenses from these patent holders + to use this software. + +THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES, INC. AND CONTRIBUTORS "AS IS" AND ANY +EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, +TITLE, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN +NO EVENT SHALL ANALOG DEVICES, INC. OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, +INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, DAMAGES ARISING OUT OF CLAIMS OF INTELLECTUAL +PROPERTY RIGHTS INFRINGEMENT; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS +OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, +EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + *****************************************************************************/ +#include <float.h> +#include <math.h> +#include <string.h> + +#include "inc/adi_sense_platform.h" +#include "inc/adi_sense_api.h" +#include "inc/adi_sense_1000/adi_sense_1000_api.h" + +#include "adi_sense_1000/ADISENSE1000_REGISTERS_typedefs.h" +#include "adi_sense_1000/ADISENSE1000_REGISTERS.h" +#include "adi_sense_1000/adi_sense_1000_lut_data.h" +#include "adi_sense_1000/adi_sense_1000_calibration.h" + +#include "crc16.h" + +/* + * The host is expected to transfer a 16-bit command, followed by data bytes, in 2 + * separate transfers delineated by the CS signal and a short delay in between. + * + * The 16-bit command contains a right-justified 11-bit register address (offset), + * and the remaining upper 5 bits are reserved as command bits assigned as follows: + * [15:11] 10000b = write command, 01000b = read command, anything else is invalid + * [10:0] register address (0-2047) + */ + +/* Register address space is limited to 2048 bytes (11 bit address) */ +#define REG_COMMAND_MASK 0xF800 +#define REG_ADDRESS_MASK 0x07FF + +/* + * The following commands are currently supported, anything else is treated + * as an error + */ +#define REG_WRITE_COMMAND 0x8000 +#define REG_READ_COMMAND 0x4000 + +/* + * The following bytes are sent back to the host when a command is recieved, + * to be used by the host to verify that we were ready to receive the command. + */ +#define REG_COMMAND_RESP_0 0xF0 +#define REG_COMMAND_RESP_1 0xE1 + +/* + * The following minimum delay must be inserted after each SPI transfer to allow + * time for it to be processed by the device + */ +#define POST_SPI_TRANSFER_DELAY_USEC (20) + +/* + * The following macros are used to encapsulate the register access code + * to improve readability in the functions further below in this file + */ +#define STRINGIFY(name) #name + +/* Expand the full name of the reset value macro for the specified register */ +#define REG_RESET_VAL(_name) REG_ADISENSE_##_name##_RESET + +/* Checks if a value is outside the bounds of the specified register field */ +#define CHECK_REG_FIELD_VAL(_field, _val) \ + do { \ + uint32_t _mask = BITM_ADISENSE_##_field; \ + uint32_t _shift = BITP_ADISENSE_##_field; \ + if ((((_val) << _shift) & ~(_mask)) != 0) { \ + ADI_SENSE_LOG_ERROR("Value 0x%08X invalid for register field %s", \ + (uint32_t)(_val), \ + STRINGIFY(ADISENSE_##_field)); \ + return ADI_SENSE_INVALID_PARAM; \ + } \ + } while(false) + +/* + * Encapsulates the write to a specified register + * NOTE - this will cause the calling function to return on error + */ +#define WRITE_REG(_hdev, _val, _name, _type) \ + do { \ + ADI_SENSE_RESULT _res; \ + _type _regval = _val; \ + _res = adi_sense_1000_WriteRegister((_hdev), \ + REG_ADISENSE_##_name, \ + &_regval, sizeof(_regval)); \ + if (_res != ADI_SENSE_SUCCESS) \ + return _res; \ + } while(false) + +/* Wrapper macro to write a value to a uint32_t register */ +#define WRITE_REG_U32(_hdev, _val, _name) \ + WRITE_REG(_hdev, _val, _name, uint32_t) +/* Wrapper macro to write a value to a uint16_t register */ +#define WRITE_REG_U16(_hdev, _val, _name) \ + WRITE_REG(_hdev, _val, _name, uint16_t) +/* Wrapper macro to write a value to a uint8_t register */ +#define WRITE_REG_U8(_hdev, _val, _name) \ + WRITE_REG(_hdev, _val, _name, uint8_t) +/* Wrapper macro to write a value to a float32_t register */ +#define WRITE_REG_FLOAT(_hdev, _val, _name) \ + WRITE_REG(_hdev, _val, _name, float32_t) + +/* + * Encapsulates the read from a specified register + * NOTE - this will cause the calling function to return on error + */ +#define READ_REG(_hdev, _val, _name, _type) \ + do { \ + ADI_SENSE_RESULT _res; \ + _type _regval; \ + _res = adi_sense_1000_ReadRegister((_hdev), \ + REG_ADISENSE_##_name, \ + &_regval, sizeof(_regval)); \ + if (_res != ADI_SENSE_SUCCESS) \ + return _res; \ + _val = _regval; \ + } while(false) + +/* Wrapper macro to read a value from a uint32_t register */ +#define READ_REG_U32(_hdev, _val, _name) \ + READ_REG(_hdev, _val, _name, uint32_t) +/* Wrapper macro to read a value from a uint16_t register */ +#define READ_REG_U16(_hdev, _val, _name) \ + READ_REG(_hdev, _val, _name, uint16_t) +/* Wrapper macro to read a value from a uint8_t register */ +#define READ_REG_U8(_hdev, _val, _name) \ + READ_REG(_hdev, _val, _name, uint8_t) +/* Wrapper macro to read a value from a float32_t register */ +#define READ_REG_FLOAT(_hdev, _val, _name) \ + READ_REG(_hdev, _val, _name, float32_t) + +/* + * Wrapper macro to write an array of values to a uint8_t register + * NOTE - this is intended only for writing to a keyhole data register + */ +#define WRITE_REG_U8_ARRAY(_hdev, _arr, _len, _name) \ + do { \ + ADI_SENSE_RESULT _res; \ + _res = adi_sense_1000_WriteRegister(_hdev, \ + REG_ADISENSE_##_name, \ + _arr, _len); \ + if (_res != ADI_SENSE_SUCCESS) \ + return _res; \ + } while(false) + +/* + * Wrapper macro to read an array of values from a uint8_t register + * NOTE - this is intended only for reading from a keyhole data register + */ +#define READ_REG_U8_ARRAY(_hdev, _arr, _len, _name) \ + do { \ + ADI_SENSE_RESULT _res; \ + _res = adi_sense_1000_ReadRegister((_hdev), \ + REG_ADISENSE_##_name, \ + _arr, _len); \ + if (_res != ADI_SENSE_SUCCESS) \ + return _res; \ + } while(false) + +#define ADI_SENSE_1000_CHANNEL_IS_ADC(c) \ + ((c) >= ADI_SENSE_1000_CHANNEL_ID_CJC_0 && (c) <= ADI_SENSE_1000_CHANNEL_ID_CURRENT_0) + +#define ADI_SENSE_1000_CHANNEL_IS_ADC_CJC(c) \ + ((c) >= ADI_SENSE_1000_CHANNEL_ID_CJC_0 && (c) <= ADI_SENSE_1000_CHANNEL_ID_CJC_1) + +#define ADI_SENSE_1000_CHANNEL_IS_ADC_SENSOR(c) \ + ((c) >= ADI_SENSE_1000_CHANNEL_ID_SENSOR_0 && (c) <= ADI_SENSE_1000_CHANNEL_ID_SENSOR_3) + +#define ADI_SENSE_1000_CHANNEL_IS_ADC_VOLTAGE(c) \ + ((c) == ADI_SENSE_1000_CHANNEL_ID_VOLTAGE_0) + +#define ADI_SENSE_1000_CHANNEL_IS_ADC_CURRENT(c) \ + ((c) == ADI_SENSE_1000_CHANNEL_ID_CURRENT_0) + +#define ADI_SENSE_1000_CHANNEL_IS_VIRTUAL(c) \ + ((c) == ADI_SENSE_1000_CHANNEL_ID_SPI_1 || (c) == ADI_SENSE_1000_CHANNEL_ID_SPI_2) + +typedef struct +{ + unsigned nDeviceIndex; + ADI_SENSE_SPI_HANDLE hSpi; + ADI_SENSE_GPIO_HANDLE hGpio; +} ADI_SENSE_DEVICE_CONTEXT; + +static ADI_SENSE_DEVICE_CONTEXT gDeviceCtx[ADI_SENSE_PLATFORM_MAX_DEVICES]; + +/* + * Open an ADI Sense device instance. + */ +ADI_SENSE_RESULT adi_sense_Open( + unsigned const nDeviceIndex, + ADI_SENSE_CONNECTION * const pConnectionInfo, + ADI_SENSE_DEVICE_HANDLE * const phDevice) +{ + ADI_SENSE_DEVICE_CONTEXT *pCtx; + ADI_SENSE_RESULT eRet; + + if (nDeviceIndex >= ADI_SENSE_PLATFORM_MAX_DEVICES) + return ADI_SENSE_INVALID_DEVICE_NUM; + + pCtx = &gDeviceCtx[nDeviceIndex]; + pCtx->nDeviceIndex = nDeviceIndex; + + eRet = adi_sense_LogOpen(); + if (eRet != ADI_SENSE_SUCCESS) + return eRet; + + eRet = adi_sense_GpioOpen(&pConnectionInfo->gpio, &pCtx->hGpio); + if (eRet != ADI_SENSE_SUCCESS) + return eRet; + + eRet = adi_sense_SpiOpen(&pConnectionInfo->spi, &pCtx->hSpi); + if (eRet != ADI_SENSE_SUCCESS) + return eRet; + + *phDevice = pCtx; + return ADI_SENSE_SUCCESS; +} + +/* + * Get the current state of the specified GPIO input signal. + */ +ADI_SENSE_RESULT adi_sense_GetGpioState( + ADI_SENSE_DEVICE_HANDLE const hDevice, + ADI_SENSE_GPIO_PIN const ePinId, + bool_t * const pbAsserted) +{ + ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice; + + return adi_sense_GpioGet(pCtx->hGpio, ePinId, pbAsserted); +} + +/* + * Register an application-defined callback function for GPIO interrupts. + */ +ADI_SENSE_RESULT adi_sense_RegisterGpioCallback( + ADI_SENSE_DEVICE_HANDLE const hDevice, + ADI_SENSE_GPIO_PIN const ePinId, + ADI_SENSE_GPIO_CALLBACK const callbackFunction, + void * const pCallbackParam) +{ + ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice; + + if (callbackFunction) + { + return adi_sense_GpioIrqEnable(pCtx->hGpio, ePinId, callbackFunction, + pCallbackParam); + } + else + { + return adi_sense_GpioIrqDisable(pCtx->hGpio, ePinId); + } +} + +/* + * Reset the specified ADI Sense device. + */ +ADI_SENSE_RESULT adi_sense_Reset( + ADI_SENSE_DEVICE_HANDLE const hDevice) +{ + ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice; + ADI_SENSE_RESULT eRet; + + /* Pulse the Reset GPIO pin low for a minimum of 4 microseconds */ + eRet = adi_sense_GpioSet(pCtx->hGpio, ADI_SENSE_GPIO_PIN_RESET, false); + if (eRet != ADI_SENSE_SUCCESS) + return eRet; + + adi_sense_TimeDelayUsec(4); + + eRet = adi_sense_GpioSet(pCtx->hGpio, ADI_SENSE_GPIO_PIN_RESET, true); + if (eRet != ADI_SENSE_SUCCESS) + return eRet; + + return