ADISense1000 Version 2.1 code base

Fork of AdiSense1000_V21 by Sean Wilson

Revision:
16:e4f2689363bb
Child:
17:fd5ab3d27b15
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/adi_sense_1000.c	Tue Dec 05 19:08:53 2017 +0000
@@ -0,0 +1,2332 @@
+/*!
+ ******************************************************************************
+ * @file:  adi_sense_1000.c
+ * @brief: ADI Sense API implementation for ADI Sense 1000
+ *-----------------------------------------------------------------------------
+ */
+
+/******************************************************************************
+Copyright (c) 2017 Emutex Ltd. / Analog Devices, Inc.
+
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted provided that the following conditions are met:
+  - Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+  - Redistributions in binary form must reproduce the above copyright notice,
+    this list of conditions and the following disclaimer in the documentation
+    and/or other materials provided with the distribution.
+  - Modified versions of the software must be conspicuously marked as such.
+  - This software is licensed solely and exclusively for use with processors
+    manufactured by or for Analog Devices, Inc.
+  - This software may not be combined or merged with other code in any manner
+    that would cause the software to become subject to terms and conditions
+    which differ from those listed here.
+  - Neither the name of Analog Devices, Inc. nor the names of its
+    contributors may be used to endorse or promote products derived
+    from this software without specific prior written permission.
+  - The use of this software may or may not infringe the patent rights of one
+    or more patent holders.  This license does not release you from the
+    requirement that you obtain separate licenses from these patent holders
+    to use this software.
+
+THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES, INC. AND CONTRIBUTORS "AS IS" AND ANY
+EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
+TITLE, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
+NO EVENT SHALL ANALOG DEVICES, INC. OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
+INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR CONSEQUENTIAL DAMAGES
+(INCLUDING, BUT NOT LIMITED TO, DAMAGES ARISING OUT OF CLAIMS OF INTELLECTUAL
+PROPERTY RIGHTS INFRINGEMENT; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *****************************************************************************/
+#include <float.h>
+#include <math.h>
+#include <string.h>
+
+#include "inc/adi_sense_platform.h"
+#include "inc/adi_sense_api.h"
+#include "inc/adi_sense_1000/adi_sense_1000_api.h"
+
+#include "adi_sense_1000/ADISENSE1000_REGISTERS_typedefs.h"
+#include "adi_sense_1000/ADISENSE1000_REGISTERS.h"
+#include "adi_sense_1000/adi_sense_1000_lut_data.h"
+#include "adi_sense_1000/adi_sense_1000_calibration.h"
+
+#include "crc16.h"
+
+/*
+ * The host is expected to transfer a 16-bit command, followed by data bytes, in 2
+ * separate transfers delineated by the CS signal and a short delay in between.
+ *
+ * The 16-bit command contains a right-justified 11-bit register address (offset),
+ * and the remaining upper 5 bits are reserved as command bits assigned as follows:
+ * [15:11] 10000b = write command, 01000b = read command, anything else is invalid
+ * [10:0]  register address (0-2047)
+ */
+
+/* Register address space is limited to 2048 bytes (11 bit address) */
+#define REG_COMMAND_MASK 0xF800
+#define REG_ADDRESS_MASK 0x07FF
+
+/*
+ * The following commands are currently supported, anything else is treated
+ * as an error
+ */
+#define REG_WRITE_COMMAND 0x8000
+#define REG_READ_COMMAND  0x4000
+
+/*
+ * The following bytes are sent back to the host when a command is recieved,
+ * to be used by the host to verify that we were ready to receive the command.
+ */
+#define REG_COMMAND_RESP_0 0xF0
+#define REG_COMMAND_RESP_1 0xE1
+
+/*
+ * The following minimum delay must be inserted after each SPI transfer to allow
+ * time for it to be processed by the device
+ */
+#define POST_SPI_TRANSFER_DELAY_USEC (20)
+
+/*
+ * The following macros are used to encapsulate the register access code
+ * to improve readability in the functions further below in this file
+ */
+#define STRINGIFY(name) #name
+
+/* Expand the full name of the reset value macro for the specified register */
+#define REG_RESET_VAL(_name) REG_ADISENSE_##_name##_RESET
+
+/* Checks if a value is outside the bounds of the specified register field */
+#define CHECK_REG_FIELD_VAL(_field, _val)                               \
+    do {                                                                \
+        uint32_t _mask  = BITM_ADISENSE_##_field;                       \
+        uint32_t _shift = BITP_ADISENSE_##_field;                       \
+        if ((((_val) << _shift) & ~(_mask)) != 0) {                     \
+            ADI_SENSE_LOG_ERROR("Value 0x%08X invalid for register field %s", \
+                                (uint32_t)(_val),                       \
+                                STRINGIFY(ADISENSE_##_field));          \
+            return ADI_SENSE_INVALID_PARAM;                             \
+        }                                                               \
+    } while(false)
+
+/*
+ * Encapsulates the write to a specified register
+ * NOTE - this will cause the calling function to return on error
+ */
+#define WRITE_REG(_hdev, _val, _name, _type)                            \
+    do {                                                                \
+        ADI_SENSE_RESULT _res;                                          \
+        _type _regval = _val;                                           \
+        _res = adi_sense_1000_WriteRegister((_hdev),                    \
+                                            REG_ADISENSE_##_name,       \
+                                            &_regval, sizeof(_regval)); \
+        if (_res != ADI_SENSE_SUCCESS)                                  \
+            return _res;                                                \
+    } while(false)
+
+/* Wrapper macro to write a value to a uint32_t register */
+#define WRITE_REG_U32(_hdev, _val, _name)       \
+    WRITE_REG(_hdev, _val, _name, uint32_t)
+/* Wrapper macro to write a value to a uint16_t register */
+#define WRITE_REG_U16(_hdev, _val, _name)       \
+    WRITE_REG(_hdev, _val, _name, uint16_t)
+/* Wrapper macro to write a value to a uint8_t register */
+#define WRITE_REG_U8(_hdev, _val, _name)        \
+    WRITE_REG(_hdev, _val, _name, uint8_t)
+/* Wrapper macro to write a value to a float32_t register */
+#define WRITE_REG_FLOAT(_hdev, _val, _name)     \
+    WRITE_REG(_hdev, _val, _name, float32_t)
+
+/*
+ * Encapsulates the read from a specified register
+ * NOTE - this will cause the calling function to return on error
+ */
+#define READ_REG(_hdev, _val, _name, _type)                             \
+    do {                                                                \
+        ADI_SENSE_RESULT _res;                                          \
+        _type _regval;                                                  \
+        _res = adi_sense_1000_ReadRegister((_hdev),                     \
+                                           REG_ADISENSE_##_name,        \
+                                           &_regval, sizeof(_regval));  \
+        if (_res != ADI_SENSE_SUCCESS)                                  \
+            return _res;                                                \
+        _val = _regval;                                                 \
+    } while(false)
+
+/* Wrapper macro to read a value from a uint32_t register */
+#define READ_REG_U32(_hdev, _val, _name)        \
+    READ_REG(_hdev, _val, _name, uint32_t)
+/* Wrapper macro to read a value from a uint16_t register */
+#define READ_REG_U16(_hdev, _val, _name)        \
+    READ_REG(_hdev, _val, _name, uint16_t)
+/* Wrapper macro to read a value from a uint8_t register */
+#define READ_REG_U8(_hdev, _val, _name)         \
+    READ_REG(_hdev, _val, _name, uint8_t)
+/* Wrapper macro to read a value from a float32_t register */
+#define READ_REG_FLOAT(_hdev, _val, _name)      \
+    READ_REG(_hdev, _val, _name, float32_t)
+
+/*
+ * Wrapper macro to write an array of values to a uint8_t register
+ * NOTE - this is intended only for writing to a keyhole data register
+ */
+#define WRITE_REG_U8_ARRAY(_hdev, _arr, _len, _name)                \
+    do {                                                            \
+        ADI_SENSE_RESULT _res;                                      \
+        _res = adi_sense_1000_WriteRegister(_hdev,                  \
+                                            REG_ADISENSE_##_name,   \
+                                            _arr, _len);            \
+        if (_res != ADI_SENSE_SUCCESS)                              \
+            return _res;                                            \
+    } while(false)
+
+/*
+ * Wrapper macro to read an array of values from a uint8_t register
+ * NOTE - this is intended only for reading from a keyhole data register
+ */
+#define READ_REG_U8_ARRAY(_hdev, _arr, _len, _name)                 \
+    do {                                                            \
+        ADI_SENSE_RESULT _res;                                      \
+        _res = adi_sense_1000_ReadRegister((_hdev),                 \
+                                           REG_ADISENSE_##_name,    \
+                                           _arr, _len);             \
+        if (_res != ADI_SENSE_SUCCESS)                              \
+            return _res;                                            \
+    } while(false)
+
+#define ADI_SENSE_1000_CHANNEL_IS_ADC(c)                                \
+    ((c) >= ADI_SENSE_1000_CHANNEL_ID_CJC_0 && (c) <= ADI_SENSE_1000_CHANNEL_ID_CURRENT_0)
+
+#define ADI_SENSE_1000_CHANNEL_IS_ADC_CJC(c)                            \
+    ((c) >= ADI_SENSE_1000_CHANNEL_ID_CJC_0 && (c) <= ADI_SENSE_1000_CHANNEL_ID_CJC_1)
+
+#define ADI_SENSE_1000_CHANNEL_IS_ADC_SENSOR(c)                         \
+    ((c) >= ADI_SENSE_1000_CHANNEL_ID_SENSOR_0 && (c) <= ADI_SENSE_1000_CHANNEL_ID_SENSOR_3)
+
+#define ADI_SENSE_1000_CHANNEL_IS_ADC_VOLTAGE(c)    \
+    ((c) == ADI_SENSE_1000_CHANNEL_ID_VOLTAGE_0)
+
+#define ADI_SENSE_1000_CHANNEL_IS_ADC_CURRENT(c)    \
+    ((c) == ADI_SENSE_1000_CHANNEL_ID_CURRENT_0)
+
+#define ADI_SENSE_1000_CHANNEL_IS_VIRTUAL(c)                            \
+    ((c) == ADI_SENSE_1000_CHANNEL_ID_SPI_1 || (c) == ADI_SENSE_1000_CHANNEL_ID_SPI_2)
+
+typedef struct
+{
+    unsigned nDeviceIndex;
+    ADI_SENSE_SPI_HANDLE hSpi;
+    ADI_SENSE_GPIO_HANDLE hGpio;
+} ADI_SENSE_DEVICE_CONTEXT;
+
+static ADI_SENSE_DEVICE_CONTEXT gDeviceCtx[ADI_SENSE_PLATFORM_MAX_DEVICES];
+
+/*
+ * Open an ADI Sense device instance.
+ */
+ADI_SENSE_RESULT adi_sense_Open(
+    unsigned                   const nDeviceIndex,
+    ADI_SENSE_CONNECTION     * const pConnectionInfo,
+    ADI_SENSE_DEVICE_HANDLE  * const phDevice)
+{
+    ADI_SENSE_DEVICE_CONTEXT *pCtx;
+    ADI_SENSE_RESULT eRet;
+
+    if (nDeviceIndex >= ADI_SENSE_PLATFORM_MAX_DEVICES)
+        return ADI_SENSE_INVALID_DEVICE_NUM;
+
+    pCtx = &gDeviceCtx[nDeviceIndex];
+    pCtx->nDeviceIndex = nDeviceIndex;
+
+    eRet = adi_sense_LogOpen();
+    if (eRet != ADI_SENSE_SUCCESS)
+        return eRet;
+
+    eRet = adi_sense_GpioOpen(&pConnectionInfo->gpio, &pCtx->hGpio);
+    if (eRet != ADI_SENSE_SUCCESS)
+        return eRet;
+
+    eRet = adi_sense_SpiOpen(&pConnectionInfo->spi, &pCtx->hSpi);
+    if (eRet != ADI_SENSE_SUCCESS)
+        return eRet;
+
+    *phDevice = pCtx;
+    return ADI_SENSE_SUCCESS;
+}
+
+/*
+ * Get the current state of the specified GPIO input signal.
