bla
Dependencies: BLE_API MPU9250 SEGGER_RTT mbed nRF51822 X_NUCLEO_IDB0XA1
main.cpp@0:4dc21c013b2a, 2018-03-02 (annotated)
- Committer:
- MarijnJ
- Date:
- Fri Mar 02 10:44:47 2018 +0000
- Revision:
- 0:4dc21c013b2a
bla
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
MarijnJ | 0:4dc21c013b2a | 1 | /* |
MarijnJ | 0:4dc21c013b2a | 2 | |
MarijnJ | 0:4dc21c013b2a | 3 | MPU9250 Basic Example Code |
MarijnJ | 0:4dc21c013b2a | 4 | by: Kris Winer |
MarijnJ | 0:4dc21c013b2a | 5 | date: April 1, 2014 |
MarijnJ | 0:4dc21c013b2a | 6 | license: Beerware - Use this code however you'd like. If you |
MarijnJ | 0:4dc21c013b2a | 7 | find it useful you can buy me a beer some time. |
MarijnJ | 0:4dc21c013b2a | 8 | |
MarijnJ | 0:4dc21c013b2a | 9 | Demonstrate basic MPU-9250 functionality including parameterizing the |
MarijnJ | 0:4dc21c013b2a | 10 | register addresses, initializing the sensor, getting properly scaled |
MarijnJ | 0:4dc21c013b2a | 11 | accelerometer, gyroscope, and magnetometer data out. Added display functions |
MarijnJ | 0:4dc21c013b2a | 12 | to allow display to on breadboard monitor. Addition of 9 DoF sensor fusion |
MarijnJ | 0:4dc21c013b2a | 13 | using open source Madgwick and Mahony filter algorithms. Sketch runs on |
MarijnJ | 0:4dc21c013b2a | 14 | the 3.3 V 8 MHz Pro Mini and the Teensy 3.1. |
MarijnJ | 0:4dc21c013b2a | 15 | |
MarijnJ | 0:4dc21c013b2a | 16 | ----------------------------------------------------------------------- |
MarijnJ | 0:4dc21c013b2a | 17 | |
MarijnJ | 0:4dc21c013b2a | 18 | Adapted by Marijn Jeurissen for the anyThing Connected Sensor Sticker based on Nordic nRF51822 |
MarijnJ | 0:4dc21c013b2a | 19 | date: February 16, 2018 |
MarijnJ | 0:4dc21c013b2a | 20 | |
MarijnJ | 0:4dc21c013b2a | 21 | |
MarijnJ | 0:4dc21c013b2a | 22 | */ |
MarijnJ | 0:4dc21c013b2a | 23 | |
MarijnJ | 0:4dc21c013b2a | 24 | |
MarijnJ | 0:4dc21c013b2a | 25 | // If you define DEBUG_MODE, then RTT debug prints will be enabled |
MarijnJ | 0:4dc21c013b2a | 26 | #define DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 27 | |
MarijnJ | 0:4dc21c013b2a | 28 | |
MarijnJ | 0:4dc21c013b2a | 29 | #include "mbed.h" |
MarijnJ | 0:4dc21c013b2a | 30 | #include "ble/BLE.h" |
MarijnJ | 0:4dc21c013b2a | 31 | #include "ble/services/DeviceInformationService.h" |
MarijnJ | 0:4dc21c013b2a | 32 | #include "MPU9250.h" |
MarijnJ | 0:4dc21c013b2a | 33 | #include "softdevice_handler.h" |
MarijnJ | 0:4dc21c013b2a | 34 | |
MarijnJ | 0:4dc21c013b2a | 35 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 36 | #include "SEGGER_RTT.h" |
MarijnJ | 0:4dc21c013b2a | 37 | #include "SEGGER_RTT.c" |
MarijnJ | 0:4dc21c013b2a | 38 | #include "SEGGER_RTT_printf.c" |
MarijnJ | 0:4dc21c013b2a | 39 | #endif |
MarijnJ | 0:4dc21c013b2a | 40 | |
MarijnJ | 0:4dc21c013b2a | 41 | |
MarijnJ | 0:4dc21c013b2a | 42 | // Sensor config |