ADI_SENSE_SUCCESS; +} + + +/*! + * @brief Get general status of ADISense module. + * + * @param[in] + * @param[out] pStatus : Pointer to CORE Status struct. + * + * @return Status + * - #ADI_SENSE_SUCCESS Call completed successfully. + * - #ADI_SENSE_FAILURE If status register read fails. + * + * @details Read the general status register for the ADISense + * module. Indicates Error, Alert conditions, data ready + * and command running. + * + */ +ADI_SENSE_RESULT adi_sense_GetStatus( + ADI_SENSE_DEVICE_HANDLE const hDevice, + ADI_SENSE_STATUS * const pStatus) +{ + ADI_ADISENSE_CORE_Status_t statusReg; + READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS); + + memset(pStatus, 0, sizeof(*pStatus)); + + if (!statusReg.Cmd_Running) /* Active-low, so invert it */ + pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_BUSY; + if (statusReg.Drdy) + pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_DATAREADY; + if (statusReg.FIFO_Error) + pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_FIFO_ERROR; + if (statusReg.Alert_Active) + { + pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_ALERT; + + ADI_ADISENSE_CORE_Alert_Code_t alertCodeReg; + READ_REG_U16(hDevice, alertCodeReg.VALUE16, CORE_ALERT_CODE); + pStatus->alertCode = alertCodeReg.Alert_Code; + + ADI_ADISENSE_CORE_Channel_Alert_Status_t channelAlertStatusReg; + READ_REG_U16(hDevice, channelAlertStatusReg.VALUE16, + CORE_CHANNEL_ALERT_STATUS); + + for (unsigned i = 0; i < ADI_SENSE_1000_MAX_CHANNELS; i++) + { + if (channelAlertStatusReg.VALUE16 & (1 << i)) + { + ADI_ADISENSE_CORE_Alert_Code_Ch_t channelAlertCodeReg; + READ_REG_U16(hDevice, channelAlertCodeReg.VALUE16, CORE_ALERT_CODE_CHn(i)); + pStatus->channelAlertCodes[i] = channelAlertCodeReg.Alert_Code_Ch; + + ADI_ADISENSE_CORE_Alert_Detail_Ch_t alertDetailReg; + READ_REG_U16(hDevice, alertDetailReg.VALUE16, + CORE_ALERT_DETAIL_CHn(i)); + + if (alertDetailReg.Time_Out) + pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_TIMEOUT; + if (alertDetailReg.Under_Range) + pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_UNDER_RANGE; + if (alertDetailReg.Over_Range) + pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_OVER_RANGE; + if (alertDetailReg.Low_Limit) + pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_LOW_LIMIT; + if (alertDetailReg.High_Limit) + pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_HIGH_LIMIT; + if (alertDetailReg.Sensor_Open) + pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_SENSOR_OPEN; + if (alertDetailReg.Ref_Detect) + pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_REF_DETECT; + if (alertDetailReg.Config_Err) + pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_CONFIG_ERR; + if (alertDetailReg.LUT_Error_Ch) + pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_LUT_ERR; + if (alertDetailReg.Sensor_Not_Ready) + pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_SENSOR_NOT_READY; + if (alertDetailReg.Comp_Not_Ready) + pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_COMP_NOT_READY; + if (alertDetailReg.Under_Voltage) + pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_UNDER_VOLTAGE; + if (alertDetailReg.Over_Voltage) + pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_OVER_VOLTAGE; + if (alertDetailReg.Correction_UnderRange) + pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_LUT_UNDER_RANGE; + if (alertDetailReg.Correction_OverRange) + pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_LUT_OVER_RANGE; + } + } + + ADI_ADISENSE_CORE_Alert_Status_2_t alert2Reg; + READ_REG_U16(hDevice, alert2Reg.VALUE16, CORE_ALERT_STATUS_2); + if (alert2Reg.Configuration_Error) + pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_CONFIG_ERROR; + if (alert2Reg.LUT_Error) + pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_LUT_ERROR; + } + + if (statusReg.Error) + { + pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_ERROR; + + ADI_ADISENSE_CORE_Error_Code_t errorCodeReg; + READ_REG_U16(hDevice, errorCodeReg.VALUE16, CORE_ERROR_CODE); + pStatus->errorCode = errorCodeReg.Error_Code; + + ADI_ADISENSE_CORE_Diagnostics_Status_t diagStatusReg; + READ_REG_U16(hDevice, diagStatusReg.VALUE16, CORE_DIAGNOSTICS_STATUS); + + if (diagStatusReg.Diag_Checksum_Error) + pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_CHECKSUM_ERROR; + if (diagStatusReg.Diag_Comms_Error) + pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_COMMS_ERROR; + if (diagStatusReg.Diag_Supply_Monitor_Error) + pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_SUPPLY_MONITOR_ERROR; + if (diagStatusReg.Diag_Supply_Cap_Error) + pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_SUPPLY_CAP_ERROR; + if (diagStatusReg.Diag_Ainm_UV_Error) + pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_AINM_UV_ERROR; + if (diagStatusReg.Diag_Ainm_OV_Error) + pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_AINM_OV_ERROR; + if (diagStatusReg.Diag_Ainp_UV_Error) + pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_AINP_UV_ERROR; + if (diagStatusReg.Diag_Ainp_OV_Error) + pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_AINP_OV_ERROR; + if (diagStatusReg.Diag_Conversion_Error) + pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_CONVERSION_ERROR; + if (diagStatusReg.Diag_Calibration_Error) + pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_CALIBRATION_ERROR; + } + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_GetCommandRunningState( + ADI_SENSE_DEVICE_HANDLE hDevice, + bool_t *pbCommandRunning) +{ + ADI_ADISENSE_CORE_Status_t statusReg; + + READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS); + + /* We should never normally see 0xFF here if the module is operational */ + if (statusReg.VALUE8 == 0xFF) + return ADI_SENSE_ERR_NOT_INITIALIZED; + + *pbCommandRunning = !statusReg.Cmd_Running; /* Active-low, so invert it */ + + return ADI_SENSE_SUCCESS; +} + +static ADI_SENSE_RESULT executeCommand( + ADI_SENSE_DEVICE_HANDLE const hDevice, + ADI_ADISENSE_CORE_Command_Special_Command const command, + bool_t const bWaitForCompletion) +{ + ADI_ADISENSE_CORE_Command_t commandReg; + bool_t bCommandRunning; + ADI_SENSE_RESULT eRet; + + /* + * Don't allow another command to be issued if one is already running, but + * make an exception for ADISENSE_CORE_COMMAND_NOP which can be used to + * request a running command to be stopped (e.g. continuous measurement) + */ + if (command != ADISENSE_CORE_COMMAND_NOP) + { + eRet = adi_sense_GetCommandRunningState(hDevice, &bCommandRunning); + if (eRet) + return eRet; + + if (bCommandRunning) + return ADI_SENSE_IN_USE; + } + + commandReg.Special_Command = command; + WRITE_REG_U8(hDevice, commandReg.VALUE8, CORE_COMMAND); + + if (bWaitForCompletion) + { + do { + /* Allow a minimum 50usec delay for status update before checking */ + adi_sense_TimeDelayUsec(50); + + eRet = adi_sense_GetCommandRunningState(hDevice, &bCommandRunning); + if (eRet) + return eRet; + } while (bCommandRunning); + } + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_ApplyConfigUpdates( + ADI_SENSE_DEVICE_HANDLE const hDevice) +{ + return executeCommand(hDevice, ADISENSE_CORE_COMMAND_LATCH_CONFIG, true); +} + +/*! + * @brief Start a measurement cycle. + * + * @param[out] + * + * @return Status + * - #ADI_SENSE_SUCCESS Call completed successfully. + * - #ADI_SENSE_FAILURE + * + * @details Sends the latch config command. Configuration for channels in + * conversion cycle should be completed before this function. + * Channel enabled bit should be set before this function. + * Starts a conversion and configures the format of the sample. + * + */ +ADI_SENSE_RESULT adi_sense_StartMeasurement( + ADI_SENSE_DEVICE_HANDLE const hDevice, + ADI_SENSE_MEASUREMENT_MODE const eMeasurementMode) +{ + switch (eMeasurementMode) + { + case ADI_SENSE_MEASUREMENT_MODE_HEALTHCHECK: + return executeCommand(hDevice, ADISENSE_CORE_COMMAND_SYSTEM_CHECK, false); + case ADI_SENSE_MEASUREMENT_MODE_NORMAL: + return executeCommand(hDevice, ADISENSE_CORE_COMMAND_CONVERT_WITH_RAW, false); + case ADI_SENSE_MEASUREMENT_MODE_OMIT_RAW: + return executeCommand(hDevice, ADISENSE_CORE_COMMAND_CONVERT, false); + default: + ADI_SENSE_LOG_ERROR("Invalid measurement mode %d specified", + eMeasurementMode); + return ADI_SENSE_INVALID_PARAM; + } +} + +/* + * Store the configuration settings to persistent memory on the device. + * No other command must be running when this is called. + * Do not power down the device while this command is running. + */ +ADI_SENSE_RESULT adi_sense_SaveConfig( + ADI_SENSE_DEVICE_HANDLE const hDevice) +{ + return executeCommand(hDevice, ADISENSE_CORE_COMMAND_SAVE_CONFIG, true); +} + +/* + * Restore the configuration settings from persistent memory on the device. + * No other command must be running when this is called. + */ +ADI_SENSE_RESULT adi_sense_RestoreConfig( + ADI_SENSE_DEVICE_HANDLE const hDevice) +{ + return executeCommand(hDevice, ADISENSE_CORE_COMMAND_LOAD_CONFIG, true); +} + +/* + * Store the LUT data to persistent memory on the device. + * No other command must be running when this is called. + * Do not power down the device while this command is running. + */ +ADI_SENSE_RESULT adi_sense_SaveLutData( + ADI_SENSE_DEVICE_HANDLE const hDevice) +{ + return