+ */
+ADI_SENSE_RESULT adi_sense_GetGpioState(
+    ADI_SENSE_DEVICE_HANDLE   const hDevice,
+    ADI_SENSE_GPIO_PIN        const ePinId,
+    bool_t                  * const pbAsserted)
+{
+    ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+
+    return adi_sense_GpioGet(pCtx->hGpio, ePinId, pbAsserted);
+}
+
+/*
+ * Register an application-defined callback function for GPIO interrupts.
+ */
+ADI_SENSE_RESULT adi_sense_RegisterGpioCallback(
+    ADI_SENSE_DEVICE_HANDLE          const hDevice,
+    ADI_SENSE_GPIO_PIN               const ePinId,
+    ADI_SENSE_GPIO_CALLBACK          const callbackFunction,
+    void                           * const pCallbackParam)
+{
+    ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+
+    if (callbackFunction)
+    {
+        return adi_sense_GpioIrqEnable(pCtx->hGpio, ePinId, callbackFunction,
+                                       pCallbackParam);
+    }
+    else
+    {
+        return adi_sense_GpioIrqDisable(pCtx->hGpio, ePinId);
+    }
+}
+
+/*
+ * Reset the specified ADI Sense device.
+ */
+ADI_SENSE_RESULT adi_sense_Reset(
+    ADI_SENSE_DEVICE_HANDLE    const hDevice)
+{
+    ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+    ADI_SENSE_RESULT eRet;
+
+    /* Pulse the Reset GPIO pin low for a minimum of 4 microseconds */
+    eRet = adi_sense_GpioSet(pCtx->hGpio, ADI_SENSE_GPIO_PIN_RESET, false);
+    if (eRet != ADI_SENSE_SUCCESS)
+        return eRet;
+
+    adi_sense_TimeDelayUsec(4);
+
+    eRet = adi_sense_GpioSet(pCtx->hGpio, ADI_SENSE_GPIO_PIN_RESET, true);
+    if (eRet != ADI_SENSE_SUCCESS)
+        return eRet;
+
+    return ADI_SENSE_SUCCESS;
+}
+
+
+/*!
+ * @brief Get general status of ADISense module.
+ *
+ * @param[in]
+ * @param[out] pStatus : Pointer to CORE Status struct.
+ *
+ * @return Status
+ *         - #ADI_SENSE_SUCCESS Call completed successfully.
+ *         - #ADI_SENSE_FAILURE If status register read fails.
+ *
+ * @details Read the general status register for the ADISense
+ *          module. Indicates Error, Alert conditions, data ready
+ *          and command running.
+ *
+ */
+ADI_SENSE_RESULT adi_sense_GetStatus(
+    ADI_SENSE_DEVICE_HANDLE    const hDevice,
+    ADI_SENSE_STATUS         * const pStatus)
+{
+    ADI_ADISENSE_CORE_Status_t statusReg;
+    READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS);
+
+    memset(pStatus, 0, sizeof(*pStatus));
+
+    if (!statusReg.Cmd_Running) /* Active-low, so invert it */
+        pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_BUSY;
+    if (statusReg.Drdy)
+        pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_DATAREADY;
+    if (statusReg.FIFO_Error)
+        pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_FIFO_ERROR;
+    if (statusReg.Alert_Active)
+    {
+        pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_ALERT;
+
+        ADI_ADISENSE_CORE_Alert_Code_t alertCodeReg;
+        READ_REG_U16(hDevice, alertCodeReg.VALUE16, CORE_ALERT_CODE);
+        pStatus->alertCode = alertCodeReg.Alert_Code;
+
+        ADI_ADISENSE_CORE_Channel_Alert_Status_t channelAlertStatusReg;
+        READ_REG_U16(hDevice, channelAlertStatusReg.VALUE16,
+                     CORE_CHANNEL_ALERT_STATUS);
+
+        for (unsigned i = 0; i < ADI_SENSE_1000_MAX_CHANNELS; i++)
+        {
+            if (channelAlertStatusReg.VALUE16 & (1 << i))
+            {
+                ADI_ADISENSE_CORE_Alert_Code_Ch_t channelAlertCodeReg;
+                READ_REG_U16(hDevice, channelAlertCodeReg.VALUE16, CORE_ALERT_CODE_CHn(i));
+                pStatus->channelAlertCodes[i] = channelAlertCodeReg.Alert_Code_Ch;
+
+                ADI_ADISENSE_CORE_Alert_Detail_Ch_t alertDetailReg;
+                READ_REG_U16(hDevice, alertDetailReg.VALUE16,
+                             CORE_ALERT_DETAIL_CHn(i));
+
+                if (alertDetailReg.Time_Out)
+                    pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_TIMEOUT;
+                if (alertDetailReg.Under_Range)
+                    pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_UNDER_RANGE;
+                if (alertDetailReg.Over_Range)
+                    pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_OVER_RANGE;
+                if (alertDetailReg.Low_Limit)
+                    pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_LOW_LIMIT;
+                if (alertDetailReg.High_Limit)
+                    pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_HIGH_LIMIT;
+                if (alertDetailReg.Sensor_Open)
+                    pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_SENSOR_OPEN;
+                if (alertDetailReg.Ref_Detect)
+                    pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_REF_DETECT;
+                if (alertDetailReg.Config_Err)
+                    pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_CONFIG_ERR;
+                if (alertDetailReg.LUT_Error_Ch)
+                    pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_LUT_ERR;
+                if (alertDetailReg.Sensor_Not_Ready)
+                    pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_SENSOR_NOT_READY;
+                if (alertDetailReg.Comp_Not_Ready)
+                    pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_COMP_NOT_READY;
+                if (alertDetailReg.Under_Voltage)
+                    pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_UNDER_VOLTAGE;
+                if (alertDetailReg.Over_Voltage)
+                    pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_OVER_VOLTAGE;
+                if (alertDetailReg.Correction_UnderRange)
+                    pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_LUT_UNDER_RANGE;
+                if (alertDetailReg.Correction_OverRange)
+                    pStatus->channelAlerts[i] |= ADI_SENSE_CHANNEL_ALERT_LUT_OVER_RANGE;
+            }
+        }
+
+        ADI_ADISENSE_CORE_Alert_Status_2_t alert2Reg;
+        READ_REG_U16(hDevice, alert2Reg.VALUE16, CORE_ALERT_STATUS_2);
+        if (alert2Reg.Configuration_Error)
+            pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_CONFIG_ERROR;
+        if (alert2Reg.LUT_Error)
+            pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_LUT_ERROR;
+    }
+
+    if (statusReg.Error)
+    {
+        pStatus->deviceStatus |= ADI_SENSE_DEVICE_STATUS_ERROR;
+
+        ADI_ADISENSE_CORE_Error_Code_t errorCodeReg;
+        READ_REG_U16(hDevice, errorCodeReg.VALUE16, CORE_ERROR_CODE);
+        pStatus->errorCode = errorCodeReg.Error_Code;
+
+        ADI_ADISENSE_CORE_Diagnostics_Status_t diagStatusReg;
+        READ_REG_U16(hDevice, diagStatusReg.VALUE16, CORE_DIAGNOSTICS_STATUS);
+
+        if (diagStatusReg.Diag_Checksum_Error)
+            pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_CHECKSUM_ERROR;
+        if (diagStatusReg.Diag_Comms_Error)
+            pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_COMMS_ERROR;
+        if (diagStatusReg.Diag_Supply_Monitor_Error)
+            pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_SUPPLY_MONITOR_ERROR;
+        if (diagStatusReg.Diag_Supply_Cap_Error)
+            pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_SUPPLY_CAP_ERROR;
+        if (diagStatusReg.Diag_Ainm_UV_Error)
+            pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_AINM_UV_ERROR;
+        if (diagStatusReg.Diag_Ainm_OV_Error)
+            pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_AINM_OV_ERROR;
+        if (diagStatusReg.Diag_Ainp_UV_Error)
+            pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_AINP_UV_ERROR;
+        if (diagStatusReg.Diag_Ainp_OV_Error)
+            pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_AINP_OV_ERROR;
+        if (diagStatusReg.Diag_Conversion_Error)
+            pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_CONVERSION_ERROR;
+        if (diagStatusReg.Diag_Calibration_Error)
+            pStatus->diagnosticsStatus |= ADI_SENSE_DIAGNOSTICS_STATUS_CALIBRATION_ERROR;
+    }
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_GetCommandRunningState(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    bool_t *pbCommandRunning)
+{
+    ADI_ADISENSE_CORE_Status_t statusReg;
+
+    READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS);
+
+    /* We should never normally see 0xFF here if the module is operational */
+    if (statusReg.VALUE8 == 0xFF)
+        return ADI_SENSE_ERR_NOT_INITIALIZED;
+
+    *pbCommandRunning = !statusReg.Cmd_Running; /* Active-low, so invert it */
+
+    return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT executeCommand(
+    ADI_SENSE_DEVICE_HANDLE const hDevice,
+    ADI_ADISENSE_CORE_Command_Special_Command const command,
+    bool_t const bWaitForCompletion)
+{
+    ADI_ADISENSE_CORE_Command_t commandReg;
+    bool_t bCommandRunning;
+    ADI_SENSE_RESULT eRet;
+
+    /*
+     * Don't allow another command to be issued if one is already running, but
+     * make an exception for ADISENSE_CORE_COMMAND_NOP which can be used to
+     * request a running command to be stopped (e.g. continuous measurement)
+     */
+    if (command != ADISENSE_CORE_COMMAND_NOP)
+    {
+        eRet = adi_sense_GetCommandRunningState(hDevice, &bCommandRunning);
+        if (eRet)
+            return eRet;
+
+        if (bCommandRunning)
+            return ADI_SENSE_IN_USE;
+    }
+
+    commandReg.Special_Command = command;
+    WRITE_REG_U8(hDevice, commandReg.VALUE8, CORE_COMMAND);
+
+    if (bWaitForCompletion)
+    {
+        do {
+            /* Allow a minimum 50usec delay for status update before checking */
+            adi_sense_TimeDelayUsec(50);
+
+            eRet = adi_sense_GetCommandRunningState(hDevice, &bCommandRunning);
+            if (eRet)
+                return eRet;
+        } while (bCommandRunning);
+    }
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_ApplyConfigUpdates(
+    ADI_SENSE_DEVICE_HANDLE const hDevice)
+{
+    return executeCommand(hDevice, ADISENSE_CORE_COMMAND_LATCH_CONFIG, true);
+}
+
+/*!
+ * @brief Start a measurement cycle.
+ *
+ * @param[out]
+ *
+ * @return Status
+ *         - #ADI_SENSE_SUCCESS Call completed successfully.
+ *         - #ADI_SENSE_FAILURE
+ *
+ * @details Sends the latch config command. Configuration for channels in
+ *          conversion cycle should be completed before this function.
+ *          Channel enabled bit should be set before this function.
+ *          Starts a conversion and configures the format of the sample.
+ *
+ */
+ADI_SENSE_RESULT adi_sense_StartMeasurement(
+    ADI_SENSE_DEVICE_HANDLE    const hDevice,
+    ADI_SENSE_MEASUREMENT_MODE const eMeasurementMode)
+{
+    switch (eMeasurementMode)
+    {
+    case ADI_SENSE_MEASUREMENT_MODE_HEALTHCHECK:
+        return executeCommand(hDevice, ADISENSE_CORE_COMMAND_SYSTEM_CHECK, false);
+    case ADI_SENSE_MEASUREMENT_MODE_NORMAL:
+        return executeCommand(hDevice, ADISENSE_CORE_COMMAND_CONVERT_WITH_RAW, false);
+    case ADI_SENSE_MEASUREMENT_MODE_OMIT_RAW:
+        return executeCommand(hDevice, ADISENSE_CORE_COMMAND_CONVERT, false);
+    default:
+        ADI_SENSE_LOG_ERROR("Invalid measurement mode %d specified",
+                            eMeasurementMode);
+        return ADI_SENSE_INVALID_PARAM;
+    }
+}
+
+/*
+ * Store the configuration settings to persistent memory on the device.
+ * No other command must be running when this is called.
+ * Do not power down the device while this command is running.