MarijnJ | 0:4dc21c013b2a | 43 | #define SENSOR_SDA P0_8 |
MarijnJ | 0:4dc21c013b2a | 44 | #define SENSOR_SCL P0_9 |
MarijnJ | 0:4dc21c013b2a | 45 | |
MarijnJ | 0:4dc21c013b2a | 46 | // Declination at Delft is 1 degrees 3 minutes on 2018-02-16 |
MarijnJ | 0:4dc21c013b2a | 47 | #define SENSOR_DECLINATION (-1.05f) |
MarijnJ | 0:4dc21c013b2a | 48 | |
MarijnJ | 0:4dc21c013b2a | 49 | |
MarijnJ | 0:4dc21c013b2a | 50 | // BLE TxPower values for advertising and connection, highest possible |
MarijnJ | 0:4dc21c013b2a | 51 | // TODO: Remove this shit as it DOESN'T FUCKING DO ANYTHING! |
MarijnJ | 0:4dc21c013b2a | 52 | static const int TX_POWER_ADVERTISING = 10; |
MarijnJ | 0:4dc21c013b2a | 53 | static const int TX_POWER_CONNECTION = 10; |
MarijnJ | 0:4dc21c013b2a | 54 | |
MarijnJ | 0:4dc21c013b2a | 55 | |
MarijnJ | 0:4dc21c013b2a | 56 | // Used for triggering a sensor polling, updating all sensor values |
MarijnJ | 0:4dc21c013b2a | 57 | // TODO: Use multiple values/bit masking to allow fine-grained control of what |
MarijnJ | 0:4dc21c013b2a | 58 | // sensor value is read/polled |
MarijnJ | 0:4dc21c013b2a | 59 | // Always read sensor value at startup |
MarijnJ | 0:4dc21c013b2a | 60 | static volatile bool triggerSensorPolling = true; |
MarijnJ | 0:4dc21c013b2a | 61 | |
MarijnJ | 0:4dc21c013b2a | 62 | // Array used to keep track of sensor data, 10 floats in the format: |
MarijnJ | 0:4dc21c013b2a | 63 | // Acceleration x, y, z, Gyrometer x, y, z, Magnetometer x, y, z, Temperature |
MarijnJ | 0:4dc21c013b2a | 64 | static const uint16_t NUM_MEASUREMENTS = 10; |
MarijnJ | 0:4dc21c013b2a | 65 | static float measurements[NUM_MEASUREMENTS] = {0.0f}; |
MarijnJ | 0:4dc21c013b2a | 66 | |
MarijnJ | 0:4dc21c013b2a | 67 | |
MarijnJ | 0:4dc21c013b2a | 68 | // Buffer for float printing |
MarijnJ | 0:4dc21c013b2a | 69 | static const uint16_t BUFFER_SIZE = 50; |
MarijnJ | 0:4dc21c013b2a | 70 | static char buffer[BUFFER_SIZE]; |
MarijnJ | 0:4dc21c013b2a | 71 | |
MarijnJ | 0:4dc21c013b2a | 72 | |
MarijnJ | 0:4dc21c013b2a | 73 | // Define UUIDs for service and characteristics |
MarijnJ | 0:4dc21c013b2a | 74 | static const uint16_t customServiceUUID = 0xFFFF; // Custom UUID, FFFF is reserved for development |
MarijnJ | 0:4dc21c013b2a | 75 | static const uint16_t readCharUUID = 0xA001; |
MarijnJ | 0:4dc21c013b2a | 76 | static const uint16_t writeCharUUID = 0xA002; |
MarijnJ | 0:4dc21c013b2a | 77 | |
MarijnJ | 0:4dc21c013b2a | 78 | // Define BLE configuration things |
MarijnJ | 0:4dc21c013b2a | 79 | static const char DEVICE_NAME[] = "AnyConSensor"; |
MarijnJ | 0:4dc21c013b2a | 80 | static const uint16_t uuid16List[] = {customServiceUUID, |
MarijnJ | 0:4dc21c013b2a | 81 | GattService::UUID_DEVICE_INFORMATION_SERVICE}; |
MarijnJ | 0:4dc21c013b2a | 82 | static const int ADVERTISING_INTERVAL = 1000; // in ms |