executeCommand(hDevice, ADISENSE_CORE_COMMAND_SAVE_LUT2, true); +} + +/* + * Restore the LUT data from persistent memory on the device. + * No other command must be running when this is called. + */ +ADI_SENSE_RESULT adi_sense_RestoreLutData( + ADI_SENSE_DEVICE_HANDLE const hDevice) +{ + return executeCommand(hDevice, ADISENSE_CORE_COMMAND_LOAD_LUT, true); +} + +/* + * Stop the measurement cycles on the device. + * To be used only if a measurement command is currently running. + */ +ADI_SENSE_RESULT adi_sense_StopMeasurement( + ADI_SENSE_DEVICE_HANDLE const hDevice) +{ + return executeCommand(hDevice, ADISENSE_CORE_COMMAND_NOP, true); +} + +/* + * Run built-in diagnostic checks on the device. + * Diagnostics are executed according to the current applied settings. + * No other command must be running when this is called. + */ +ADI_SENSE_RESULT adi_sense_RunDiagnostics( + ADI_SENSE_DEVICE_HANDLE const hDevice) +{ + return executeCommand(hDevice, ADISENSE_CORE_COMMAND_RUN_DIAGNOSTICS, true); +} + +/* + * Run self-calibration routines on the device. + * Calibration is executed according to the current applied settings. + * No other command must be running when this is called. + */ +ADI_SENSE_RESULT adi_sense_RunCalibration( + ADI_SENSE_DEVICE_HANDLE const hDevice) +{ + return executeCommand(hDevice, ADISENSE_CORE_COMMAND_SELF_CALIBRATION, true); +} + +/* + * Read a set of data samples from the device. + * This may be called at any time. + */ +ADI_SENSE_RESULT adi_sense_GetData( + ADI_SENSE_DEVICE_HANDLE const hDevice, + ADI_SENSE_MEASUREMENT_MODE const eMeasurementMode, + ADI_SENSE_DATA_SAMPLE * const pSamples, + uint32_t const nRequested, + uint32_t * const pnReturned) +{ + ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice; + uint16_t command = REG_READ_COMMAND | + (REG_ADISENSE_CORE_DATA_FIFO & REG_ADDRESS_MASK); + uint8_t commandData[2] = { + command >> 8, + command & 0xFF + }; + uint8_t commandResponse[2]; + unsigned nValidSamples = 0; + ADI_SENSE_RESULT eRet = ADI_SENSE_SUCCESS; + + do { + eRet = adi_sense_SpiTransfer(pCtx->hSpi, commandData, commandResponse, + sizeof(command), false); + if (eRet) + { + ADI_SENSE_LOG_ERROR("Failed to send read command for FIFO register"); + return eRet; + } + + adi_sense_TimeDelayUsec(POST_SPI_TRANSFER_DELAY_USEC); + } while ((commandResponse[0] != REG_COMMAND_RESP_0) || + (commandResponse[1] != REG_COMMAND_RESP_1)); + + for (unsigned i = 0; i < nRequested; i++) + { + ADI_ADISENSE_CORE_Data_FIFO_t dataFifoReg; + bool_t bHoldCs = true; + unsigned readSampleSize = sizeof(dataFifoReg); + + if (eMeasurementMode == ADI_SENSE_MEASUREMENT_MODE_OMIT_RAW) + readSampleSize -= 3; /* 3B raw value omitted in this case */ + + /* Keep the CS signal asserted for all but the last sample */ + if ((i + 1) == nRequested) + bHoldCs = false; + + eRet = adi_sense_SpiTransfer(pCtx->hSpi, NULL, &dataFifoReg, + readSampleSize, bHoldCs); + if (eRet) + { + ADI_SENSE_LOG_ERROR("Failed to read data from FIFO register"); + return eRet; + } + + if (! dataFifoReg.Ch_Valid) + { + /* + * Reading an invalid sample indicates that there are no + * more samples available or we've lost sync with the device. + * In the latter case, it might be recoverable, but return here + * to let the application check the device status and decide itself. + */ + eRet = ADI_SENSE_INCOMPLETE; + break; + } + + ADI_SENSE_DATA_SAMPLE *pSample = &pSamples[nValidSamples]; + + pSample->status = 0; + if (dataFifoReg.Ch_Error) + pSample->status |= ADI_SENSE_DEVICE_STATUS_ERROR; + if (dataFifoReg.Ch_Alert) + pSample->status |= ADI_SENSE_DEVICE_STATUS_ALERT; + + if (dataFifoReg.Ch_Raw) + pSample->rawValue = dataFifoReg.Raw_Sample; + else + pSample->rawValue = 0; + + pSample->channelId = dataFifoReg.Channel_ID; + pSample->processedValue = dataFifoReg.Sensor_Result; + + nValidSamples++; + } + *pnReturned = nValidSamples; + + adi_sense_TimeDelayUsec(POST_SPI_TRANSFER_DELAY_USEC); + + return eRet; +} + +/* + * Close the given ADI Sense device. + */ +ADI_SENSE_RESULT adi_sense_Close( + ADI_SENSE_DEVICE_HANDLE const hDevice) +{ + ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice; + + adi_sense_GpioClose(pCtx->hGpio); + adi_sense_SpiClose(pCtx->hSpi); + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_1000_WriteRegister( + ADI_SENSE_DEVICE_HANDLE hDevice, + uint16_t nAddress, + void *pData, + unsigned nLength) +{ + ADI_SENSE_RESULT eRet; + ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice; + uint16_t command = REG_WRITE_COMMAND | (nAddress & REG_ADDRESS_MASK); + uint8_t commandData[2] = { + command >> 8, + command & 0xFF + }; + uint8_t commandResponse[2]; + + do { + eRet = adi_sense_SpiTransfer(pCtx->hSpi, commandData, commandResponse, + sizeof(command), false); + if (eRet) + { + ADI_SENSE_LOG_ERROR("Failed to send write command for register %u", + nAddress); + return eRet; + } + + adi_sense_TimeDelayUsec(POST_SPI_TRANSFER_DELAY_USEC); + } while ((commandResponse[0] != REG_COMMAND_RESP_0) || + (commandResponse[1] != REG_COMMAND_RESP_1)); + + eRet = adi_sense_SpiTransfer(pCtx->hSpi, pData, NULL, nLength, false); + if (eRet) + { + ADI_SENSE_LOG_ERROR("Failed to write data (%dB) to register %u", + nLength, nAddress); + return eRet; + } + + adi_sense_TimeDelayUsec(POST_SPI_TRANSFER_DELAY_USEC); + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_1000_ReadRegister( + ADI_SENSE_DEVICE_HANDLE hDevice, + uint16_t nAddress, + void *pData, + unsigned nLength) +{ + ADI_SENSE_RESULT eRet; + ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice; + uint16_t command = REG_READ_COMMAND | (nAddress & REG_ADDRESS_MASK); + uint8_t commandData[2] = { + command >> 8, + command & 0xFF + }; + uint8_t commandResponse[2]; + + do { + eRet = adi_sense_SpiTransfer(pCtx->hSpi, commandData, commandResponse, + sizeof(command), false); + if (eRet) + { + ADI_SENSE_LOG_ERROR("Failed to send read command for register %u", + nAddress); + return eRet; + } + + adi_sense_TimeDelayUsec(POST_SPI_TRANSFER_DELAY_USEC); + } while ((commandResponse[0] != REG_COMMAND_RESP_0) || + (commandResponse[1] != REG_COMMAND_RESP_1)); + + eRet = adi_sense_SpiTransfer(pCtx->hSpi, NULL, pData, nLength, false); + if (eRet) + { + ADI_SENSE_LOG_ERROR("Failed to read data (%uB) from register %u", + nLength, nAddress); + return eRet; + } + + adi_sense_TimeDelayUsec(POST_SPI_TRANSFER_DELAY_USEC); + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_GetDeviceReadyState( + ADI_SENSE_DEVICE_HANDLE const hDevice, + bool_t * const bReady) +{ + ADI_ADISENSE_SPI_Chip_Type_t chipTypeReg; + + READ_REG_U8(hDevice, chipTypeReg.VALUE8, SPI_CHIP_TYPE); + /* If we read this register successfully, assume the device is ready */ + *bReady = (chipTypeReg.VALUE8 == REG_ADISENSE_SPI_CHIP_TYPE_RESET); + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_1000_GetDataReadyModeInfo( + ADI_SENSE_DEVICE_HANDLE const hDevice, + ADI_SENSE_MEASUREMENT_MODE const eMeasurementMode, + ADI_SENSE_1000_OPERATING_MODE * const peOperatingMode, + ADI_SENSE_1000_DATAREADY_MODE * const peDataReadyMode, + uint32_t * const pnSamplesPerDataready, + uint32_t * const pnSamplesPerCycle) +{ + unsigned nChannelsEnabled = 0; + unsigned nSamplesPerCycle = 0; + + for (ADI_SENSE_1000_CHANNEL_ID chId = 0; chId < ADI_SENSE_1000_MAX_CHANNELS; chId++) + { + ADI_ADISENSE_CORE_Sensor_Details_t sensorDetailsReg; + ADI_ADISENSE_CORE_Channel_Count_t channelCountReg; + + if (ADI_SENSE_1000_CHANNEL_IS_VIRTUAL(chId)) + continue; + + READ_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(chId)); + READ_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(chId)); + + if (channelCountReg.Channel_Enable && !sensorDetailsReg.Do_Not_Publish) + { + ADI_ADISENSE_CORE_Sensor_Type_t sensorTypeReg; + unsigned nActualChannels = 1; + + READ_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(chId)); + + if (chId == ADI_SENSE_1000_CHANNEL_ID_SPI_0) + { + /* Some sensors automatically generate samples on additional "virtual" channels + * so these channels must be counted as active when those sensors are selected + * and we use the count from the corresponding "physical" channel */ + if (sensorTypeReg.Sensor_Type == + ADISENSE_CORE_SENSOR_TYPE_SENSOR_SPI_ACCELEROMETER_1) + nActualChannels += 2; + } + + nChannelsEnabled += nActualChannels; + if (eMeasurementMode == ADI_SENSE_MEASUREMENT_MODE_HEALTHCHECK) + /* Assume a single sample per channel in test mode */ + nSamplesPerCycle += nActualChannels; + else + nSamplesPerCycle += nActualChannels * + (channelCountReg.Channel_Count + 1); + } + } + + if (nChannelsEnabled == 0) + { + *pnSamplesPerDataready = 0; + *pnSamplesPerCycle = 0; + return ADI_SENSE_SUCCESS; + } + + ADI_ADISENSE_CORE_Mode_t modeReg; + READ_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE); + + *pnSamplesPerCycle = nSamplesPerCycle; + + /* Assume DRDY_PER_CONVERSION behaviour in test mode */ + if ((eMeasurementMode == ADI_SENSE_MEASUREMENT_MODE_HEALTHCHECK) || + (modeReg.Drdy_Mode == ADISENSE_CORE_MODE_DRDY_PER_CONVERSION)) + { + *pnSamplesPerDataready = 1; + } + else if (modeReg.Drdy_Mode == ADISENSE_CORE_MODE_DRDY_PER_CYCLE) + { + *pnSamplesPerDataready = nSamplesPerCycle; + } + else + { + ADI_ADISENSE_CORE_Fifo_Num_Cycles_t fifoNumCyclesReg; + READ_REG_U8(hDevice, fifoNumCyclesReg.VALUE8, CORE_FIFO_NUM_CYCLES); + + *pnSamplesPerDataready = + nSamplesPerCycle * fifoNumCyclesReg.Fifo_Num_Cycles; + } + + /* Assume SINGLECYCLE in test mode */ + if ((eMeasurementMode == ADI_SENSE_MEASUREMENT_MODE_HEALTHCHECK) || + (modeReg.Conversion_Mode == ADISENSE_CORE_MODE_SINGLECYCLE)) + *peOperatingMode = ADI_SENSE_1000_OPERATING_MODE_SINGLECYCLE; + else if (modeReg.Conversion_Mode == ADISENSE_CORE_MODE_MULTICYCLE) + *peOperatingMode = ADI_SENSE_1000_OPERATING_MODE_MULTICYCLE; + else + *peOperatingMode = ADI_SENSE_1000_OPERATING_MODE_CONTINUOUS; + + /* Assume DRDY_PER_CONVERSION behaviour in test mode */ + if ((eMeasurementMode == ADI_SENSE_MEASUREMENT_MODE_HEALTHCHECK) || + (modeReg.Drdy_Mode == ADISENSE_CORE_MODE_DRDY_PER_CONVERSION)) + *peDataReadyMode = ADI_SENSE_1000_DATAREADY_PER_CONVERSION; + else if (modeReg.Drdy_Mode == ADISENSE_CORE_MODE_DRDY_PER_CYCLE) + *peDataReadyMode = ADI_SENSE_1000_DATAREADY_PER_CYCLE; + else + *peDataReadyMode = ADI_SENSE_1000_DATAREADY_PER_MULTICYCLE_BURST; + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_GetProductID( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_PRODUCT_ID *pProductId) +{ + ADI_ADISENSE_SPI_Product_ID_L_t productIdLoReg; + ADI_ADISENSE_SPI_Product_ID_H_t productIdHiReg; + + READ_REG_U8(hDevice, productIdLoReg.VALUE8, SPI_PRODUCT_ID_L); + READ_REG_U8(hDevice, productIdHiReg.VALUE8, SPI_PRODUCT_ID_H); + + *pProductId = (productIdHiReg.VALUE8 << 8) | productIdLoReg.VALUE8; + return ADI_SENSE_SUCCESS; +} + +static ADI_SENSE_RESULT adi_sense_SetPowerMode( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_POWER_MODE powerMode) +{ + ADI_ADISENSE_CORE_Power_Config_t powerConfigReg; + + if (powerMode == ADI_SENSE_1000_POWER_MODE_LOW) + { + powerConfigReg.Power_Mode_ADC = ADISENSE_CORE_POWER_CONFIG_ADC_LOW_POWER; + /* TODO - we need an enum in the register map for the MCU power modes */ + powerConfigReg.Power_Mode_MCU = 0x0; + } + else if (powerMode == ADI_SENSE_1000_POWER_MODE_MID) + { + powerConfigReg.Power_Mode_ADC = ADISENSE_CORE_POWER_CONFIG_ADC_MID_POWER; + powerConfigReg.Power_Mode_MCU = 0x1; + } + else if (powerMode == ADI_SENSE_1000_POWER_MODE_FULL) + { + powerConfigReg.Power_Mode_ADC = ADISENSE_CORE_POWER_CONFIG_ADC_FULL_POWER; + powerConfigReg.Power_Mode_MCU = 0x2; + } + else + { + ADI_SENSE_LOG_ERROR("Invalid power mode %d specified", powerMode); + return ADI_SENSE_INVALID_PARAM; + } + + WRITE_REG_U8(hDevice, powerConfigReg.VALUE8, CORE_POWER_CONFIG); + + return ADI_SENSE_SUCCESS; +} + +static ADI_SENSE_RESULT adi_sense_SetVddVoltage( + ADI_SENSE_DEVICE_HANDLE hDevice, + float32_t vddVoltage) +{ + WRITE_REG_FLOAT(hDevice, vddVoltage, CORE_AVDD_VOLTAGE); + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_1000_SetPowerConfig( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_POWER_CONFIG *pPowerConfig) +{ + ADI_SENSE_RESULT eRet; + + eRet = adi_sense_SetPowerMode(hDevice, pPowerConfig->powerMode); + if (eRet != ADI_SENSE_SUCCESS) + { + ADI_SENSE_LOG_ERROR("Failed to set power mode"); + return eRet; + } + + eRet = adi_sense_SetVddVoltage(hDevice, pPowerConfig->supplyVoltage); + if (eRet != ADI_SENSE_SUCCESS) + { + ADI_SENSE_LOG_ERROR("Failed to set AVdd voltage"); + return eRet; + } + + return ADI_SENSE_SUCCESS; +} + +static ADI_SENSE_RESULT adi_sense_SetMode( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_OPERATING_MODE eOperatingMode, + ADI_SENSE_1000_DATAREADY_MODE eDataReadyMode) +{ + ADI_ADISENSE_CORE_Mode_t modeReg; + + modeReg.VALUE8 = REG_RESET_VAL(CORE_MODE); + + if (eOperatingMode == ADI_SENSE_1000_OPERATING_MODE_SINGLECYCLE) + { + modeReg.Conversion_Mode = ADISENSE_CORE_MODE_SINGLECYCLE; + } + else if (eOperatingMode == ADI_SENSE_1000_OPERATING_MODE_CONTINUOUS) + { + modeReg.Conversion_Mode = ADISENSE_CORE_MODE_CONTINUOUS; + } + else if (eOperatingMode == ADI_SENSE_1000_OPERATING_MODE_MULTICYCLE) + { + modeReg.Conversion_Mode = ADISENSE_CORE_MODE_MULTICYCLE; + } + else + { + ADI_SENSE_LOG_ERROR("Invalid operating mode %d specified", + eOperatingMode); + return ADI_SENSE_INVALID_PARAM; + } + + if (eDataReadyMode == ADI_SENSE_1000_DATAREADY_PER_CONVERSION) + { + modeReg.Drdy_Mode = ADISENSE_CORE_MODE_DRDY_PER_CONVERSION; + } + else if (eDataReadyMode == ADI_SENSE_1000_DATAREADY_PER_CYCLE) + { + modeReg.Drdy_Mode = ADISENSE_CORE_MODE_DRDY_PER_CYCLE; + } + else if (eDataReadyMode == ADI_SENSE_1000_DATAREADY_PER_MULTICYCLE_BURST) + { + if (eOperatingMode != ADI_SENSE_1000_OPERATING_MODE_MULTICYCLE) + { + ADI_SENSE_LOG_ERROR( + "Data-ready mode %d cannot be used with operating mode %d", + eDataReadyMode, eOperatingMode); + return ADI_SENSE_INVALID_PARAM; + } + else + { + modeReg.Drdy_Mode = ADISENSE_CORE_MODE_DRDY_PER_FIFO_FILL; + } + } + else + { + ADI_SENSE_LOG_ERROR("Invalid data-ready mode %d specified", eDataReadyMode); + return ADI_SENSE_INVALID_PARAM; + } + + WRITE_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE); + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_SetCycleInterval( + ADI_SENSE_DEVICE_HANDLE hDevice, + uint32_t nCycleInterval) +{ + ADI_ADISENSE_CORE_Cycle_Control_t cycleControlReg; + + cycleControlReg.VALUE16 = REG_RESET_VAL(CORE_CYCLE_CONTROL); + + if (nCycleInterval < (1 << 12)) + { + cycleControlReg.Cycle_Time_Units = ADISENSE_CORE_CYCLE_CONTROL_MICROSECONDS; + } + else if (nCycleInterval < (1000 * (1 << 12))) + { + cycleControlReg.Cycle_Time_Units = ADISENSE_CORE_CYCLE_CONTROL_MILLISECONDS; + nCycleInterval /= 1000; + } + else + { + cycleControlReg.Cycle_Time_Units = ADISENSE_CORE_CYCLE_CONTROL_SECONDS; + nCycleInterval /= 1000000; + } + + CHECK_REG_FIELD_VAL(CORE_CYCLE_CONTROL_CYCLE_TIME, nCycleInterval); + cycleControlReg.Cycle_Time = nCycleInterval; + + WRITE_REG_U16(hDevice, cycleControlReg.VALUE16, CORE_CYCLE_CONTROL); + + return ADI_SENSE_SUCCESS; +} + +static ADI_SENSE_RESULT adi_sense_SetMultiCycleConfig( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_MULTICYCLE_CONFIG *pMultiCycleConfig) +{ + CHECK_REG_FIELD_VAL(CORE_FIFO_NUM_CYCLES_FIFO_NUM_CYCLES, + pMultiCycleConfig->cyclesPerBurst); + + WRITE_REG_U8(hDevice, pMultiCycleConfig->cyclesPerBurst, + CORE_FIFO_NUM_CYCLES); + + WRITE_REG_U32(hDevice, pMultiCycleConfig->burstInterval, + CORE_MULTI_CYCLE_REPEAT_INTERVAL); + + return ADI_SENSE_SUCCESS; +} + +static ADI_SENSE_RESULT adi_sense_SetExternalReferenceValues( + ADI_SENSE_DEVICE_HANDLE hDevice, + float32_t externalRef1Value, + float32_t externalRef2Value) +{ + WRITE_REG_FLOAT(hDevice, externalRef1Value, CORE_EXTERNAL_REFERENCE1); + WRITE_REG_FLOAT(hDevice, externalRef2Value, CORE_EXTERNAL_REFERENCE2); + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_1000_SetMeasurementConfig( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_MEASUREMENT_CONFIG *pMeasConfig) +{ + ADI_SENSE_RESULT eRet; + + eRet = adi_sense_SetMode(hDevice, + pMeasConfig->operatingMode, + pMeasConfig->dataReadyMode); + if (eRet != ADI_SENSE_SUCCESS) + { + ADI_SENSE_LOG_ERROR("Failed to set operating mode"); + return eRet; + } + + if (pMeasConfig->operatingMode != ADI_SENSE_1000_OPERATING_MODE_SINGLECYCLE) + { + eRet = adi_sense_SetCycleInterval(hDevice, pMeasConfig->cycleInterval); + if (eRet != ADI_SENSE_SUCCESS) + { + ADI_SENSE_LOG_ERROR("Failed to set cycle interval"); + return eRet; + } + } + + if (pMeasConfig->operatingMode == ADI_SENSE_1000_OPERATING_MODE_MULTICYCLE) + { + eRet = adi_sense_SetMultiCycleConfig(hDevice, + &pMeasConfig->multiCycleConfig); + if (eRet != ADI_SENSE_SUCCESS) + { + ADI_SENSE_LOG_ERROR("Failed to set multi-cycle configuration"); + return eRet; + } + } + + eRet = adi_sense_SetExternalReferenceValues(hDevice, + pMeasConfig->externalRef1Value, + pMeasConfig->externalRef2Value); + if (eRet != ADI_SENSE_SUCCESS) + { + ADI_SENSE_LOG_ERROR("Failed to set external reference values"); + return eRet; + } + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_1000_SetDiagnosticsConfig( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_DIAGNOSTICS_CONFIG *pDiagnosticsConfig) +{ + ADI_ADISENSE_CORE_Diagnostics_Control_t diagnosticsControlReg; + + diagnosticsControlReg.VALUE16 = REG_RESET_VAL(CORE_DIAGNOSTICS_CONTROL); + + if (pDiagnosticsConfig->disableGlobalDiag) + diagnosticsControlReg.Diag_Global_En = 0; + else + diagnosticsControlReg.Diag_Global_En = 1; + + if (pDiagnosticsConfig->disableMeasurementDiag) + diagnosticsControlReg.Diag_Meas_En = 0; + else + diagnosticsControlReg.Diag_Meas_En = 1; + + switch (pDiagnosticsConfig->osdFrequency) + { + case ADI_SENSE_1000_OPEN_SENSOR_DIAGNOSTICS_DISABLED: + diagnosticsControlReg.Diag_OSD_Freq = ADISENSE_CORE_DIAGNOSTICS_CONTROL_OCD_OFF; + break; + case ADI_SENSE_1000_OPEN_SENSOR_DIAGNOSTICS_PER_CYCLE: + diagnosticsControlReg.Diag_OSD_Freq = ADISENSE_CORE_DIAGNOSTICS_CONTROL_OCD_PER_1_CYCLE; + break; + case ADI_SENSE_1000_OPEN_SENSOR_DIAGNOSTICS_PER_100_CYCLES: + diagnosticsControlReg.Diag_OSD_Freq = ADISENSE_CORE_DIAGNOSTICS_CONTROL_OCD_PER_100_CYCLES; + break; + case ADI_SENSE_1000_OPEN_SENSOR_DIAGNOSTICS_PER_1000_CYCLES: + diagnosticsControlReg.Diag_OSD_Freq = ADISENSE_CORE_DIAGNOSTICS_CONTROL_OCD_PER_1000_CYCLES; + break; + default: + ADI_SENSE_LOG_ERROR("Invalid open-sensor diagnostic frequency %d specified", + pDiagnosticsConfig->osdFrequency); + return