+ */
+ADI_SENSE_RESULT adi_sense_SaveConfig(
+    ADI_SENSE_DEVICE_HANDLE    const hDevice)
+{
+    return executeCommand(hDevice, ADISENSE_CORE_COMMAND_SAVE_CONFIG, true);
+}
+
+/*
+ * Restore the configuration settings from persistent memory on the device.
+ * No other command must be running when this is called.
+ */
+ADI_SENSE_RESULT adi_sense_RestoreConfig(
+    ADI_SENSE_DEVICE_HANDLE    const hDevice)
+{
+    return executeCommand(hDevice, ADISENSE_CORE_COMMAND_LOAD_CONFIG, true);
+}
+
+/*
+ * Store the LUT data to persistent memory on the device.
+ * No other command must be running when this is called.
+ * Do not power down the device while this command is running.
+ */
+ADI_SENSE_RESULT adi_sense_SaveLutData(
+    ADI_SENSE_DEVICE_HANDLE    const hDevice)
+{
+    return executeCommand(hDevice, ADISENSE_CORE_COMMAND_SAVE_LUT2, true);
+}
+
+/*
+ * Restore the LUT data from persistent memory on the device.
+ * No other command must be running when this is called.
+ */
+ADI_SENSE_RESULT adi_sense_RestoreLutData(
+    ADI_SENSE_DEVICE_HANDLE    const hDevice)
+{
+    return executeCommand(hDevice, ADISENSE_CORE_COMMAND_LOAD_LUT, true);
+}
+
+/*
+ * Stop the measurement cycles on the device.
+ * To be used only if a measurement command is currently running.
+ */
+ADI_SENSE_RESULT adi_sense_StopMeasurement(
+    ADI_SENSE_DEVICE_HANDLE    const hDevice)
+{
+    return executeCommand(hDevice, ADISENSE_CORE_COMMAND_NOP, true);
+}
+
+/*
+ * Run built-in diagnostic checks on the device.
+ * Diagnostics are executed according to the current applied settings.
+ * No other command must be running when this is called.
+ */
+ADI_SENSE_RESULT adi_sense_RunDiagnostics(
+    ADI_SENSE_DEVICE_HANDLE    const hDevice)
+{
+    return executeCommand(hDevice, ADISENSE_CORE_COMMAND_RUN_DIAGNOSTICS, true);
+}
+
+/*
+ * Run self-calibration routines on the device.
+ * Calibration is executed according to the current applied settings.
+ * No other command must be running when this is called.
+ */
+ADI_SENSE_RESULT adi_sense_RunCalibration(
+    ADI_SENSE_DEVICE_HANDLE    const hDevice)
+{
+    return executeCommand(hDevice, ADISENSE_CORE_COMMAND_SELF_CALIBRATION, true);
+}
+
+/*
+ * Read a set of data samples from the device.
+ * This may be called at any time.
+ */
+ADI_SENSE_RESULT adi_sense_GetData(
+    ADI_SENSE_DEVICE_HANDLE    const hDevice,
+    ADI_SENSE_MEASUREMENT_MODE const eMeasurementMode,
+    ADI_SENSE_DATA_SAMPLE    * const pSamples,
+    uint32_t                   const nRequested,
+    uint32_t                 * const pnReturned)
+{
+    ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+    uint16_t command = REG_READ_COMMAND |
+        (REG_ADISENSE_CORE_DATA_FIFO & REG_ADDRESS_MASK);
+    uint8_t commandData[2] = {
+        command >> 8,
+        command & 0xFF
+    };
+    uint8_t commandResponse[2];
+    unsigned nValidSamples = 0;
+    ADI_SENSE_RESULT eRet = ADI_SENSE_SUCCESS;
+
+    do {
+        eRet = adi_sense_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
+                                     sizeof(command), false);
+        if (eRet)
+        {
+            ADI_SENSE_LOG_ERROR("Failed to send read command for FIFO register");
+            return eRet;
+        }
+
+        adi_sense_TimeDelayUsec(POST_SPI_TRANSFER_DELAY_USEC);
+    } while ((commandResponse[0] != REG_COMMAND_RESP_0) ||
+             (commandResponse[1] != REG_COMMAND_RESP_1));
+
+    for (unsigned i = 0; i < nRequested; i++)
+    {
+        ADI_ADISENSE_CORE_Data_FIFO_t dataFifoReg;
+        bool_t bHoldCs = true;
+        unsigned readSampleSize = sizeof(dataFifoReg);
+
+        if (eMeasurementMode == ADI_SENSE_MEASUREMENT_MODE_OMIT_RAW)
+            readSampleSize -= 3; /* 3B raw value omitted in this case */
+
+        /* Keep the CS signal asserted for all but the last sample */
+        if ((i + 1) == nRequested)
+            bHoldCs = false;
+
+        eRet = adi_sense_SpiTransfer(pCtx->hSpi, NULL, &dataFifoReg,
+                                     readSampleSize, bHoldCs);
+        if (eRet)
+        {
+            ADI_SENSE_LOG_ERROR("Failed to read data from FIFO register");
+            return eRet;
+        }
+
+        if (! dataFifoReg.Ch_Valid)
+        {
+            /*
+             * Reading an invalid sample indicates that there are no
+             * more samples available or we've lost sync with the device.
+             * In the latter case, it might be recoverable, but return here
+             * to let the application check the device status and decide itself.
+             */
+            eRet = ADI_SENSE_INCOMPLETE;
+            break;
+        }
+
+        ADI_SENSE_DATA_SAMPLE *pSample = &pSamples[nValidSamples];
+
+        pSample->status = 0;
+        if (dataFifoReg.Ch_Error)
+            pSample->status |= ADI_SENSE_DEVICE_STATUS_ERROR;
+        if (dataFifoReg.Ch_Alert)
+            pSample->status |= ADI_SENSE_DEVICE_STATUS_ALERT;
+
+        if (dataFifoReg.Ch_Raw)
+            pSample->rawValue = dataFifoReg.Raw_Sample;
+        else
+            pSample->rawValue = 0;
+
+        pSample->channelId = dataFifoReg.Channel_ID;
+        pSample->processedValue = dataFifoReg.Sensor_Result;
+
+        nValidSamples++;
+    }
+    *pnReturned = nValidSamples;
+
+    adi_sense_TimeDelayUsec(POST_SPI_TRANSFER_DELAY_USEC);
+
+    return eRet;
+}
+
+/*
+ * Close the given ADI Sense device.
+ */
+ADI_SENSE_RESULT adi_sense_Close(
+    ADI_SENSE_DEVICE_HANDLE    const hDevice)
+{
+    ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+
+    adi_sense_GpioClose(pCtx->hGpio);
+    adi_sense_SpiClose(pCtx->hSpi);
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_WriteRegister(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    uint16_t nAddress,
+    void *pData,
+    unsigned nLength)
+{
+    ADI_SENSE_RESULT eRet;
+    ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+    uint16_t command = REG_WRITE_COMMAND | (nAddress & REG_ADDRESS_MASK);
+    uint8_t commandData[2] = {
+        command >> 8,
+        command & 0xFF
+    };
+    uint8_t commandResponse[2];
+
+    do {
+        eRet = adi_sense_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
+                                     sizeof(command), false);
+        if (eRet)
+        {
+            ADI_SENSE_LOG_ERROR("Failed to send write command for register %u",
+                                nAddress);
+            return eRet;
+        }
+
+        adi_sense_TimeDelayUsec(POST_SPI_TRANSFER_DELAY_USEC);
+    } while ((commandResponse[0] != REG_COMMAND_RESP_0) ||
+             (commandResponse[1] != REG_COMMAND_RESP_1));
+
+    eRet = adi_sense_SpiTransfer(pCtx->hSpi, pData, NULL, nLength, false);
+    if (eRet)
+    {
+        ADI_SENSE_LOG_ERROR("Failed to write data (%dB) to register %u",
+                            nLength, nAddress);
+        return eRet;
+    }
+
+    adi_sense_TimeDelayUsec(POST_SPI_TRANSFER_DELAY_USEC);
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_ReadRegister(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    uint16_t nAddress,
+    void *pData,
+    unsigned nLength)
+{
+    ADI_SENSE_RESULT eRet;
+    ADI_SENSE_DEVICE_CONTEXT *pCtx = hDevice;
+    uint16_t command = REG_READ_COMMAND | (nAddress & REG_ADDRESS_MASK);
+    uint8_t commandData[2] = {
+        command >> 8,
+        command & 0xFF
+    };
+    uint8_t commandResponse[2];
+
+    do {
+        eRet = adi_sense_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
+                                     sizeof(command), false);
+        if (eRet)
+        {
+            ADI_SENSE_LOG_ERROR("Failed to send read command for register %u",
+                                nAddress);
+            return eRet;
+        }
+
+        adi_sense_TimeDelayUsec(POST_SPI_TRANSFER_DELAY_USEC);
+    } while ((commandResponse[0] != REG_COMMAND_RESP_0) ||
+             (commandResponse[1] != REG_COMMAND_RESP_1));
+
+    eRet = adi_sense_SpiTransfer(pCtx->hSpi, NULL, pData, nLength, false);
+    if (eRet)
+    {
+        ADI_SENSE_LOG_ERROR("Failed to read data (%uB) from register %u",
+                            nLength, nAddress);
+        return eRet;
+    }
+
+    adi_sense_TimeDelayUsec(POST_SPI_TRANSFER_DELAY_USEC);
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_GetDeviceReadyState(
+    ADI_SENSE_DEVICE_HANDLE   const hDevice,
+    bool_t                  * const bReady)
+{
+    ADI_ADISENSE_SPI_Chip_Type_t chipTypeReg;
+
+    READ_REG_U8(hDevice, chipTypeReg.VALUE8, SPI_CHIP_TYPE);
+    /* If we read this register successfully, assume the device is ready */
+    *bReady = (chipTypeReg.VALUE8 == REG_ADISENSE_SPI_CHIP_TYPE_RESET);
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_GetDataReadyModeInfo(
+    ADI_SENSE_DEVICE_HANDLE         const hDevice,
+    ADI_SENSE_MEASUREMENT_MODE      const eMeasurementMode,
+    ADI_SENSE_1000_OPERATING_MODE * const peOperatingMode,
+    ADI_SENSE_1000_DATAREADY_MODE * const peDataReadyMode,
+    uint32_t                      * const pnSamplesPerDataready,
+    uint32_t                      * const pnSamplesPerCycle)
+{
+    unsigned nChannelsEnabled = 0;
+    unsigned nSamplesPerCycle = 0;
+
+    for (ADI_SENSE_1000_CHANNEL_ID chId = 0; chId < ADI_SENSE_1000_MAX_CHANNELS; chId++)
+    {
+        ADI_ADISENSE_CORE_Sensor_Details_t sensorDetailsReg;
+        ADI_ADISENSE_CORE_Channel_Count_t channelCountReg;
+
+        if (ADI_SENSE_1000_CHANNEL_IS_VIRTUAL(chId))
+            continue;
+
+        READ_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(chId));
+        READ_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(chId));
+
+        if (channelCountReg.Channel_Enable && !sensorDetailsReg.Do_Not_Publish)
+        {
+            ADI_ADISENSE_CORE_Sensor_Type_t sensorTypeReg;
+            unsigned nActualChannels = 1;
+
+            READ_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(chId));
+
+            if (chId == ADI_SENSE_1000_CHANNEL_ID_SPI_0)
+            {
+                /* Some sensors automatically generate samples on additional "virtual" channels
+                 * so these channels must be counted as active when those sensors are selected
+                 * and we use the count from the corresponding "physical" channel */
+                if (sensorTypeReg.Sensor_Type ==
+                    ADISENSE_CORE_SENSOR_TYPE_SENSOR_SPI_ACCELEROMETER_1)
+                    nActualChannels += 2;
+            }
+
+            nChannelsEnabled += nActualChannels;
+            if (eMeasurementMode == ADI_SENSE_MEASUREMENT_MODE_HEALTHCHECK)
+                /* Assume a single sample per channel in test mode */
+                nSamplesPerCycle += nActualChannels;
+            else
+                nSamplesPerCycle += nActualChannels *
+                    (channelCountReg.Channel_Count + 1);
+        }
+    }
+