MarijnJ | 0:4dc21c013b2a | 83 | |
MarijnJ | 0:4dc21c013b2a | 84 | // Set Up custom Characteristics |
MarijnJ | 0:4dc21c013b2a | 85 | static const uint16_t READ_CHAR_SIZE = NUM_MEASUREMENTS * sizeof(float); |
MarijnJ | 0:4dc21c013b2a | 86 | static const uint16_t WRITE_CHAR_SIZE = NUM_MEASUREMENTS * sizeof(float); |
MarijnJ | 0:4dc21c013b2a | 87 | |
MarijnJ | 0:4dc21c013b2a | 88 | static uint8_t readValue[READ_CHAR_SIZE] = {0}; |
MarijnJ | 0:4dc21c013b2a | 89 | ReadOnlyArrayGattCharacteristic<uint8_t, READ_CHAR_SIZE> readChar(readCharUUID, readValue); |
MarijnJ | 0:4dc21c013b2a | 90 | |
MarijnJ | 0:4dc21c013b2a | 91 | static uint8_t writeValue[WRITE_CHAR_SIZE] = {0}; |
MarijnJ | 0:4dc21c013b2a | 92 | WriteOnlyArrayGattCharacteristic<uint8_t, WRITE_CHAR_SIZE> writeChar(writeCharUUID, writeValue); |
MarijnJ | 0:4dc21c013b2a | 93 | |
MarijnJ | 0:4dc21c013b2a | 94 | // Set up custom service |
MarijnJ | 0:4dc21c013b2a | 95 | GattCharacteristic *characteristics[] = {&readChar, &writeChar}; |
MarijnJ | 0:4dc21c013b2a | 96 | GattService customService(customServiceUUID, characteristics, sizeof(characteristics) / sizeof(GattCharacteristic*)); |
MarijnJ | 0:4dc21c013b2a | 97 | |
MarijnJ | 0:4dc21c013b2a | 98 | DeviceInformationService *deviceInfoService; |
MarijnJ | 0:4dc21c013b2a | 99 | |
MarijnJ | 0:4dc21c013b2a | 100 | //Initialize tap variables |
MarijnJ | 0:4dc21c013b2a | 101 | bool zTap = 0, zTapStarted = 0; |
MarijnJ | 0:4dc21c013b2a | 102 | int zDiff = 0, zTapLimit = 0, zTapDelay = 0; |
MarijnJ | 0:4dc21c013b2a | 103 | int tapDiff = 0, tapCount = 0, lastTapFrame = 0, tapCycleStart = 0 , tapCycleDuration = 0, now = 0, timerCycle = 0; |
MarijnJ | 0:4dc21c013b2a | 104 | float zMin = 0, zMax = 0, zTapStartValue = 0; |
MarijnJ | 0:4dc21c013b2a | 105 | |
MarijnJ | 0:4dc21c013b2a | 106 | // Tap Settings |
MarijnJ | 0:4dc21c013b2a | 107 | int tapZThresh = 3000 ; //x and y axis acceleration threshold to trigger tap in mg |
MarijnJ | 0:4dc21c013b2a | 108 | int tapPulseLimit = 50 ; //Not a tap if acceleration duration over this limit |
MarijnJ | 0:4dc21c013b2a | 109 | int tapDelayDuration = 500; //Minimum time between taps in ms |
MarijnJ | 0:4dc21c013b2a | 110 | int tapCycleLimit = 3000; //Maximum cycle duration to detect multitap from first tap in ms |
MarijnJ | 0:4dc21c013b2a | 111 | int tapAction = 3; //Number of taps needed to trigger multitap action |
MarijnJ | 0:4dc21c013b2a | 112 | |
MarijnJ | 0:4dc21c013b2a | 113 | int toInt(float x) { |
MarijnJ | 0:4dc21c013b2a | 114 | return (int) ((x >= 0.0f) ? x + 0.5f : x - 0.5f); |
MarijnJ | 0:4dc21c013b2a | 115 | } |
MarijnJ | 0:4dc21c013b2a | 116 | |
MarijnJ | 0:4dc21c013b2a | 117 | int getTime(int counter, int shift) { |
MarijnJ | 0:4dc21c013b2a | 118 | return (int)((counter / 60000.0f) + shift); |
MarijnJ | 0:4dc21c013b2a | 119 | } |
MarijnJ | 0:4dc21c013b2a | 120 | |