ADI_SENSE_INVALID_PARAM; + } + + WRITE_REG_U16(hDevice, diagnosticsControlReg.VALUE16, CORE_DIAGNOSTICS_CONTROL); + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_1000_SetChannelCount( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_CHANNEL_ID eChannelId, + uint32_t nMeasurementsPerCycle) +{ + ADI_ADISENSE_CORE_Channel_Count_t channelCountReg; + + channelCountReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_COUNTn); + + if (nMeasurementsPerCycle > 0) + { + nMeasurementsPerCycle -= 1; + + CHECK_REG_FIELD_VAL(CORE_CHANNEL_COUNT_CHANNEL_COUNT, + nMeasurementsPerCycle); + + channelCountReg.Channel_Enable = 1; + channelCountReg.Channel_Count = nMeasurementsPerCycle; + } + else + { + channelCountReg.Channel_Enable = 0; + } + + WRITE_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(eChannelId)); + + return ADI_SENSE_SUCCESS; +} + +static ADI_SENSE_RESULT adi_sense_SetChannelAdcSensorType( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_CHANNEL_ID eChannelId, + ADI_SENSE_1000_ADC_SENSOR_TYPE sensorType) +{ + ADI_ADISENSE_CORE_Sensor_Type_t sensorTypeReg; + + sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn); + + /* Ensure that the sensor type is valid for this channel */ + switch(sensorType) + { + case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_J_DEF_L1: + case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_K_DEF_L1: + case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_T_DEF_L1: + case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_1_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_2_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_3_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_4_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_J_ADV_L1: + case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_K_ADV_L1: + case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_T_ADV_L1: + case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_1_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_2_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_3_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_4_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_PT100_DEF_L1: + case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_PT1000_DEF_L1: + case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_1_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_2_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_3_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_4_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_PT100_ADV_L1: + case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_PT1000_ADV_L1: + case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_1_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_2_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_3_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_4_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_PT100_DEF_L1: + case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_PT1000_DEF_L1: + case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_1_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_2_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_3_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_4_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_PT100_ADV_L1: + case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_PT1000_ADV_L1: + case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_1_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_2_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_3_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_4_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_1_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_2_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_3_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_4_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_1_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_2_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_3_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_4_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_1_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_2_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_3_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_4_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_1_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_2_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_3_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_4_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_A_10K_DEF_L1: + case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_B_10K_DEF_L1: + case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_1_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_2_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_3_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_4_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_A_10K_ADV_L1: + case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_B_10K_ADV_L1: + case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_1_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_2_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_3_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_4_ADV_L2: + if (! ADI_SENSE_1000_CHANNEL_IS_ADC_SENSOR(eChannelId)) + { + ADI_SENSE_LOG_ERROR( + "Invalid ADC sensor type %d specified for channel %d", + sensorType, eChannelId); + return ADI_SENSE_INVALID_PARAM; + } + break; + case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_PT100_DEF_L1: + case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_PT1000_DEF_L1: + case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_1_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_2_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_3_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_4_DEF_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_PT100_ADV_L1: + case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_PT1000_ADV_L1: + case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_1_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_2_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_3_ADV_L2: + case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_4_ADV_L2: + if (! (ADI_SENSE_1000_CHANNEL_IS_ADC_SENSOR(eChannelId) || + ADI_SENSE_1000_CHANNEL_IS_ADC_CJC(eChannelId))) + { + ADI_SENSE_LOG_ERROR( + "Invalid ADC sensor type %d specified for channel %d", + sensorType, eChannelId); + return ADI_SENSE_INVALID_PARAM; + } + break; + case ADI_SENSE_1000_ADC_SENSOR_VOLTAGE: + case ADI_SENSE_1000_ADC_SENSOR_VOLTAGE_PRESSURE_HONEYWELL_TRUSTABILITY: + case ADI_SENSE_1000_ADC_SENSOR_VOLTAGE_PRESSURE_AMPHENOL_NPA300X: + case ADI_SENSE_1000_ADC_SENSOR_VOLTAGE_PRESSURE_3_DEF: + if (! ADI_SENSE_1000_CHANNEL_IS_ADC_VOLTAGE(eChannelId)) + { + ADI_SENSE_LOG_ERROR( + "Invalid ADC sensor type %d specified for channel %d", + sensorType, eChannelId); + return ADI_SENSE_INVALID_PARAM; + } + break; + case ADI_SENSE_1000_ADC_SENSOR_CURRENT: + case ADI_SENSE_1000_ADC_SENSOR_CURRENT_PRESSURE_HONEYWELL_PX2: + case ADI_SENSE_1000_ADC_SENSOR_CURRENT_PRESSURE_2_DEF: + if (! ADI_SENSE_1000_CHANNEL_IS_ADC_CURRENT(eChannelId)) + { + ADI_SENSE_LOG_ERROR( + "Invalid ADC sensor type %d specified for channel %d", + sensorType, eChannelId); + return ADI_SENSE_INVALID_PARAM; + } + break; + default: + ADI_SENSE_LOG_ERROR("Invalid/unsupported ADC sensor type %d specified", + sensorType); + return ADI_SENSE_INVALID_PARAM; + } + + sensorTypeReg.Sensor_Type = sensorType; + + WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId)); + + return ADI_SENSE_SUCCESS; +} + +static ADI_SENSE_RESULT adi_sense_SetChannelAdcSensorDetails( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_CHANNEL_ID eChannelId, + ADI_SENSE_1000_CHANNEL_CONFIG *pChannelConfig) +/* + * TODO - it would be nice if the general- vs. ADC-specific sensor details could be split into separate registers + * General details: + * - Measurement_Units + * - Compensation_Channel + * - CJC_Publish (if "CJC" was removed from the name) + * ADC-specific details: + * - PGA_Gain + * - Reference_Select + * - Reference_Buffer_Disable + * - Vbias + */ +{ + ADI_SENSE_1000_ADC_CHANNEL_CONFIG *pAdcChannelConfig = &pChannelConfig->adcChannelConfig; + ADI_SENSE_1000_ADC_REFERENCE_CONFIG *pRefConfig = &pAdcChannelConfig->reference; + ADI_ADISENSE_CORE_Sensor_Details_t sensorDetailsReg; + + sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn); + + switch(pChannelConfig->measurementUnit) + { + case ADI_SENSE_1000_MEASUREMENT_UNIT_FAHRENHEIT: + sensorDetailsReg.Measurement_Units = ADISENSE_CORE_SENSOR_DETAILS_UNITS_DEGF; + break; + case ADI_SENSE_1000_MEASUREMENT_UNIT_CELSIUS: + case ADI_SENSE_1000_MEASUREMENT_UNIT_DEFAULT: + sensorDetailsReg.Measurement_Units = ADISENSE_CORE_SENSOR_DETAILS_UNITS_DEGC; + break; + default: + ADI_SENSE_LOG_ERROR("Invalid measurement unit %d specified", + pChannelConfig->measurementUnit); + return ADI_SENSE_INVALID_PARAM; + } + + sensorDetailsReg.Compensation_Channel = pChannelConfig->compensationChannel; + + switch(pRefConfig->type) + { + case ADI_SENSE_1000_ADC_REFERENCE_RESISTOR_INTERNAL_1: + sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_RINT1; + break; + case