+    if (nChannelsEnabled == 0)
+    {
+        *pnSamplesPerDataready = 0;
+        *pnSamplesPerCycle = 0;
+        return ADI_SENSE_SUCCESS;
+    }
+
+    ADI_ADISENSE_CORE_Mode_t modeReg;
+    READ_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
+
+    *pnSamplesPerCycle = nSamplesPerCycle;
+
+    /* Assume DRDY_PER_CONVERSION behaviour in test mode */
+    if ((eMeasurementMode == ADI_SENSE_MEASUREMENT_MODE_HEALTHCHECK) ||
+        (modeReg.Drdy_Mode == ADISENSE_CORE_MODE_DRDY_PER_CONVERSION))
+    {
+        *pnSamplesPerDataready = 1;
+    }
+    else if (modeReg.Drdy_Mode == ADISENSE_CORE_MODE_DRDY_PER_CYCLE)
+    {
+        *pnSamplesPerDataready = nSamplesPerCycle;
+    }
+    else
+    {
+        ADI_ADISENSE_CORE_Fifo_Num_Cycles_t fifoNumCyclesReg;
+        READ_REG_U8(hDevice, fifoNumCyclesReg.VALUE8, CORE_FIFO_NUM_CYCLES);
+
+        *pnSamplesPerDataready =
+            nSamplesPerCycle * fifoNumCyclesReg.Fifo_Num_Cycles;
+    }
+
+    /* Assume SINGLECYCLE in test mode */
+    if ((eMeasurementMode == ADI_SENSE_MEASUREMENT_MODE_HEALTHCHECK) ||
+        (modeReg.Conversion_Mode == ADISENSE_CORE_MODE_SINGLECYCLE))
+        *peOperatingMode = ADI_SENSE_1000_OPERATING_MODE_SINGLECYCLE;
+    else if (modeReg.Conversion_Mode == ADISENSE_CORE_MODE_MULTICYCLE)
+        *peOperatingMode = ADI_SENSE_1000_OPERATING_MODE_MULTICYCLE;
+    else
+        *peOperatingMode = ADI_SENSE_1000_OPERATING_MODE_CONTINUOUS;
+
+    /* Assume DRDY_PER_CONVERSION behaviour in test mode */
+    if ((eMeasurementMode == ADI_SENSE_MEASUREMENT_MODE_HEALTHCHECK) ||
+        (modeReg.Drdy_Mode == ADISENSE_CORE_MODE_DRDY_PER_CONVERSION))
+        *peDataReadyMode = ADI_SENSE_1000_DATAREADY_PER_CONVERSION;
+    else if (modeReg.Drdy_Mode == ADISENSE_CORE_MODE_DRDY_PER_CYCLE)
+        *peDataReadyMode = ADI_SENSE_1000_DATAREADY_PER_CYCLE;
+    else
+        *peDataReadyMode = ADI_SENSE_1000_DATAREADY_PER_MULTICYCLE_BURST;
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_GetProductID(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_PRODUCT_ID *pProductId)
+{
+    ADI_ADISENSE_SPI_Product_ID_L_t productIdLoReg;
+    ADI_ADISENSE_SPI_Product_ID_H_t productIdHiReg;
+
+    READ_REG_U8(hDevice, productIdLoReg.VALUE8, SPI_PRODUCT_ID_L);
+    READ_REG_U8(hDevice, productIdHiReg.VALUE8, SPI_PRODUCT_ID_H);
+
+    *pProductId = (productIdHiReg.VALUE8 << 8) | productIdLoReg.VALUE8;
+    return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetPowerMode(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_POWER_MODE powerMode)
+{
+    ADI_ADISENSE_CORE_Power_Config_t powerConfigReg;
+
+    if (powerMode == ADI_SENSE_1000_POWER_MODE_LOW)
+    {
+        powerConfigReg.Power_Mode_ADC = ADISENSE_CORE_POWER_CONFIG_ADC_LOW_POWER;
+        /* TODO - we need an enum in the register map for the MCU power modes */
+        powerConfigReg.Power_Mode_MCU = 0x0;
+    }
+    else if (powerMode == ADI_SENSE_1000_POWER_MODE_MID)
+    {
+        powerConfigReg.Power_Mode_ADC = ADISENSE_CORE_POWER_CONFIG_ADC_MID_POWER;
+        powerConfigReg.Power_Mode_MCU = 0x1;
+    }
+    else if (powerMode == ADI_SENSE_1000_POWER_MODE_FULL)
+    {
+        powerConfigReg.Power_Mode_ADC = ADISENSE_CORE_POWER_CONFIG_ADC_FULL_POWER;
+        powerConfigReg.Power_Mode_MCU = 0x2;
+    }
+    else
+    {
+        ADI_SENSE_LOG_ERROR("Invalid power mode %d specified", powerMode);
+        return ADI_SENSE_INVALID_PARAM;
+    }
+
+    WRITE_REG_U8(hDevice, powerConfigReg.VALUE8, CORE_POWER_CONFIG);
+
+    return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetVddVoltage(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    float32_t vddVoltage)
+{
+    WRITE_REG_FLOAT(hDevice, vddVoltage, CORE_AVDD_VOLTAGE);
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_SetPowerConfig(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_POWER_CONFIG *pPowerConfig)
+{
+    ADI_SENSE_RESULT eRet;
+
+    eRet = adi_sense_SetPowerMode(hDevice, pPowerConfig->powerMode);
+    if (eRet != ADI_SENSE_SUCCESS)
+    {
+        ADI_SENSE_LOG_ERROR("Failed to set power mode");
+        return eRet;
+    }
+
+    eRet = adi_sense_SetVddVoltage(hDevice, pPowerConfig->supplyVoltage);
+    if (eRet != ADI_SENSE_SUCCESS)
+    {
+        ADI_SENSE_LOG_ERROR("Failed to set AVdd voltage");
+        return eRet;
+    }
+
+    return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetMode(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_OPERATING_MODE eOperatingMode,
+    ADI_SENSE_1000_DATAREADY_MODE eDataReadyMode)
+{
+    ADI_ADISENSE_CORE_Mode_t modeReg;
+
+    modeReg.VALUE8 = REG_RESET_VAL(CORE_MODE);
+
+    if (eOperatingMode == ADI_SENSE_1000_OPERATING_MODE_SINGLECYCLE)
+    {
+        modeReg.Conversion_Mode = ADISENSE_CORE_MODE_SINGLECYCLE;
+    }
+    else if (eOperatingMode == ADI_SENSE_1000_OPERATING_MODE_CONTINUOUS)
+    {
+        modeReg.Conversion_Mode = ADISENSE_CORE_MODE_CONTINUOUS;
+    }
+    else if (eOperatingMode == ADI_SENSE_1000_OPERATING_MODE_MULTICYCLE)
+    {
+        modeReg.Conversion_Mode = ADISENSE_CORE_MODE_MULTICYCLE;
+    }
+    else
+    {
+        ADI_SENSE_LOG_ERROR("Invalid operating mode %d specified",
+                            eOperatingMode);
+        return ADI_SENSE_INVALID_PARAM;
+    }
+
+    if (eDataReadyMode == ADI_SENSE_1000_DATAREADY_PER_CONVERSION)
+    {
+        modeReg.Drdy_Mode = ADISENSE_CORE_MODE_DRDY_PER_CONVERSION;
+    }
+    else if (eDataReadyMode == ADI_SENSE_1000_DATAREADY_PER_CYCLE)
+    {
+        modeReg.Drdy_Mode = ADISENSE_CORE_MODE_DRDY_PER_CYCLE;
+    }
+    else if (eDataReadyMode == ADI_SENSE_1000_DATAREADY_PER_MULTICYCLE_BURST)
+    {
+        if (eOperatingMode != ADI_SENSE_1000_OPERATING_MODE_MULTICYCLE)
+        {
+            ADI_SENSE_LOG_ERROR(
+                "Data-ready mode %d cannot be used with operating mode %d",
+                eDataReadyMode, eOperatingMode);
+            return ADI_SENSE_INVALID_PARAM;
+        }
+        else
+        {
+            modeReg.Drdy_Mode = ADISENSE_CORE_MODE_DRDY_PER_FIFO_FILL;
+        }
+    }
+    else
+    {
+        ADI_SENSE_LOG_ERROR("Invalid data-ready mode %d specified", eDataReadyMode);
+        return ADI_SENSE_INVALID_PARAM;
+    }
+
+    WRITE_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_SetCycleInterval(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    uint32_t nCycleInterval)
+{
+    ADI_ADISENSE_CORE_Cycle_Control_t cycleControlReg;
+
+    cycleControlReg.VALUE16 = REG_RESET_VAL(CORE_CYCLE_CONTROL);
+
+    if (nCycleInterval < (1 << 12))
+    {
+        cycleControlReg.Cycle_Time_Units = ADISENSE_CORE_CYCLE_CONTROL_MICROSECONDS;
+    }
+    else if (nCycleInterval < (1000 * (1 << 12)))
+    {
+        cycleControlReg.Cycle_Time_Units = ADISENSE_CORE_CYCLE_CONTROL_MILLISECONDS;
+        nCycleInterval /= 1000;
+    }
+    else
+    {
+        cycleControlReg.Cycle_Time_Units = ADISENSE_CORE_CYCLE_CONTROL_SECONDS;
+        nCycleInterval /= 1000000;
+    }
+
+    CHECK_REG_FIELD_VAL(CORE_CYCLE_CONTROL_CYCLE_TIME, nCycleInterval);
+    cycleControlReg.Cycle_Time = nCycleInterval;
+
+    WRITE_REG_U16(hDevice, cycleControlReg.VALUE16, CORE_CYCLE_CONTROL);
+
+    return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetMultiCycleConfig(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_MULTICYCLE_CONFIG *pMultiCycleConfig)
+{
+    CHECK_REG_FIELD_VAL(CORE_FIFO_NUM_CYCLES_FIFO_NUM_CYCLES,
+                        pMultiCycleConfig->cyclesPerBurst);
+
+    WRITE_REG_U8(hDevice, pMultiCycleConfig->cyclesPerBurst,
+                 CORE_FIFO_NUM_CYCLES);
+
+    WRITE_REG_U32(hDevice, pMultiCycleConfig->burstInterval,
+                  CORE_MULTI_CYCLE_REPEAT_INTERVAL);
+
+    return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetExternalReferenceValues(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    float32_t externalRef1Value,
+    float32_t externalRef2Value)
+{
+    WRITE_REG_FLOAT(hDevice, externalRef1Value, CORE_EXTERNAL_REFERENCE1);
+    WRITE_REG_FLOAT(hDevice, externalRef2Value, CORE_EXTERNAL_REFERENCE2);
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_SetMeasurementConfig(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_MEASUREMENT_CONFIG *pMeasConfig)
+{
+    ADI_SENSE_RESULT eRet;
+
+    eRet = adi_sense_SetMode(hDevice,
+                            pMeasConfig->operatingMode,
+                            pMeasConfig->dataReadyMode);
+    if (eRet != ADI_SENSE_SUCCESS)
+    {
+        ADI_SENSE_LOG_ERROR("Failed to set operating mode");
+        return eRet;
+    }
+
+    if (pMeasConfig->operatingMode != ADI_SENSE_1000_OPERATING_MODE_SINGLECYCLE)
+    {
+        eRet = adi_sense_SetCycleInterval(hDevice, pMeasConfig->cycleInterval);
+        if (eRet != ADI_SENSE_SUCCESS)
+        {
+            ADI_SENSE_LOG_ERROR("Failed to set cycle interval");
+            return eRet;
+        }
+    }
+
+    if (pMeasConfig->operatingMode == ADI_SENSE_1000_OPERATING_MODE_MULTICYCLE)
+    {
+        eRet = adi_sense_SetMultiCycleConfig(hDevice,
+                                            &pMeasConfig->multiCycleConfig);
+        if (eRet != ADI_SENSE_SUCCESS)
+        {
+            ADI_SENSE_LOG_ERROR("Failed to set multi-cycle configuration");
+            return eRet;
+        }
+    }
+
+    eRet = adi_sense_SetExternalReferenceValues(hDevice,
+                                                pMeasConfig->externalRef1Value,
+                                                pMeasConfig->externalRef2Value);
+    if (eRet != ADI_SENSE_SUCCESS)
+    {
+        ADI_SENSE_LOG_ERROR("Failed to set external reference values");
+        return eRet;
+    }
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_SetDiagnosticsConfig(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_DIAGNOSTICS_CONFIG *pDiagnosticsConfig)
+{
+    ADI_ADISENSE_CORE_Diagnostics_Control_t diagnosticsControlReg;
+
+    diagnosticsControlReg.VALUE16 = REG_RESET_VAL(CORE_DIAGNOSTICS_CONTROL);
+
+    if (pDiagnosticsConfig->disableGlobalDiag)
+        diagnosticsControlReg.Diag_Global_En = 0;
+    else
+        diagnosticsControlReg.Diag_Global_En = 1;
+
+    if (pDiagnosticsConfig->disableMeasurementDiag)
+        diagnosticsControlReg.Diag_Meas_En = 0;
+    else
+        diagnosticsControlReg.Diag_Meas_En = 1;
+
+    switch (pDiagnosticsConfig->osdFrequency)
+    {
+    case ADI_SENSE_1000_OPEN_SENSOR_DIAGNOSTICS_DISABLED:
+        diagnosticsControlReg.Diag_OSD_Freq = ADISENSE_CORE_DIAGNOSTICS_CONTROL_OCD_OFF;
+        break;
+    case ADI_SENSE_1000_OPEN_SENSOR_DIAGNOSTICS_PER_CYCLE:
+        diagnosticsControlReg.Diag_OSD_Freq = ADISENSE_CORE_DIAGNOSTICS_CONTROL_OCD_PER_1_CYCLE;
+        break;
+    case ADI_SENSE_1000_OPEN_SENSOR_DIAGNOSTICS_PER_100_CYCLES:
+        diagnosticsControlReg.Diag_OSD_Freq = ADISENSE_CORE_DIAGNOSTICS_CONTROL_OCD_PER_100_CYCLES;
+        break;
+    case ADI_SENSE_1000_OPEN_SENSOR_DIAGNOSTICS_PER_1000_CYCLES:
+        diagnosticsControlReg.Diag_OSD_Freq = ADISENSE_CORE_DIAGNOSTICS_CONTROL_OCD_PER_1000_CYCLES;
+        break;
+    default:
+        ADI_SENSE_LOG_ERROR("Invalid open-sensor diagnostic frequency %d specified",
+                            pDiagnosticsConfig->osdFrequency);
+        return ADI_SENSE_INVALID_PARAM;
+    }
+
+    WRITE_REG_U16(hDevice, diagnosticsControlReg.VALUE16, CORE_DIAGNOSTICS_CONTROL);
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_SetChannelCount(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_CHANNEL_ID eChannelId,
+    uint32_t nMeasurementsPerCycle)
+{
+    ADI_ADISENSE_CORE_Channel_Count_t channelCountReg;
+
+    channelCountReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_COUNTn);
+
+    if (nMeasurementsPerCycle > 0)
+    {
+        nMeasurementsPerCycle -= 1;
+
+        CHECK_REG_FIELD_VAL(CORE_CHANNEL_COUNT_CHANNEL_COUNT,
+                            nMeasurementsPerCycle);
+
+        channelCountReg.Channel_Enable = 1;
+        channelCountReg.Channel_Count = nMeasurementsPerCycle;
+    }
+    else
+    {
+        channelCountReg.Channel_Enable = 0;
+    }
+
+    WRITE_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(eChannelId));
+
+    return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelAdcSensorType(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_CHANNEL_ID eChannelId,
+    ADI_SENSE_1000_ADC_SENSOR_TYPE sensorType)
+{
+    ADI_ADISENSE_CORE_Sensor_Type_t sensorTypeReg;
+
+    sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
+
+    /* Ensure that the sensor type is valid for this channel */
+    switch(sensorType)
+    {
+    case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_J_DEF_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_K_DEF_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_T_DEF_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_1_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_2_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_3_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_4_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_J_ADV_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_K_ADV_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_T_ADV_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_1_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_2_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_3_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMOCOUPLE_4_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_PT100_DEF_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_PT1000_DEF_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_1_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_2_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_3_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_4_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_PT100_ADV_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_PT1000_ADV_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_1_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_2_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_3_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_3WIRE_4_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_PT100_DEF_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_PT1000_DEF_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_1_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_2_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_3_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_4_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_PT100_ADV_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_PT1000_ADV_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_1_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_2_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_3_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_4WIRE_4_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_1_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_2_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_3_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_4_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_1_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_2_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_3_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_4WIRE_4_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_1_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_2_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_3_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_4_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_1_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_2_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_3_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_BRIDGE_6WIRE_4_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_A_10K_DEF_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_B_10K_DEF_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_1_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_2_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_3_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_4_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_A_10K_ADV_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_B_10K_ADV_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_1_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_2_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_3_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_THERMISTOR_4_ADV_L2:
+        if (! ADI_SENSE_1000_CHANNEL_IS_ADC_SENSOR(eChannelId))
+        {
+            ADI_SENSE_LOG_ERROR(
+                "Invalid ADC sensor type %d specified for channel %d",
+                sensorType, eChannelId);
+            return ADI_SENSE_INVALID_PARAM;
+        }
+        break;
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_PT100_DEF_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_PT1000_DEF_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_1_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_2_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_3_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_4_DEF_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_PT100_ADV_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_PT1000_ADV_L1:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_1_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_2_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_3_ADV_L2:
+    case ADI_SENSE_1000_ADC_SENSOR_RTD_2WIRE_4_ADV_L2:
+        if (! (ADI_SENSE_1000_CHANNEL_IS_ADC_SENSOR(eChannelId) ||
+               ADI_SENSE_1000_CHANNEL_IS_ADC_CJC(eChannelId)))
+        {
+            ADI_SENSE_LOG_ERROR(
+                "Invalid ADC sensor type %d specified for channel %d",
+                sensorType, eChannelId);
+            return ADI_SENSE_INVALID_PARAM;
+        }
+        break;
+    case ADI_SENSE_1000_ADC_SENSOR_VOLTAGE:
+    case ADI_SENSE_1000_ADC_SENSOR_VOLTAGE_PRESSURE_HONEYWELL_TRUSTABILITY:
+    case ADI_SENSE_1000_ADC_SENSOR_VOLTAGE_PRESSURE_AMPHENOL_NPA300X:
+    case ADI_SENSE_1000_ADC_SENSOR_VOLTAGE_PRESSURE_3_DEF:
+        if (! ADI_SENSE_1000_CHANNEL_IS_ADC_VOLTAGE(eChannelId))
+        {
+            ADI_SENSE_LOG_ERROR(
+                "Invalid ADC sensor type %d specified for channel %d",
+                sensorType, eChannelId);
+            return ADI_SENSE_INVALID_PARAM;
+        }
+        break;
+    case ADI_SENSE_1000_ADC_SENSOR_CURRENT:
+    case ADI_SENSE_1000_ADC_SENSOR_CURRENT_PRESSURE_HONEYWELL_PX2:
+    case ADI_SENSE_1000_ADC_SENSOR_CURRENT_PRESSURE_2_DEF:
+        if (! ADI_SENSE_1000_CHANNEL_IS_ADC_CURRENT(eChannelId))
+        {
+            ADI_SENSE_LOG_ERROR(
+                "Invalid ADC sensor type %d specified for channel %d",
+                sensorType, eChannelId);
+            return ADI_SENSE_INVALID_PARAM;
+        }
+        break;
+    default:
+        ADI_SENSE_LOG_ERROR("Invalid/unsupported ADC sensor type %d specified",
+                            sensorType);
+        return ADI_SENSE_INVALID_PARAM;
+    }
+
+    sensorTypeReg.Sensor_Type = sensorType;
+
+    WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
+
+    return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelAdcSensorDetails(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_CHANNEL_ID eChannelId,
+    ADI_SENSE_1000_CHANNEL_CONFIG *pChannelConfig)
+/*
+ * TODO - it would be nice if the general- vs. ADC-specific sensor details could be split into separate registers
+ * General details:
+ * - Measurement_Units
+ * - Compensation_Channel
+ * - CJC_Publish (if "CJC" was removed from the name)
+ * ADC-specific details:
+ * - PGA_Gain
+ * - Reference_Select
+ * - Reference_Buffer_Disable
+ * - Vbias
+ */
+{
+    ADI_SENSE_1000_ADC_CHANNEL_CONFIG *pAdcChannelConfig = &pChannelConfig->adcChannelConfig;
+    ADI_SENSE_1000_ADC_REFERENCE_CONFIG *pRefConfig = &pAdcChannelConfig->reference;
+    ADI_ADISENSE_CORE_Sensor_Details_t sensorDetailsReg;
+
+    sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn);
+
+    switch(pChannelConfig->measurementUnit)
+    {
+    case ADI_SENSE_1000_MEASUREMENT_UNIT_FAHRENHEIT:
+        sensorDetailsReg.Measurement_Units = ADISENSE_CORE_SENSOR_DETAILS_UNITS_DEGF;
+        break;
+    case ADI_SENSE_1000_MEASUREMENT_UNIT_CELSIUS:
+    case ADI_SENSE_1000_MEASUREMENT_UNIT_DEFAULT:
+        sensorDetailsReg.Measurement_Units = ADISENSE_CORE_SENSOR_DETAILS_UNITS_DEGC;
+        break;
+    default:
+        ADI_SENSE_LOG_ERROR("Invalid measurement unit %d specified",
+                            pChannelConfig->measurementUnit);
+        return ADI_SENSE_INVALID_PARAM;
+    }
+
+    sensorDetailsReg.Compensation_Channel = pChannelConfig->compensationChannel;
+
+    switch(pRefConfig->type)
+    {
+    case ADI_SENSE_1000_ADC_REFERENCE_RESISTOR_INTERNAL_1:
+        sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_RINT1;
+        break;
+    case ADI_SENSE_1000_ADC_REFERENCE_RESISTOR_INTERNAL_2:
+        sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_RINT2;
+        break;
+    case ADI_SENSE_1000_ADC_REFERENCE_VOLTAGE_INTERNAL:
+        sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_INT;
+        break;
+    case ADI_SENSE_1000_ADC_REFERENCE_VOLTAGE_AVDD:
+        sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_AVDD;
+        break;
+    case ADI_SENSE_1000_ADC_REFERENCE_RESISTOR_EXTERNAL_1:
+        sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_REXT1;
+        break;
+    case ADI_SENSE_1000_ADC_REFERENCE_RESISTOR_EXTERNAL_2:
+        sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_REXT2;
+        break;
+    case ADI_SENSE_1000_ADC_REFERENCE_VOLTAGE_EXTERNAL_1:
+        sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_VEXT1;