ADI_SENSE_1000_ADC_REFERENCE_RESISTOR_INTERNAL_2: + sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_RINT2; + break; + case ADI_SENSE_1000_ADC_REFERENCE_VOLTAGE_INTERNAL: + sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_INT; + break; + case ADI_SENSE_1000_ADC_REFERENCE_VOLTAGE_AVDD: + sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_AVDD; + break; + case ADI_SENSE_1000_ADC_REFERENCE_RESISTOR_EXTERNAL_1: + sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_REXT1; + break; + case ADI_SENSE_1000_ADC_REFERENCE_RESISTOR_EXTERNAL_2: + sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_REXT2; + break; + case ADI_SENSE_1000_ADC_REFERENCE_VOLTAGE_EXTERNAL_1: + sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_VEXT1; + break; + case ADI_SENSE_1000_ADC_REFERENCE_VOLTAGE_EXTERNAL_2: + sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_VEXT2; + break; + case ADI_SENSE_1000_ADC_REFERENCE_BRIDGE_EXCITATION: + sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_EXC; + break; + default: + ADI_SENSE_LOG_ERROR("Invalid ADC reference type %d specified", + pRefConfig->type); + return ADI_SENSE_INVALID_PARAM; + } + + switch(pAdcChannelConfig->gain) + { + case ADI_SENSE_1000_ADC_GAIN_1X: + sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_1; + break; + case ADI_SENSE_1000_ADC_GAIN_2X: + sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_2; + break; + case ADI_SENSE_1000_ADC_GAIN_4X: + sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_4; + break; + case ADI_SENSE_1000_ADC_GAIN_8X: + sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_8; + break; + case ADI_SENSE_1000_ADC_GAIN_16X: + sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_16; + break; + case ADI_SENSE_1000_ADC_GAIN_32X: + sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_32; + break; + case ADI_SENSE_1000_ADC_GAIN_64X: + sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_64; + break; + case ADI_SENSE_1000_ADC_GAIN_128X: + sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_128; + break; + default: + ADI_SENSE_LOG_ERROR("Invalid ADC gain %d specified", + pAdcChannelConfig->gain); + return ADI_SENSE_INVALID_PARAM; + } + + if (pAdcChannelConfig->enableVbias) + sensorDetailsReg.Vbias = 1; + else + sensorDetailsReg.Vbias = 0; + + if (pAdcChannelConfig->reference.disableBuffer) + sensorDetailsReg.Reference_Buffer_Disable = 1; + else + sensorDetailsReg.Reference_Buffer_Disable = 0; + + if (pChannelConfig->disablePublishing) + sensorDetailsReg.Do_Not_Publish = 1; + else + sensorDetailsReg.Do_Not_Publish = 0; + + WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId)); + + return ADI_SENSE_SUCCESS; +} + +static ADI_SENSE_RESULT adi_sense_SetChannelAdcFilter( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_CHANNEL_ID eChannelId, + ADI_SENSE_1000_ADC_FILTER_CONFIG *pFilterConfig) +{ + ADI_ADISENSE_CORE_Filter_Select_t filterSelectReg; + + filterSelectReg.VALUE32 = REG_RESET_VAL(CORE_FILTER_SELECTn); + + if (pFilterConfig->type == ADI_SENSE_1000_ADC_FILTER_SINC4) + { + filterSelectReg.ADC_Filter_Type = ADISENSE_CORE_FILTER_SELECT_FILTER_SINC4; + filterSelectReg.ADC_FS = pFilterConfig->fs; + } + else if (pFilterConfig->type == ADI_SENSE_1000_ADC_FILTER_FIR_20SPS) + { + filterSelectReg.ADC_Filter_Type = ADISENSE_CORE_FILTER_SELECT_FILTER_FIR_20SPS; + } + else if (pFilterConfig->type == ADI_SENSE_1000_ADC_FILTER_FIR_25SPS) + { + filterSelectReg.ADC_Filter_Type = ADISENSE_CORE_FILTER_SELECT_FILTER_FIR_25SPS; + } + else + { + ADI_SENSE_LOG_ERROR("Invalid ADC filter type %d specified", + pFilterConfig->type); + return ADI_SENSE_INVALID_PARAM; + } + + WRITE_REG_U32(hDevice, filterSelectReg.VALUE32, CORE_FILTER_SELECTn(eChannelId)); + + return ADI_SENSE_SUCCESS; +} + +static ADI_SENSE_RESULT adi_sense_SetChannelAdcCurrentConfig( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_CHANNEL_ID eChannelId, + ADI_SENSE_1000_ADC_EXC_CURRENT_CONFIG *pCurrentConfig) +{ + ADI_ADISENSE_CORE_Channel_Excitation_t channelExcitationReg; + + channelExcitationReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_EXCITATIONn); + + if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_NONE) + { + channelExcitationReg.IOUT0_Disable = 1; + channelExcitationReg.IOUT1_Disable = 1; + + channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_OFF; + } + else + { + channelExcitationReg.IOUT0_Disable = 0; + channelExcitationReg.IOUT1_Disable = 0; + + if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_50uA) + channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_50UA; + else if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_100uA) + channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_100UA; + else if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_250uA) + channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_250UA; + else if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_500uA) + channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_500UA; + else if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_750uA) + channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_750UA; + else if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_1000uA) + channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_1000UA; + else + { + ADI_SENSE_LOG_ERROR("Invalid ADC excitation current %d specified", + pCurrentConfig->outputLevel); + return ADI_SENSE_INVALID_PARAM; + } + + if (pCurrentConfig->swapOption == ADI_SENSE_1000_ADC_EXC_CURRENT_SWAP_DYNAMIC) + { + channelExcitationReg.IOUT_Dont_Swap_3Wire = 0; + channelExcitationReg.IOUT_Static_Swap_3Wire = 0; + } + else if (pCurrentConfig->swapOption == ADI_SENSE_1000_ADC_EXC_CURRENT_SWAP_STATIC) + { + channelExcitationReg.IOUT_Dont_Swap_3Wire = 1; + channelExcitationReg.IOUT_Static_Swap_3Wire = 1; + } + else if (pCurrentConfig->swapOption == ADI_SENSE_1000_ADC_EXC_CURRENT_SWAP_NONE) + { + channelExcitationReg.IOUT_Dont_Swap_3Wire = 1; + channelExcitationReg.IOUT_Static_Swap_3Wire = 0; + } + else + { + ADI_SENSE_LOG_ERROR( + "Invalid ADC excitation current swap option %d specified", + pCurrentConfig->swapOption); + return ADI_SENSE_INVALID_PARAM; + } + } + + WRITE_REG_U8(hDevice, channelExcitationReg.VALUE8, CORE_CHANNEL_EXCITATIONn(eChannelId)); + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_SetAdcChannelConfig( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_CHANNEL_ID eChannelId, + ADI_SENSE_1000_CHANNEL_CONFIG *pChannelConfig) +{ + ADI_SENSE_RESULT eRet; + ADI_SENSE_1000_ADC_CHANNEL_CONFIG *pAdcChannelConfig = + &pChannelConfig->adcChannelConfig; + + eRet = adi_sense_SetChannelAdcSensorType(hDevice, eChannelId, + pAdcChannelConfig->sensor); + if (eRet != ADI_SENSE_SUCCESS) + { + ADI_SENSE_LOG_ERROR("Failed to set ADC sensor type for channel %d", + eChannelId); + return eRet; + } + + eRet = adi_sense_SetChannelAdcSensorDetails(hDevice, eChannelId, + pChannelConfig); + if (eRet != ADI_SENSE_SUCCESS) + { + ADI_SENSE_LOG_ERROR("Failed to set ADC sensor details for channel %d", + eChannelId); + return eRet; + } + + eRet = adi_sense_SetChannelAdcFilter(hDevice, eChannelId, + &pAdcChannelConfig->filter); + if (eRet != ADI_SENSE_SUCCESS) + { + ADI_SENSE_LOG_ERROR("Failed to set ADC filter for channel %d", + eChannelId); + return eRet; + } + + eRet = adi_sense_SetChannelAdcCurrentConfig(hDevice, eChannelId, + &pAdcChannelConfig->current); + if (eRet != ADI_SENSE_SUCCESS) + { + ADI_SENSE_LOG_ERROR("Failed to set ADC current for channel %d", + eChannelId); + return eRet; + } + + return ADI_SENSE_SUCCESS; +} + + +static ADI_SENSE_RESULT adi_sense_SetDigitalSensorCommands( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_CHANNEL_ID eChannelId, + ADI_SENSE_1000_DIGITAL_SENSOR_COMMAND *pConfigCommand, + ADI_SENSE_1000_DIGITAL_SENSOR_COMMAND *pDataRequestCommand) +{ + ADI_ADISENSE_CORE_Digital_Sensor_Num_Cmds_t numCmdsReg; + + numCmdsReg.VALUE8 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_NUM_CMDSn); + + CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_NUM_CMDS_DIGITAL_SENSOR_NUM_CFG_CMDS, + pConfigCommand->commandLength); + CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_NUM_CMDS_DIGITAL_SENSOR_NUM_READ_CMDS, + pDataRequestCommand->commandLength); + + numCmdsReg.Digital_Sensor_Num_Cfg_Cmds = pConfigCommand->commandLength; + numCmdsReg.Digital_Sensor_Num_Read_Cmds = pDataRequestCommand->commandLength; + + WRITE_REG_U8(hDevice, numCmdsReg.VALUE8, + CORE_DIGITAL_SENSOR_NUM_CMDSn(eChannelId)); + + switch (pConfigCommand->commandLength) + { + /* NOTE - intentional fall-through cases below */ + case 7: + WRITE_REG_U8(hDevice, pConfigCommand->command[6], + CORE_DIGITAL_SENSOR_COMMAND7n(eChannelId)); + case 6: + WRITE_REG_U8(hDevice, pConfigCommand->command[5], + CORE_DIGITAL_SENSOR_COMMAND6n(eChannelId)); + case 5: + WRITE_REG_U8(hDevice, pConfigCommand->command[4], + CORE_DIGITAL_SENSOR_COMMAND5n(eChannelId)); + case 4: + WRITE_REG_U8(hDevice, pConfigCommand->command[3], + CORE_DIGITAL_SENSOR_COMMAND4n(eChannelId)); + case 3: + WRITE_REG_U8(hDevice, pConfigCommand->command[2], + CORE_DIGITAL_SENSOR_COMMAND3n(eChannelId)); + case 2: + WRITE_REG_U8(hDevice, pConfigCommand->command[1], + CORE_DIGITAL_SENSOR_COMMAND2n(eChannelId)); + case 1: + WRITE_REG_U8(hDevice, pConfigCommand->command[0], + CORE_DIGITAL_SENSOR_COMMAND1n(eChannelId)); + case 