+        break;
+    case ADI_SENSE_1000_ADC_REFERENCE_VOLTAGE_EXTERNAL_2:
+        sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_VEXT2;
+        break;
+    case ADI_SENSE_1000_ADC_REFERENCE_BRIDGE_EXCITATION:
+        sensorDetailsReg.Reference_Select = ADISENSE_CORE_SENSOR_DETAILS_REF_EXC;
+        break;
+    default:
+        ADI_SENSE_LOG_ERROR("Invalid ADC reference type %d specified",
+                            pRefConfig->type);
+        return ADI_SENSE_INVALID_PARAM;
+    }
+
+    switch(pAdcChannelConfig->gain)
+    {
+    case ADI_SENSE_1000_ADC_GAIN_1X:
+        sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_1;
+        break;
+    case ADI_SENSE_1000_ADC_GAIN_2X:
+        sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_2;
+        break;
+    case ADI_SENSE_1000_ADC_GAIN_4X:
+        sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_4;
+        break;
+    case ADI_SENSE_1000_ADC_GAIN_8X:
+        sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_8;
+        break;
+    case ADI_SENSE_1000_ADC_GAIN_16X:
+        sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_16;
+        break;
+    case ADI_SENSE_1000_ADC_GAIN_32X:
+        sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_32;
+        break;
+    case ADI_SENSE_1000_ADC_GAIN_64X:
+        sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_64;
+        break;
+    case ADI_SENSE_1000_ADC_GAIN_128X:
+        sensorDetailsReg.PGA_Gain = ADISENSE_CORE_SENSOR_DETAILS_PGA_GAIN_128;
+        break;
+    default:
+        ADI_SENSE_LOG_ERROR("Invalid ADC gain %d specified",
+                            pAdcChannelConfig->gain);
+        return ADI_SENSE_INVALID_PARAM;
+    }
+
+    if (pAdcChannelConfig->enableVbias)
+        sensorDetailsReg.Vbias = 1;
+    else
+        sensorDetailsReg.Vbias = 0;
+
+    if (pAdcChannelConfig->reference.disableBuffer)
+        sensorDetailsReg.Reference_Buffer_Disable = 1;
+    else
+        sensorDetailsReg.Reference_Buffer_Disable = 0;
+
+    if (pChannelConfig->disablePublishing)
+        sensorDetailsReg.Do_Not_Publish = 1;
+    else
+        sensorDetailsReg.Do_Not_Publish = 0;
+
+    WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId));
+
+    return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelAdcFilter(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_CHANNEL_ID eChannelId,
+    ADI_SENSE_1000_ADC_FILTER_CONFIG *pFilterConfig)
+{
+    ADI_ADISENSE_CORE_Filter_Select_t filterSelectReg;
+
+    filterSelectReg.VALUE32 = REG_RESET_VAL(CORE_FILTER_SELECTn);
+
+    if (pFilterConfig->type == ADI_SENSE_1000_ADC_FILTER_SINC4)
+    {
+        filterSelectReg.ADC_Filter_Type = ADISENSE_CORE_FILTER_SELECT_FILTER_SINC4;
+        filterSelectReg.ADC_FS = pFilterConfig->fs;
+    }
+    else if (pFilterConfig->type == ADI_SENSE_1000_ADC_FILTER_FIR_20SPS)
+    {
+        filterSelectReg.ADC_Filter_Type = ADISENSE_CORE_FILTER_SELECT_FILTER_FIR_20SPS;
+    }
+    else if (pFilterConfig->type == ADI_SENSE_1000_ADC_FILTER_FIR_25SPS)
+    {
+        filterSelectReg.ADC_Filter_Type = ADISENSE_CORE_FILTER_SELECT_FILTER_FIR_25SPS;
+    }
+    else
+    {
+        ADI_SENSE_LOG_ERROR("Invalid ADC filter type %d specified",
+                            pFilterConfig->type);
+        return ADI_SENSE_INVALID_PARAM;
+    }
+
+    WRITE_REG_U32(hDevice, filterSelectReg.VALUE32, CORE_FILTER_SELECTn(eChannelId));
+
+    return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelAdcCurrentConfig(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_CHANNEL_ID eChannelId,
+    ADI_SENSE_1000_ADC_EXC_CURRENT_CONFIG *pCurrentConfig)
+{
+    ADI_ADISENSE_CORE_Channel_Excitation_t channelExcitationReg;
+
+    channelExcitationReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_EXCITATIONn);
+
+    if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_NONE)
+    {
+        channelExcitationReg.IOUT0_Disable = 1;
+        channelExcitationReg.IOUT1_Disable = 1;
+
+        channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_OFF;
+    }
+    else
+    {
+        channelExcitationReg.IOUT0_Disable = 0;
+        channelExcitationReg.IOUT1_Disable = 0;
+
+        if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_50uA)
+            channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_50UA;
+        else if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_100uA)
+            channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_100UA;
+        else if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_250uA)
+            channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_250UA;
+        else if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_500uA)
+            channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_500UA;
+        else if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_750uA)
+            channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_750UA;
+        else if (pCurrentConfig->outputLevel == ADI_SENSE_1000_ADC_EXC_CURRENT_1000uA)
+            channelExcitationReg.IOUT_Excitation_Current = ADISENSE_CORE_CHANNEL_EXCITATION_IEXC_1000UA;
+        else
+        {
+            ADI_SENSE_LOG_ERROR("Invalid ADC excitation current %d specified",
+                                pCurrentConfig->outputLevel);
+            return ADI_SENSE_INVALID_PARAM;
+        }
+
+        if (pCurrentConfig->swapOption == ADI_SENSE_1000_ADC_EXC_CURRENT_SWAP_DYNAMIC)
+        {
+            channelExcitationReg.IOUT_Dont_Swap_3Wire = 0;
+            channelExcitationReg.IOUT_Static_Swap_3Wire = 0;
+        }
+        else if (pCurrentConfig->swapOption == ADI_SENSE_1000_ADC_EXC_CURRENT_SWAP_STATIC)
+        {
+            channelExcitationReg.IOUT_Dont_Swap_3Wire = 1;
+            channelExcitationReg.IOUT_Static_Swap_3Wire = 1;
+        }
+        else if (pCurrentConfig->swapOption == ADI_SENSE_1000_ADC_EXC_CURRENT_SWAP_NONE)
+        {
+            channelExcitationReg.IOUT_Dont_Swap_3Wire = 1;
+            channelExcitationReg.IOUT_Static_Swap_3Wire = 0;
+        }
+        else
+        {
+            ADI_SENSE_LOG_ERROR(
+                "Invalid ADC excitation current swap option %d specified",
+                pCurrentConfig->swapOption);
+            return ADI_SENSE_INVALID_PARAM;
+        }
+    }
+
+    WRITE_REG_U8(hDevice, channelExcitationReg.VALUE8, CORE_CHANNEL_EXCITATIONn(eChannelId));
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_SetAdcChannelConfig(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_CHANNEL_ID eChannelId,
+    ADI_SENSE_1000_CHANNEL_CONFIG *pChannelConfig)
+{
+    ADI_SENSE_RESULT eRet;
+    ADI_SENSE_1000_ADC_CHANNEL_CONFIG *pAdcChannelConfig =
+        &pChannelConfig->adcChannelConfig;
+
+    eRet = adi_sense_SetChannelAdcSensorType(hDevice, eChannelId,
+                                             pAdcChannelConfig->sensor);
+    if (eRet != ADI_SENSE_SUCCESS)
+    {
+        ADI_SENSE_LOG_ERROR("Failed to set ADC sensor type for channel %d",
+                            eChannelId);
+        return eRet;
+    }
+
+    eRet = adi_sense_SetChannelAdcSensorDetails(hDevice, eChannelId,
+                                                pChannelConfig);
+    if (eRet != ADI_SENSE_SUCCESS)
+    {
+        ADI_SENSE_LOG_ERROR("Failed to set ADC sensor details for channel %d",
+                            eChannelId);
+        return eRet;
+    }
+
+    eRet = adi_sense_SetChannelAdcFilter(hDevice, eChannelId,
+                                         &pAdcChannelConfig->filter);
+    if (eRet != ADI_SENSE_SUCCESS)
+    {
+        ADI_SENSE_LOG_ERROR("Failed to set ADC filter for channel %d",
+                            eChannelId);
+        return eRet;
+    }
+
+    eRet = adi_sense_SetChannelAdcCurrentConfig(hDevice, eChannelId,
+                                                &pAdcChannelConfig->current);
+    if (eRet != ADI_SENSE_SUCCESS)
+    {
+        ADI_SENSE_LOG_ERROR("Failed to set ADC current for channel %d",
+                            eChannelId);
+        return eRet;
+    }
+
+    return ADI_SENSE_SUCCESS;
+}
+
+
+static ADI_SENSE_RESULT adi_sense_SetDigitalSensorCommands(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_CHANNEL_ID eChannelId,
+    ADI_SENSE_1000_DIGITAL_SENSOR_COMMAND *pConfigCommand,
+    ADI_SENSE_1000_DIGITAL_SENSOR_COMMAND *pDataRequestCommand)
+{
+    ADI_ADISENSE_CORE_Digital_Sensor_Num_Cmds_t numCmdsReg;
+
+    numCmdsReg.VALUE8 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_NUM_CMDSn);
+
+    CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_NUM_CMDS_DIGITAL_SENSOR_NUM_CFG_CMDS,
+                        pConfigCommand->commandLength);
+    CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_NUM_CMDS_DIGITAL_SENSOR_NUM_READ_CMDS,
+                        pDataRequestCommand->commandLength);
+
+    numCmdsReg.Digital_Sensor_Num_Cfg_Cmds = pConfigCommand->commandLength;
+    numCmdsReg.Digital_Sensor_Num_Read_Cmds = pDataRequestCommand->commandLength;
+
+    WRITE_REG_U8(hDevice, numCmdsReg.VALUE8,
+                 CORE_DIGITAL_SENSOR_NUM_CMDSn(eChannelId));
+
+    switch (pConfigCommand->commandLength)
+    {
+        /* NOTE - intentional fall-through cases below */
+    case 7:
+        WRITE_REG_U8(hDevice, pConfigCommand->command[6],
+                     CORE_DIGITAL_SENSOR_COMMAND7n(eChannelId));
+    case 6:
+        WRITE_REG_U8(hDevice, pConfigCommand->command[5],
+                     CORE_DIGITAL_SENSOR_COMMAND6n(eChannelId));
+    case 5:
+        WRITE_REG_U8(hDevice, pConfigCommand->command[4],
+                     CORE_DIGITAL_SENSOR_COMMAND5n(eChannelId));
+    case 4:
+        WRITE_REG_U8(hDevice, pConfigCommand->command[3],
+                     CORE_DIGITAL_SENSOR_COMMAND4n(eChannelId));
+    case 3:
+        WRITE_REG_U8(hDevice, pConfigCommand->command[2],
+                     CORE_DIGITAL_SENSOR_COMMAND3n(eChannelId));
+    case 2:
+        WRITE_REG_U8(hDevice, pConfigCommand->command[1],
+                     CORE_DIGITAL_SENSOR_COMMAND2n(eChannelId));
+    case 1:
+        WRITE_REG_U8(hDevice, pConfigCommand->command[0],
+                     CORE_DIGITAL_SENSOR_COMMAND1n(eChannelId));
+    case 0:
+    default:
+        break;
+    };
+
+    switch (pDataRequestCommand->commandLength)
+    {
+        /* NOTE - intentional fall-through cases below */
+    case 7:
+        WRITE_REG_U8(hDevice, pDataRequestCommand->command[6],
+                     CORE_DIGITAL_SENSOR_READ_CMD7n(eChannelId));
+    case 6:
+        WRITE_REG_U8(hDevice, pDataRequestCommand->command[5],
+                     CORE_DIGITAL_SENSOR_READ_CMD6n(eChannelId));
+    case 5:
+        WRITE_REG_U8(hDevice, pDataRequestCommand->command[4],
+                     CORE_DIGITAL_SENSOR_READ_CMD5n(eChannelId));
+    case 4:
+        WRITE_REG_U8(hDevice, pDataRequestCommand->command[3],
+                     CORE_DIGITAL_SENSOR_READ_CMD4n(eChannelId));
+    case 3:
+        WRITE_REG_U8(hDevice, pDataRequestCommand->command[2],
+                     CORE_DIGITAL_SENSOR_READ_CMD3n(eChannelId));
+    case 2:
+        WRITE_REG_U8(hDevice, pDataRequestCommand->command[1],
+                     CORE_DIGITAL_SENSOR_READ_CMD2n(eChannelId));
+    case 1:
+        WRITE_REG_U8(hDevice, pDataRequestCommand->command[0],
+                     CORE_DIGITAL_SENSOR_READ_CMD1n(eChannelId));
+    case 0:
+    default:
+        break;
+    };
+
+    return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelI2cSensorType(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_CHANNEL_ID eChannelId,
+    ADI_SENSE_1000_I2C_SENSOR_TYPE sensorType)
+{
+    ADI_ADISENSE_CORE_Sensor_Type_t sensorTypeReg;
+
+    sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
+
+    /* Ensure that the sensor type is valid for this channel */
+    switch(sensorType)
+    {
+    case ADI_SENSE_1000_I2C_SENSOR_HUMIDITY_HONEYWELL_HUMIDICON:
+        sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_I2C_HUMIDITY_HONEYWELL_HUMIDICON;
+        break;
+    case ADI_SENSE_1000_I2C_SENSOR_HUMIDITY_SENSIRION_SHT3X:
+        sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_I2C_HUMIDITY_SENSIRION_SHT3X;
+        break;
+    default:
+        /* TODO - add support for custom I2C sensors */
+        ADI_SENSE_LOG_ERROR("Unsupported I2C sensor type %d specified", sensorType);
+        return ADI_SENSE_INVALID_PARAM;
+    }
+
+    WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
+
+    return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelI2cSensorAddress(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_CHANNEL_ID eChannelId,
+    uint32_t deviceAddress)
+{
+    CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_ADDRESS_DIGITAL_SENSOR_ADDRESS, deviceAddress);
+    WRITE_REG_U8(hDevice, deviceAddress, CORE_DIGITAL_SENSOR_ADDRESSn(eChannelId));
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_SetI2cChannelConfig(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_CHANNEL_ID eChannelId,
+    ADI_SENSE_1000_I2C_CHANNEL_CONFIG *pI2cChannelConfig)
+{
+    ADI_SENSE_RESULT eRet;
+
+    eRet = adi_sense_SetChannelI2cSensorType(hDevice, eChannelId,
+                                            pI2cChannelConfig->sensor);
+    if (eRet != ADI_SENSE_SUCCESS)
+    {
+        ADI_SENSE_LOG_ERROR("Failed to set I2C sensor type for channel %d",
+                            eChannelId);
+        return eRet;
+    }
+
+    eRet = adi_sense_SetChannelI2cSensorAddress(hDevice, eChannelId,
+                                               pI2cChannelConfig->deviceAddress);
+    if (eRet != ADI_SENSE_SUCCESS)
+    {
+        ADI_SENSE_LOG_ERROR("Failed to set I2C sensor address for channel %d",
+                            eChannelId);
+        return eRet;
+    }
+
+    eRet = adi_sense_SetDigitalSensorCommands(hDevice, eChannelId,
+                                              &pI2cChannelConfig->configurationCommand,
+                                              &pI2cChannelConfig->dataRequestCommand);
+    if (eRet != ADI_SENSE_SUCCESS)
+    {
+        ADI_SENSE_LOG_ERROR("Failed to set I2C sensor commands for channel %d",
+                            eChannelId);
+        return eRet;
+    }
+
+    return ADI_SENSE_SUCCESS;
+}
+
+static ADI_SENSE_RESULT adi_sense_SetChannelSpiSensorType(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_CHANNEL_ID eChannelId,
+    ADI_SENSE_1000_SPI_SENSOR_TYPE sensorType)
+{
+    ADI_ADISENSE_CORE_Sensor_Type_t sensorTypeReg;
+
+    sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
+
+    /* Ensure that the sensor type is valid for this channel */
+    switch(sensorType)
+    {
+    case ADI_SENSE_1000_SPI_SENSOR_PRESSURE_HONEYWELL_TRUSTABILITY:
+        sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_SPI_PRESSURE_HONEYWELL_TRUSTABILITY;
+        break;
+    case ADI_SENSE_1000_SPI_SENSOR_ACCELEROMETER_ADI_ADXL362:
+        sensorTypeReg.Sensor_Type = ADISENSE_CORE_SENSOR_TYPE_SENSOR_SPI_ACCELEROMETER_1;
+        break;
+    default:
+        /* TODO - add support for custom SPI sensors */
+        ADI_SENSE_LOG_ERROR("Unsupported SPI sensor type %d specified", sensorType);
+        return ADI_SENSE_INVALID_PARAM;
+    }
+
+    WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_SetSpiChannelConfig(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_CHANNEL_ID eChannelId,
+    ADI_SENSE_1000_SPI_CHANNEL_CONFIG *pSpiChannelConfig)
+{
+    ADI_SENSE_RESULT eRet;
+
+    eRet = adi_sense_SetChannelSpiSensorType(hDevice, eChannelId,
+                                             pSpiChannelConfig->sensor);
+    if (eRet != ADI_SENSE_SUCCESS)
+    {
+        ADI_SENSE_LOG_ERROR("Failed to set SPI sensor type for channel %d",
+                            eChannelId);
+        return eRet;
+    }
+
+    eRet = adi_sense_SetDigitalSensorCommands(hDevice, eChannelId,
+                                              &pSpiChannelConfig->configurationCommand,
+                                              &pSpiChannelConfig->dataRequestCommand);
+    if (eRet != ADI_SENSE_SUCCESS)
+    {
+        ADI_SENSE_LOG_ERROR("Failed to set SPI sensor commands for channel %d",
+                            eChannelId);
+        return eRet;
+    }
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_SetChannelThresholdLimits(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_CHANNEL_ID eChannelId,
+    float32_t fHighThresholdLimit,
+    float32_t fLowThresholdLimit)
+{
+    /*
+     * If the low/high limits are *both* set to 0 in memory, or NaNs, assume
+     * that they are unset, or not required, and use infinity defaults instead
+     */
+    if (fHighThresholdLimit == 0.0 && fLowThresholdLimit == 0.0)
+    {
+        fHighThresholdLimit = INFINITY;
+        fLowThresholdLimit = -INFINITY;
+    }
+    else
+    {
+        if (isnan(fHighThresholdLimit))
+            fHighThresholdLimit = INFINITY;
+        if (isnan(fLowThresholdLimit))
+            fLowThresholdLimit = -INFINITY;
+    }
+
+    WRITE_REG_FLOAT(hDevice, fHighThresholdLimit,
+                    CORE_HIGH_THRESHOLD_LIMITn(eChannelId));
+    WRITE_REG_FLOAT(hDevice, fLowThresholdLimit,
+                    CORE_LOW_THRESHOLD_LIMITn(eChannelId));
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_SetOffsetGain(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_CHANNEL_ID eChannelId,
+    float32_t fOffsetAdjustment,
+    float32_t fGainAdjustment)
+{
+    /* Replace with default values if NaNs are specified (or 0.0 for gain) */
+    if (isnan(fGainAdjustment) || (fGainAdjustment == 0.0))
+        fGainAdjustment = 1.0;
+    if (isnan(fOffsetAdjustment))
+        fOffsetAdjustment = 0.0;
+
+    WRITE_REG_FLOAT(hDevice, fGainAdjustment, CORE_SENSOR_GAINn(eChannelId));
+    WRITE_REG_FLOAT(hDevice, fOffsetAdjustment, CORE_SENSOR_OFFSETn(eChannelId));
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_SetChannelSettlingTime(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_CHANNEL_ID eChannelId,
+    uint32_t nSettlingTime)
+{
+    CHECK_REG_FIELD_VAL(CORE_SETTLING_TIME_SETTLING_TIME, nSettlingTime);
+
+    WRITE_REG_U16(hDevice, nSettlingTime, CORE_SETTLING_TIMEn(eChannelId));
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_SetChannelConfig(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    ADI_SENSE_1000_CHANNEL_ID eChannelId,
+    ADI_SENSE_1000_CHANNEL_CONFIG *pChannelConfig)
+{
+    ADI_SENSE_RESULT eRet;
+
+    if (! ADI_SENSE_1000_CHANNEL_IS_VIRTUAL(eChannelId))
+    {
+        /* If the channel is not enabled, disable it and return */
+        if (! pChannelConfig->enableChannel)
+            return adi_sense_1000_SetChannelCount(hDevice, eChannelId, 0);
+
+        eRet = adi_sense_1000_SetChannelCount(hDevice, eChannelId,
+                                              pChannelConfig->measurementsPerCycle);
+        if (eRet != ADI_SENSE_SUCCESS)
+        {
+            ADI_SENSE_LOG_ERROR("Failed to set measurement count for channel %d",
+                                eChannelId);
+            return eRet;
+        }
+
+        switch (eChannelId)
+        {
+        case ADI_SENSE_1000_CHANNEL_ID_CJC_0:
+        case ADI_SENSE_1000_CHANNEL_ID_CJC_1:
+        case ADI_SENSE_1000_CHANNEL_ID_SENSOR_0:
+        case ADI_SENSE_1000_CHANNEL_ID_SENSOR_1:
+        case ADI_SENSE_1000_CHANNEL_ID_SENSOR_2:
+        case ADI_SENSE_1000_CHANNEL_ID_SENSOR_3:
+        case ADI_SENSE_1000_CHANNEL_ID_VOLTAGE_0:
+        case ADI_SENSE_1000_CHANNEL_ID_CURRENT_0:
+            eRet = adi_sense_SetAdcChannelConfig(hDevice, eChannelId, pChannelConfig);
+            break;
+        case ADI_SENSE_1000_CHANNEL_ID_I2C_0:
+        case ADI_SENSE_1000_CHANNEL_ID_I2C_1:
+            eRet = adi_sense_SetI2cChannelConfig(hDevice, eChannelId,
+                                                 &pChannelConfig->i2cChannelConfig);
+            break;
+        case ADI_SENSE_1000_CHANNEL_ID_SPI_0:
+            eRet = adi_sense_SetSpiChannelConfig(hDevice, eChannelId,
+                                                 &pChannelConfig->spiChannelConfig);
+            break;
+        default:
+            ADI_SENSE_LOG_ERROR("Invalid channel ID %d specified", eChannelId);
+            return ADI_SENSE_INVALID_PARAM;
+        }
+
+        eRet = adi_sense_1000_SetChannelSettlingTime(hDevice, eChannelId,
+                                                     pChannelConfig->extraSettlingTime);
+        if (eRet != ADI_SENSE_SUCCESS)
+        {
+            ADI_SENSE_LOG_ERROR("Failed to set settling time for channel %d",
+                                eChannelId);
+            return eRet;
+        }
+    }
+
+    if (pChannelConfig->enableChannel)
+    {
+        /* Threshold limits can be configured individually for virtual channels */
+        eRet = adi_sense_1000_SetChannelThresholdLimits(hDevice, eChannelId,
+                                                        pChannelConfig->highThreshold,
+                                                        pChannelConfig->lowThreshold);
+        if (eRet != ADI_SENSE_SUCCESS)
+        {
+            ADI_SENSE_LOG_ERROR("Failed to set threshold limits for channel %d",
+                                eChannelId);
+            return eRet;
+        }
+
+        /* Offset and gain can be configured individually for virtual channels */
+        eRet = adi_sense_1000_SetOffsetGain(hDevice, eChannelId,
+                                            pChannelConfig->offsetAdjustment,
+                                            pChannelConfig->gainAdjustment);
+        if (eRet != ADI_SENSE_SUCCESS)
+        {
+            ADI_SENSE_LOG_ERROR("Failed to set offset/gain for channel %d",
+                                eChannelId);