0: + default: + break; + }; + + switch (pDataRequestCommand->commandLength) + { + /* NOTE - intentional fall-through cases below */ + case 7: + WRITE_REG_U8(hDevice, pDataRequestCommand->command[6], + CORE_DIGITAL_SENSOR_READ_CMD7n(eChannelId)); + case 6: + WRITE_REG_U8(hDevice, pDataRequestCommand->command[5], + CORE_DIGITAL_SENSOR_READ_CMD6n(eChannelId)); + case 5: + WRITE_REG_U8(hDevice, pDataRequestCommand->command[4], + CORE_DIGITAL_SENSOR_READ_CMD5n(eChannelId)); + case 4: + WRITE_REG_U8(hDevice, pDataRequestCommand->command[3], + CORE_DIGITAL_SENSOR_READ_CMD4n(eChannelId)); + case 3: + WRITE_REG_U8(hDevice, pDataRequestCommand->command[2], + CORE_DIGITAL_SENSOR_READ_CMD3n(eChannelId)); + case 2: + WRITE_REG_U8(hDevice, pDataRequestCommand->command[1], + CORE_DIGITAL_SENSOR_READ_CMD2n(eChannelId)); + case 1: + WRITE_REG_U8(hDevice, pDataRequestCommand->command[0], + CORE_DIGITAL_SENSOR_READ_CMD1n(eChannelId)); + case 0: + default: + break; + }; + + return ADI_SENSE_SUCCESS; +} + +static ADI_SENSE_RESULT adi_sense_SetChannelI2cSensorType( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_CHANNEL_ID eChannelId, + ADI_SENSE_1000_I2C_SENSOR_TYPE sensorType) +{ + ADI_ADISENSE_CORE_Sensor_Type_t sensorTypeReg; + + sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn); + + /* Ensure that the sensor type is valid for this channel */ + switch(sensorType) + { + case ADI_SENSE_1000_I2C_SENSOR_HUMIDITY_HONEYWELL_HUMIDICON: + sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_I2C_HUMIDITY_HONEYWELL_HUMIDICON; + break; + case ADI_SENSE_1000_I2C_SENSOR_HUMIDITY_SENSIRION_SHT3X: + sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_I2C_HUMIDITY_SENSIRION_SHT3X; + break; + default: + /* TODO - add support for custom I2C sensors */ + ADI_SENSE_LOG_ERROR("Unsupported I2C sensor type %d specified", sensorType); + return ADI_SENSE_INVALID_PARAM; + } + + WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId)); + + return ADI_SENSE_SUCCESS; +} + +static ADI_SENSE_RESULT adi_sense_SetChannelI2cSensorAddress( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_CHANNEL_ID eChannelId, + uint32_t deviceAddress) +{ + CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_ADDRESS_DIGITAL_SENSOR_ADDRESS, deviceAddress); + WRITE_REG_U8(hDevice, deviceAddress, CORE_DIGITAL_SENSOR_ADDRESSn(eChannelId)); + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_SetI2cChannelConfig( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_CHANNEL_ID eChannelId, + ADI_SENSE_1000_I2C_CHANNEL_CONFIG *pI2cChannelConfig) +{ + ADI_SENSE_RESULT eRet; + + eRet = adi_sense_SetChannelI2cSensorType(hDevice, eChannelId, + pI2cChannelConfig->sensor); + if (eRet != ADI_SENSE_SUCCESS) + { + ADI_SENSE_LOG_ERROR("Failed to set I2C sensor type for channel %d", + eChannelId); + return eRet; + } + + eRet = adi_sense_SetChannelI2cSensorAddress(hDevice, eChannelId, + pI2cChannelConfig->deviceAddress); + if (eRet != ADI_SENSE_SUCCESS) + { + ADI_SENSE_LOG_ERROR("Failed to set I2C sensor address for channel %d", + eChannelId); + return eRet; + } + + eRet = adi_sense_SetDigitalSensorCommands(hDevice, eChannelId, + &pI2cChannelConfig->configurationCommand, + &pI2cChannelConfig->dataRequestCommand); + if (eRet != ADI_SENSE_SUCCESS) + { + ADI_SENSE_LOG_ERROR("Failed to set I2C sensor commands for channel %d", + eChannelId); + return eRet; + } + + return ADI_SENSE_SUCCESS; +} + +static ADI_SENSE_RESULT adi_sense_SetChannelSpiSensorType( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_CHANNEL_ID eChannelId, + ADI_SENSE_1000_SPI_SENSOR_TYPE sensorType) +{ + ADI_ADISENSE_CORE_Sensor_Type_t sensorTypeReg; + + sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn); + + /* Ensure that the sensor type is valid for this channel */ + switch(sensorType) + { + case ADI_SENSE_1000_SPI_SENSOR_PRESSURE_HONEYWELL_TRUSTABILITY: + sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_SPI_PRESSURE_HONEYWELL_TRUSTABILITY; + break; + case ADI_SENSE_1000_SPI_SENSOR_ACCELEROMETER_ADI_ADXL362: + sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_SPI_ACCELEROMETER_1; + break; + default: + /* TODO - add support for custom SPI sensors */ + ADI_SENSE_LOG_ERROR("Unsupported SPI sensor type %d specified", sensorType); + return ADI_SENSE_INVALID_PARAM; + } + + WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId)); + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_SetSpiChannelConfig( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_CHANNEL_ID eChannelId, + ADI_SENSE_1000_SPI_CHANNEL_CONFIG *pSpiChannelConfig) +{ + ADI_SENSE_RESULT eRet; + + eRet = adi_sense_SetChannelSpiSensorType(hDevice, eChannelId, + pSpiChannelConfig->sensor); + if (eRet != ADI_SENSE_SUCCESS) + { + ADI_SENSE_LOG_ERROR("Failed to set SPI sensor type for channel %d", + eChannelId); + return eRet; + } + + eRet = adi_sense_SetDigitalSensorCommands(hDevice, eChannelId, + &pSpiChannelConfig->configurationCommand, + &pSpiChannelConfig->dataRequestCommand); + if (eRet != ADI_SENSE_SUCCESS) + { + ADI_SENSE_LOG_ERROR("Failed to set SPI sensor commands for channel %d", + eChannelId); + return eRet; + } + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_1000_SetChannelThresholdLimits( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_CHANNEL_ID eChannelId, + float32_t fHighThresholdLimit, + float32_t fLowThresholdLimit) +{ + /* + * If the low/high limits are *both* set to 0 in memory, or NaNs, assume + * that they are unset, or not required, and use infinity defaults instead + */ + if (fHighThresholdLimit == 0.0 && fLowThresholdLimit == 0.0) + { + fHighThresholdLimit = INFINITY; + fLowThresholdLimit = -INFINITY; + } + else + { + if (isnan(fHighThresholdLimit)) + fHighThresholdLimit = INFINITY; + if (isnan(fLowThresholdLimit)) + fLowThresholdLimit = -INFINITY; + } + + WRITE_REG_FLOAT(hDevice, fHighThresholdLimit, + CORE_HIGH_THRESHOLD_LIMITn(eChannelId)); + WRITE_REG_FLOAT(hDevice, fLowThresholdLimit, + CORE_LOW_THRESHOLD_LIMITn(eChannelId)); + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_1000_SetOffsetGain( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_CHANNEL_ID eChannelId, + float32_t fOffsetAdjustment, + float32_t fGainAdjustment) +{ + /* Replace with default values if NaNs are specified (or 0.0 for gain) */ + if (isnan(fGainAdjustment) || (fGainAdjustment == 0.0)) + fGainAdjustment = 1.0; + if (isnan(fOffsetAdjustment)) + fOffsetAdjustment = 0.0; + + WRITE_REG_FLOAT(hDevice, fGainAdjustment, CORE_SENSOR_GAINn(eChannelId)); + WRITE_REG_FLOAT(hDevice, fOffsetAdjustment, CORE_SENSOR_OFFSETn(eChannelId)); + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_1000_SetChannelSettlingTime( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_CHANNEL_ID eChannelId, + uint32_t nSettlingTime) +{ + CHECK_REG_FIELD_VAL(CORE_SETTLING_TIME_SETTLING_TIME, nSettlingTime); + + WRITE_REG_U16(hDevice, nSettlingTime, CORE_SETTLING_TIMEn(eChannelId)); + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_1000_SetChannelConfig( + ADI_SENSE_DEVICE_HANDLE hDevice, + ADI_SENSE_1000_CHANNEL_ID eChannelId, + ADI_SENSE_1000_CHANNEL_CONFIG *pChannelConfig) +{ + ADI_SENSE_RESULT eRet; + + if (! ADI_SENSE_1000_CHANNEL_IS_VIRTUAL(eChannelId)) + { + /* If the channel is not enabled, disable it and return */ + if (! pChannelConfig->enableChannel) + return adi_sense_1000_SetChannelCount(hDevice, eChannelId, 0); + + eRet = adi_sense_1000_SetChannelCount(hDevice, eChannelId, + pChannelConfig->measurementsPerCycle); + if (eRet != ADI_SENSE_SUCCESS) + { + ADI_SENSE_LOG_ERROR("Failed to set measurement count for channel %d", + eChannelId); + return eRet; + } + + switch (eChannelId) + { + case ADI_SENSE_1000_CHANNEL_ID_CJC_0: + case ADI_SENSE_1000_CHANNEL_ID_CJC_1: + case ADI_SENSE_1000_CHANNEL_ID_SENSOR_0: + case ADI_SENSE_1000_CHANNEL_ID_SENSOR_1: + case ADI_SENSE_1000_CHANNEL_ID_SENSOR_2: + case ADI_SENSE_1000_CHANNEL_ID_SENSOR_3: + case ADI_SENSE_1000_CHANNEL_ID_VOLTAGE_0: + case ADI_SENSE_1000_CHANNEL_ID_CURRENT_0: + eRet = adi_sense_SetAdcChannelConfig(hDevice, eChannelId, pChannelConfig); + break; + case ADI_SENSE_1000_CHANNEL_ID_I2C_0: + case ADI_SENSE_1000_CHANNEL_ID_I2C_1: + eRet = adi_sense_SetI2cChannelConfig(hDevice, eChannelId, + &pChannelConfig->i2cChannelConfig); + break; + case ADI_SENSE_1000_CHANNEL_ID_SPI_0: + eRet = adi_sense_SetSpiChannelConfig(hDevice, eChannelId, + &pChannelConfig->spiChannelConfig); + break; + default: + ADI_SENSE_LOG_ERROR("Invalid channel ID %d specified", eChannelId); + return ADI_SENSE_INVALID_PARAM; + } + + eRet = adi_sense_1000_SetChannelSettlingTime(hDevice, eChannelId, + pChannelConfig->extraSettlingTime); + if (eRet != ADI_SENSE_SUCCESS) + { + ADI_SENSE_LOG_ERROR("Failed to set settling time for channel %d", + eChannelId); + return eRet; + } + } + + if (pChannelConfig->enableChannel) + { + /* Threshold limits can be configured individually for virtual channels */ + eRet = adi_sense_1000_SetChannelThresholdLimits(hDevice, eChannelId, + pChannelConfig->highThreshold, + pChannelConfig->lowThreshold); + if (eRet != ADI_SENSE_SUCCESS) + { + ADI_SENSE_LOG_ERROR("Failed to set threshold limits for channel %d", + eChannelId); + return eRet; + } + + /* Offset and gain can be configured individually for