+            return eRet;
+        }
+    }
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_SetConfig(
+    ADI_SENSE_DEVICE_HANDLE    const hDevice,
+    ADI_SENSE_CONFIG         * const pConfig)
+{
+    ADI_SENSE_1000_CONFIG *pDeviceConfig;
+    ADI_SENSE_PRODUCT_ID productId;
+    ADI_SENSE_RESULT eRet;
+
+    if (pConfig->productId != ADI_SENSE_PRODUCT_ID_1000)
+    {
+        ADI_SENSE_LOG_ERROR("Configuration Product ID (0x%X) is not supported (0x%0X)",
+                            pConfig->productId, ADI_SENSE_PRODUCT_ID_1000);
+        return ADI_SENSE_INVALID_PARAM;
+    }
+
+    /* Check that the actual Product ID is a match? */
+    eRet = adi_sense_GetProductID(hDevice, &productId);
+    if (eRet)
+    {
+        ADI_SENSE_LOG_ERROR("Failed to read device Product ID register");
+        return eRet;
+    }
+    if (pConfig->productId != productId)
+    {
+        ADI_SENSE_LOG_ERROR("Configuration Product ID (0x%X) does not match device (0x%0X)",
+                            pConfig->productId, productId);
+        return ADI_SENSE_INVALID_PARAM;
+    }
+
+    pDeviceConfig = &pConfig->adisense1000;
+
+    eRet = adi_sense_1000_SetPowerConfig(hDevice, &pDeviceConfig->power);
+    if (eRet)
+    {
+        ADI_SENSE_LOG_ERROR("Failed to set power configuration");
+        return eRet;
+    }
+
+    eRet = adi_sense_1000_SetMeasurementConfig(hDevice, &pDeviceConfig->measurement);
+    if (eRet)
+    {
+        ADI_SENSE_LOG_ERROR("Failed to set measurement configuration");
+        return eRet;
+    }
+
+    eRet = adi_sense_1000_SetDiagnosticsConfig(hDevice, &pDeviceConfig->diagnostics);
+    if (eRet)
+    {
+        ADI_SENSE_LOG_ERROR("Failed to set diagnostics configuration");
+        return eRet;
+    }
+
+    for (ADI_SENSE_1000_CHANNEL_ID id = 0; id < ADI_SENSE_1000_MAX_CHANNELS; id++)
+    {
+        eRet = adi_sense_1000_SetChannelConfig(hDevice, id,
+                                               &pDeviceConfig->channels[id]);
+        if (eRet)
+        {
+            ADI_SENSE_LOG_ERROR("Failed to set channel %d configuration", id);
+            return eRet;
+        }
+    }
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_SetLutData(
+    ADI_SENSE_DEVICE_HANDLE    const hDevice,
+    ADI_SENSE_1000_LUT       * const pLutData)
+{
+    ADI_SENSE_1000_LUT_HEADER *pLutHeader = &pLutData->header;
+    ADI_SENSE_1000_LUT_TABLE *pLutTable = pLutData->tables;
+    unsigned actualLength = 0;
+
+    if (pLutData->header.signature != ADI_SENSE_LUT_SIGNATURE)
+    {
+        ADI_SENSE_LOG_ERROR("LUT signature incorrect (expected 0x%X, actual 0x%X)",
+                            ADI_SENSE_LUT_SIGNATURE, pLutHeader->signature);
+        return ADI_SENSE_INVALID_SIGNATURE;
+    }
+
+    for (unsigned i = 0; i < pLutHeader->numTables; i++)
+    {
+        ADI_SENSE_1000_LUT_DESCRIPTOR *pDesc = &pLutTable->descriptor;
+        ADI_SENSE_1000_LUT_TABLE_DATA *pData = &pLutTable->data;
+        unsigned short calculatedCrc;
+
+        switch (pDesc->geometry)
+        {
+        case ADI_SENSE_1000_LUT_GEOMETRY_COEFFS:
+                switch (pDesc->equation)
+                {
+                case ADI_SENSE_1000_LUT_EQUATION_POLYN:
+                case ADI_SENSE_1000_LUT_EQUATION_POLYNEXP:
+                case ADI_SENSE_1000_LUT_EQUATION_QUADRATIC:
+                case ADI_SENSE_1000_LUT_EQUATION_STEINHART:
+                case ADI_SENSE_1000_LUT_EQUATION_LOGARITHMIC:
+                case ADI_SENSE_1000_LUT_EQUATION_EXPONENTIAL:
+                case ADI_SENSE_1000_LUT_EQUATION_BIVARIATE_POLYN:
+                break;
+                default:
+                    ADI_SENSE_LOG_ERROR("Invalid equation %u specified for LUT table %u",
+                                        pDesc->equation, i);
+                    return ADI_SENSE_INVALID_PARAM;
+                }
+            break;
+        case ADI_SENSE_1000_LUT_GEOMETRY_NES_1D:
+        case ADI_SENSE_1000_LUT_GEOMETRY_NES_2D:
+        case ADI_SENSE_1000_LUT_GEOMETRY_ES_1D:
+        case ADI_SENSE_1000_LUT_GEOMETRY_ES_2D:
+                if (pDesc->equation != ADI_SENSE_1000_LUT_EQUATION_LUT) {
+                    ADI_SENSE_LOG_ERROR("Invalid equation %u specified for LUT table %u",
+                                        pDesc->equation, i);
+                    return ADI_SENSE_INVALID_PARAM;
+                }
+            break;
+        default:
+            ADI_SENSE_LOG_ERROR("Invalid geometry %u specified for LUT table %u",
+                                pDesc->geometry, i);
+            return ADI_SENSE_INVALID_PARAM;
+        }
+
+        switch (pDesc->dataType)
+        {
+        case ADI_SENSE_1000_LUT_DATA_TYPE_FLOAT32:
+        case ADI_SENSE_1000_LUT_DATA_TYPE_FLOAT64:
+            break;
+        default:
+            ADI_SENSE_LOG_ERROR("Invalid vector format %u specified for LUT table %u",
+                                pDesc->dataType, i);
+            return ADI_SENSE_INVALID_PARAM;
+        }
+
+        calculatedCrc = crc16_ccitt(pData, pDesc->length);
+        if (calculatedCrc != pDesc->crc16)
+        {
+            ADI_SENSE_LOG_ERROR("CRC validation failed on LUT table %u (expected 0x%04X, actual 0x%04X)",
+                                i, pDesc->crc16, calculatedCrc);
+            return ADI_SENSE_CRC_ERROR;
+        }
+
+        actualLength += sizeof(*pDesc) + pDesc->length;
+
+        /* Move to the next look-up table */
+        pLutTable = (ADI_SENSE_1000_LUT_TABLE *)((uint8_t *)pLutTable + sizeof(*pDesc) + pDesc->length);
+    }
+
+    if (actualLength != pLutHeader->totalLength)
+    {
+        ADI_SENSE_LOG_ERROR("LUT table length mismatch (expected %u, actual %u)",
+                            pLutHeader->totalLength, actualLength);
+        return ADI_SENSE_WRONG_SIZE;
+    }
+
+    if (sizeof(*pLutHeader) + pLutHeader->totalLength > ADI_SENSE_LUT_MAX_SIZE)
+    {
+        ADI_SENSE_LOG_ERROR("Maximum LUT table length (%u bytes) exceeded",
+                            ADI_SENSE_LUT_MAX_SIZE);
+        return ADI_SENSE_WRONG_SIZE;
+    }
+
+    /* Write the LUT data to the device */
+    unsigned lutSize = sizeof(*pLutHeader) + pLutHeader->totalLength;
+    WRITE_REG_U16(hDevice, 0, CORE_LUT_OFFSET);
+    WRITE_REG_U8_ARRAY(hDevice, (uint8_t *)pLutData, lutSize, CORE_LUT_DATA);
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_SetLutDataRaw(
+    ADI_SENSE_DEVICE_HANDLE    const hDevice,
+    ADI_SENSE_1000_LUT_RAW   * const pLutData)
+{
+    return adi_sense_1000_SetLutData(hDevice,
+                                     (ADI_SENSE_1000_LUT * const)pLutData);
+}
+
+static ADI_SENSE_RESULT getLutTableSize(
+    ADI_SENSE_1000_LUT_DESCRIPTOR * const pDesc,
+    ADI_SENSE_1000_LUT_TABLE_DATA * const pData,
+    unsigned *pLength)
+{
+    switch (pDesc->geometry)
+    {
+    case ADI_SENSE_1000_LUT_GEOMETRY_COEFFS:
+        if (pDesc->equation == ADI_SENSE_1000_LUT_EQUATION_BIVARIATE_POLYN)
+            *pLength = ADI_SENSE_1000_LUT_2D_POLYN_COEFF_LIST_SIZE(pData->coeffList2d);
+        else
+            *pLength = ADI_SENSE_1000_LUT_COEFF_LIST_SIZE(pData->coeffList);
+        break;
+    case ADI_SENSE_1000_LUT_GEOMETRY_NES_1D:
+        *pLength = ADI_SENSE_1000_LUT_1D_NES_SIZE(pData->lut1dNes);
+        break;
+    case ADI_SENSE_1000_LUT_GEOMETRY_NES_2D:
+        *pLength = ADI_SENSE_1000_LUT_2D_NES_SIZE(pData->lut2dNes);
+        break;
+    case ADI_SENSE_1000_LUT_GEOMETRY_ES_1D:
+        *pLength = ADI_SENSE_1000_LUT_1D_ES_SIZE(pData->lut1dEs);
+        break;
+    case ADI_SENSE_1000_LUT_GEOMETRY_ES_2D:
+        *pLength = ADI_SENSE_1000_LUT_2D_ES_SIZE(pData->lut2dEs);
+        break;
+    default:
+        ADI_SENSE_LOG_ERROR("Invalid LUT table geometry %d specified\r\n",
+                            pDesc->geometry);
+        return ADI_SENSE_INVALID_PARAM;
+    }
+
+    return ADI_SENSE_SUCCESS;
+}
+
+ADI_SENSE_RESULT adi_sense_1000_AssembleLutData(
+    ADI_SENSE_1000_LUT                  * pLutBuffer,
+    unsigned                              nLutBufferSize,
+    unsigned                        const nNumTables,
+    ADI_SENSE_1000_LUT_DESCRIPTOR * const ppDesc[],
+    ADI_SENSE_1000_LUT_TABLE_DATA * const ppData[])
+{
+    ADI_SENSE_1000_LUT_HEADER *pHdr = &pLutBuffer->header;
+    uint8_t *pLutTableData = (uint8_t *)pLutBuffer + sizeof(*pHdr);
+
+    if (sizeof(*pHdr) > nLutBufferSize)
+    {
+        ADI_SENSE_LOG_ERROR("Insufficient LUT buffer size provided");
+        return ADI_SENSE_INVALID_PARAM;
+    }
+
+    /* First initialise the top-level header */
+    pHdr->signature = ADI_SENSE_LUT_SIGNATURE;
+    pHdr->version.major = 1;
+    pHdr->version.minor = 0;
+    pHdr->numTables = 0;
+    pHdr->totalLength = 0;
+
+    /*
+     * Walk through the list of table pointers provided, appending the table
+     * descriptor+data from each one to the provided LUT buffer
+     */
+    for (unsigned i = 0; i < nNumTables; i++)
+    {
+        ADI_SENSE_1000_LUT_DESCRIPTOR * const pDesc = ppDesc[i];
+        ADI_SENSE_1000_LUT_TABLE_DATA * const pData = ppData[i];
+        ADI_SENSE_RESULT res;
+        unsigned dataLength = 0;
+
+        /* Calculate the length of the table data */
+        res = getLutTableSize(pDesc, pData, &dataLength);
+        if (res != ADI_SENSE_SUCCESS)
+            return res;
+
+        /* Fill in the table descriptor length and CRC fields */
+        pDesc->length = dataLength;
+        pDesc->crc16 = crc16_ccitt(pData, dataLength);
+
+        if ((sizeof(*pHdr) + pHdr->totalLength + sizeof(*pDesc) + dataLength) > nLutBufferSize)
+        {
+            ADI_SENSE_LOG_ERROR("Insufficient LUT buffer size provided");
+            return ADI_SENSE_INVALID_PARAM;
+        }
+
+        /* Append the table to the LUT buffer (desc + data) */
+        memcpy(pLutTableData + pHdr->totalLength, pDesc, sizeof(*pDesc));
+        pHdr->totalLength += sizeof(*pDesc);
+        memcpy(pLutTableData + pHdr->totalLength, pData, dataLength);
+        pHdr->totalLength += dataLength;
+
+        pHdr->numTables++;
+    }
+
+    return ADI_SENSE_SUCCESS;
+}
+
+#define CAL_TABLE_ROWS ADI_SENSE_1000_CAL_NUM_TABLES
+#define CAL_TABLE_COLS ADI_SENSE_1000_CAL_NUM_TEMPS
+#define CAL_TABLE_SIZE (sizeof(float) * CAL_TABLE_ROWS * CAL_TABLE_COLS)
+
+ADI_SENSE_RESULT adi_sense_1000_ReadCalTable(
+    ADI_SENSE_DEVICE_HANDLE hDevice,
+    float *pfBuffer,
+    unsigned nMaxLen,
+    unsigned *pnDataLen,
+    unsigned *pnRows,
+    unsigned *pnColumns)
+{
+    *pnDataLen = sizeof(float) * CAL_TABLE_ROWS * CAL_TABLE_COLS;
+    *pnRows = CAL_TABLE_ROWS;
+    *pnColumns = CAL_TABLE_COLS;
+
+    if (nMaxLen > *pnDataLen)
+        nMaxLen = *pnDataLen;
+
+    WRITE_REG_U16(hDevice, 0, CORE_CAL_OFFSET);
+    READ_REG_U8_ARRAY(hDevice, (uint8_t *)pfBuffer, nMaxLen, CORE_CAL_DATA);
+
+    return ADI_SENSE_SUCCESS;
+}
+