virtual channels */ + eRet = adi_sense_1000_SetOffsetGain(hDevice, eChannelId, + pChannelConfig->offsetAdjustment, + pChannelConfig->gainAdjustment); + if (eRet != ADI_SENSE_SUCCESS) + { + ADI_SENSE_LOG_ERROR("Failed to set offset/gain for channel %d", + eChannelId); + return eRet; + } + } + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_SetConfig( + ADI_SENSE_DEVICE_HANDLE const hDevice, + ADI_SENSE_CONFIG * const pConfig) +{ + ADI_SENSE_1000_CONFIG *pDeviceConfig; + ADI_SENSE_PRODUCT_ID productId; + ADI_SENSE_RESULT eRet; + + if (pConfig->productId != ADI_SENSE_PRODUCT_ID_1000) + { + ADI_SENSE_LOG_ERROR("Configuration Product ID (0x%X) is not supported (0x%0X)", + pConfig->productId, ADI_SENSE_PRODUCT_ID_1000); + return ADI_SENSE_INVALID_PARAM; + } + + /* Check that the actual Product ID is a match? */ + eRet = adi_sense_GetProductID(hDevice, &productId); + if (eRet) + { + ADI_SENSE_LOG_ERROR("Failed to read device Product ID register"); + return eRet; + } + if (pConfig->productId != productId) + { + ADI_SENSE_LOG_ERROR("Configuration Product ID (0x%X) does not match device (0x%0X)", + pConfig->productId, productId); + return ADI_SENSE_INVALID_PARAM; + } + + pDeviceConfig = &pConfig->adisense1000; + + eRet = adi_sense_1000_SetPowerConfig(hDevice, &pDeviceConfig->power); + if (eRet) + { + ADI_SENSE_LOG_ERROR("Failed to set power configuration"); + return eRet; + } + + eRet = adi_sense_1000_SetMeasurementConfig(hDevice, &pDeviceConfig->measurement); + if (eRet) + { + ADI_SENSE_LOG_ERROR("Failed to set measurement configuration"); + return eRet; + } + + eRet = adi_sense_1000_SetDiagnosticsConfig(hDevice, &pDeviceConfig->diagnostics); + if (eRet) + { + ADI_SENSE_LOG_ERROR("Failed to set diagnostics configuration"); + return eRet; + } + + for (ADI_SENSE_1000_CHANNEL_ID id = 0; id < ADI_SENSE_1000_MAX_CHANNELS; id++) + { + eRet = adi_sense_1000_SetChannelConfig(hDevice, id, + &pDeviceConfig->channels[id]); + if (eRet) + { + ADI_SENSE_LOG_ERROR("Failed to set channel %d configuration", id); + return eRet; + } + } + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_1000_SetLutData( + ADI_SENSE_DEVICE_HANDLE const hDevice, + ADI_SENSE_1000_LUT * const pLutData) +{ + ADI_SENSE_1000_LUT_HEADER *pLutHeader = &pLutData->header; + ADI_SENSE_1000_LUT_TABLE *pLutTable = pLutData->tables; + unsigned actualLength = 0; + + if (pLutData->header.signature != ADI_SENSE_LUT_SIGNATURE) + { + ADI_SENSE_LOG_ERROR("LUT signature incorrect (expected 0x%X, actual 0x%X)", + ADI_SENSE_LUT_SIGNATURE, pLutHeader->signature); + return ADI_SENSE_INVALID_SIGNATURE; + } + + for (unsigned i = 0; i < pLutHeader->numTables; i++) + { + ADI_SENSE_1000_LUT_DESCRIPTOR *pDesc = &pLutTable->descriptor; + ADI_SENSE_1000_LUT_TABLE_DATA *pData = &pLutTable->data; + unsigned short calculatedCrc; + + switch (pDesc->geometry) + { + case ADI_SENSE_1000_LUT_GEOMETRY_COEFFS: + switch (pDesc->equation) + { + case ADI_SENSE_1000_LUT_EQUATION_POLYN: + case ADI_SENSE_1000_LUT_EQUATION_POLYNEXP: + case ADI_SENSE_1000_LUT_EQUATION_QUADRATIC: + case ADI_SENSE_1000_LUT_EQUATION_STEINHART: + case ADI_SENSE_1000_LUT_EQUATION_LOGARITHMIC: + case ADI_SENSE_1000_LUT_EQUATION_EXPONENTIAL: + case ADI_SENSE_1000_LUT_EQUATION_BIVARIATE_POLYN: + break; + default: + ADI_SENSE_LOG_ERROR("Invalid equation %u specified for LUT table %u", + pDesc->equation, i); + return ADI_SENSE_INVALID_PARAM; + } + break; + case ADI_SENSE_1000_LUT_GEOMETRY_NES_1D: + case ADI_SENSE_1000_LUT_GEOMETRY_NES_2D: + case ADI_SENSE_1000_LUT_GEOMETRY_ES_1D: + case ADI_SENSE_1000_LUT_GEOMETRY_ES_2D: + if (pDesc->equation != ADI_SENSE_1000_LUT_EQUATION_LUT) { + ADI_SENSE_LOG_ERROR("Invalid equation %u specified for LUT table %u", + pDesc->equation, i); + return ADI_SENSE_INVALID_PARAM; + } + break; + default: + ADI_SENSE_LOG_ERROR("Invalid geometry %u specified for LUT table %u", + pDesc->geometry, i); + return ADI_SENSE_INVALID_PARAM; + } + + switch (pDesc->dataType) + { + case ADI_SENSE_1000_LUT_DATA_TYPE_FLOAT32: + case ADI_SENSE_1000_LUT_DATA_TYPE_FLOAT64: + break; + default: + ADI_SENSE_LOG_ERROR("Invalid vector format %u specified for LUT table %u", + pDesc->dataType, i); + return ADI_SENSE_INVALID_PARAM; + } + + calculatedCrc = crc16_ccitt(pData, pDesc->length); + if (calculatedCrc != pDesc->crc16) + { + ADI_SENSE_LOG_ERROR("CRC validation failed on LUT table %u (expected 0x%04X, actual 0x%04X)", + i, pDesc->crc16, calculatedCrc); + return ADI_SENSE_CRC_ERROR; + } + + actualLength += sizeof(*pDesc) + pDesc->length; + + /* Move to the next look-up table */ + pLutTable = (ADI_SENSE_1000_LUT_TABLE *)((uint8_t *)pLutTable + sizeof(*pDesc) + pDesc->length); + } + + if (actualLength != pLutHeader->totalLength) + { + ADI_SENSE_LOG_ERROR("LUT table length mismatch (expected %u, actual %u)", + pLutHeader->totalLength, actualLength); + return ADI_SENSE_WRONG_SIZE; + } + + if (sizeof(*pLutHeader) + pLutHeader->totalLength > ADI_SENSE_LUT_MAX_SIZE) + { + ADI_SENSE_LOG_ERROR("Maximum LUT table length (%u bytes) exceeded", + ADI_SENSE_LUT_MAX_SIZE); + return ADI_SENSE_WRONG_SIZE; + } + + /* Write the LUT data to the device */ + unsigned lutSize = sizeof(*pLutHeader) + pLutHeader->totalLength; + WRITE_REG_U16(hDevice, 0, CORE_LUT_OFFSET); + WRITE_REG_U8_ARRAY(hDevice, (uint8_t *)pLutData, lutSize, CORE_LUT_DATA); + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_1000_SetLutDataRaw( + ADI_SENSE_DEVICE_HANDLE const hDevice, + ADI_SENSE_1000_LUT_RAW * const pLutData) +{ + return adi_sense_1000_SetLutData(hDevice, + (ADI_SENSE_1000_LUT * const)pLutData); +} + +static ADI_SENSE_RESULT getLutTableSize( + ADI_SENSE_1000_LUT_DESCRIPTOR * const pDesc, + ADI_SENSE_1000_LUT_TABLE_DATA * const pData, + unsigned *pLength) +{ + switch (pDesc->geometry) + { + case ADI_SENSE_1000_LUT_GEOMETRY_COEFFS: + if (pDesc->equation == ADI_SENSE_1000_LUT_EQUATION_BIVARIATE_POLYN) + *pLength = ADI_SENSE_1000_LUT_2D_POLYN_COEFF_LIST_SIZE(pData->coeffList2d); + else + *pLength = ADI_SENSE_1000_LUT_COEFF_LIST_SIZE(pData->coeffList); + break; + case ADI_SENSE_1000_LUT_GEOMETRY_NES_1D: + *pLength = ADI_SENSE_1000_LUT_1D_NES_SIZE(pData->lut1dNes); + break; + case ADI_SENSE_1000_LUT_GEOMETRY_NES_2D: + *pLength = ADI_SENSE_1000_LUT_2D_NES_SIZE(pData->lut2dNes); + break; + case ADI_SENSE_1000_LUT_GEOMETRY_ES_1D: + *pLength = ADI_SENSE_1000_LUT_1D_ES_SIZE(pData->lut1dEs); + break; + case ADI_SENSE_1000_LUT_GEOMETRY_ES_2D: + *pLength = ADI_SENSE_1000_LUT_2D_ES_SIZE(pData->lut2dEs); + break; + default: + ADI_SENSE_LOG_ERROR("Invalid LUT table geometry %d specified\r\n", + pDesc->geometry); + return ADI_SENSE_INVALID_PARAM; + } + + return ADI_SENSE_SUCCESS; +} + +ADI_SENSE_RESULT adi_sense_1000_AssembleLutData( + ADI_SENSE_1000_LUT * pLutBuffer, + unsigned nLutBufferSize, + unsigned const nNumTables, + ADI_SENSE_1000_LUT_DESCRIPTOR * const ppDesc[], + ADI_SENSE_1000_LUT_TABLE_DATA * const ppData[]) +{ + ADI_SENSE_1000_LUT_HEADER *pHdr = &pLutBuffer->header; + uint8_t *pLutTableData = (uint8_t *)pLutBuffer + sizeof(*pHdr); + + if (sizeof(*pHdr) > nLutBufferSize) + { + ADI_SENSE_LOG_ERROR("Insufficient LUT buffer size provided"); + return ADI_SENSE_INVALID_PARAM; + } + + /* First initialise the top-level header */ + pHdr->signature = ADI_SENSE_LUT_SIGNATURE; + pHdr->version.major = 1; + pHdr->version.minor = 0; + pHdr->numTables = 0; + pHdr->totalLength = 0; + + /* + * Walk through the list of table pointers provided, appending the table + * descriptor+data from each one to the provided LUT buffer + */ + for (unsigned i = 0; i < nNumTables; i++) + { + ADI_SENSE_1000_LUT_DESCRIPTOR * const pDesc = ppDesc[i]; + ADI_SENSE_1000_LUT_TABLE_DATA * const pData = ppData[i]; + ADI_SENSE_RESULT res; + unsigned dataLength = 0; + + /* Calculate the length of the table data */ + res = getLutTableSize(pDesc, pData, &dataLength); + if (res != ADI_SENSE_SUCCESS) + return res; + + /* Fill in the table descriptor length and CRC fields */ + pDesc->length = dataLength; + pDesc->crc16 = crc16_ccitt(pData, dataLength); + + if ((sizeof(*pHdr) + pHdr->totalLength + sizeof(*pDesc) + dataLength) > nLutBufferSize) + { + ADI_SENSE_LOG_ERROR("Insufficient LUT buffer size provided"); + return ADI_SENSE_INVALID_PARAM; + } + + /* Append the table to the LUT buffer (desc + data) */ + memcpy(pLutTableData + pHdr->totalLength, pDesc, sizeof(*pDesc)); + pHdr->totalLength += sizeof(*pDesc); + memcpy(pLutTableData + pHdr->totalLength, pData, dataLength); + pHdr->totalLength += dataLength; + + pHdr->numTables++; + } + + return ADI_SENSE_SUCCESS; +} + +#define CAL_TABLE_ROWS ADI_SENSE_1000_CAL_NUM_TABLES +#define CAL_TABLE_COLS ADI_SENSE_1000_CAL_NUM_TEMPS +#define CAL_TABLE_SIZE (sizeof(float) * CAL_TABLE_ROWS * CAL_TABLE_COLS) + +ADI_SENSE_RESULT adi_sense_1000_ReadCalTable( + ADI_SENSE_DEVICE_HANDLE hDevice, + float *pfBuffer, + unsigned nMaxLen, + unsigned *pnDataLen, + unsigned *pnRows, + unsigned *pnColumns) +{ + *pnDataLen = sizeof(float) * CAL_TABLE_ROWS * CAL_TABLE_COLS; + *pnRows = CAL_TABLE_ROWS; + *pnColumns = CAL_TABLE_COLS; + + if (nMaxLen > *pnDataLen) + nMaxLen = *pnDataLen; + + WRITE_REG_U16(hDevice, 0, CORE_CAL_OFFSET); + READ_REG_U8_ARRAY(hDevice, (uint8_t *)pfBuffer, nMaxLen, CORE_CAL_DATA); + + return ADI_SENSE_SUCCESS; +} +