MarijnJ | 0:4dc21c013b2a | 121 | void resetTap() |
MarijnJ | 0:4dc21c013b2a | 122 | { |
MarijnJ | 0:4dc21c013b2a | 123 | zTapLimit = now + tapPulseLimit; |
MarijnJ | 0:4dc21c013b2a | 124 | zMax = measurements[2]; |
MarijnJ | 0:4dc21c013b2a | 125 | zMin = measurements[2]; |
MarijnJ | 0:4dc21c013b2a | 126 | zDiff = 0; |
MarijnJ | 0:4dc21c013b2a | 127 | zTap = 0; |
MarijnJ | 0:4dc21c013b2a | 128 | zTapStarted = 0; |
MarijnJ | 0:4dc21c013b2a | 129 | zTapStartValue = 0; |
MarijnJ | 0:4dc21c013b2a | 130 | } |
MarijnJ | 0:4dc21c013b2a | 131 | |
MarijnJ | 0:4dc21c013b2a | 132 | void detectTap() |
MarijnJ | 0:4dc21c013b2a | 133 | { |
MarijnJ | 0:4dc21c013b2a | 134 | now = t.read_ms(); |
MarijnJ | 0:4dc21c013b2a | 135 | if (now < zTapLimit) |
MarijnJ | 0:4dc21c013b2a | 136 | { |
MarijnJ | 0:4dc21c013b2a | 137 | if (measurements[2] < zMin) zMin = measurements[2]; |
MarijnJ | 0:4dc21c013b2a | 138 | if (measurements[2] > zMax) zMax = measurements[2]; |
MarijnJ | 0:4dc21c013b2a | 139 | tapDiff = toInt(1000*(zMax - zMin)); |
MarijnJ | 0:4dc21c013b2a | 140 | if (tapDiff > zDiff) zDiff = tapDiff; |
MarijnJ | 0:4dc21c013b2a | 141 | } |
MarijnJ | 0:4dc21c013b2a | 142 | else //Reset tap difference values every 50ms max tap detection duration time |
MarijnJ | 0:4dc21c013b2a | 143 | { |
MarijnJ | 0:4dc21c013b2a | 144 | resetTap(); |
MarijnJ | 0:4dc21c013b2a | 145 | } |
MarijnJ | 0:4dc21c013b2a | 146 | |
MarijnJ | 0:4dc21c013b2a | 147 | if ((zDiff > tapZThresh) //if acceleration is above threshold |
MarijnJ | 0:4dc21c013b2a | 148 | && (now > zTapDelay) //only register tap again after tap delay |
MarijnJ | 0:4dc21c013b2a | 149 | && (zTapStarted == 0)) //wait for acceleration to end |
MarijnJ | 0:4dc21c013b2a | 150 | { |
MarijnJ | 0:4dc21c013b2a | 151 | resetTap(); |
MarijnJ | 0:4dc21c013b2a | 152 | zTapStarted = 1; |
MarijnJ | 0:4dc21c013b2a | 153 | zTapStartValue = measurements[2]; |
MarijnJ | 0:4dc21c013b2a | 154 | } |
MarijnJ | 0:4dc21c013b2a | 155 | if (now < zTapLimit && zTapStarted == 1) //Check if acceleration stops within pulse window |
MarijnJ | 0:4dc21c013b2a | 156 | { |
MarijnJ | 0:4dc21c013b2a | 157 | if (measurements[2] < zTapStartValue) //if acceleration falls again within limit, tap detected |
MarijnJ | 0:4dc21c013b2a | 158 | { |
MarijnJ | 0:4dc21c013b2a | 159 | resetTap(); |
MarijnJ | 0:4dc21c013b2a | 160 | zTap = 1; |
MarijnJ | 0:4dc21c013b2a | 161 | zTapDelay = now + tapDelayDuration; |
MarijnJ | 0:4dc21c013b2a | 162 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 163 | SEGGER_RTT_WriteString(0, "---------------------------------Tap detected\n"); |
MarijnJ | 0:4dc21c013b2a | 164 | #endif |
MarijnJ | 0:4dc21c013b2a | 165 | } |
MarijnJ | 0:4dc21c013b2a | 166 | } |
MarijnJ | 0:4dc21c013b2a | 167 | else |
MarijnJ | 0:4dc21c013b2a | 168 | { |
MarijnJ | 0:4dc21c013b2a | 169 | resetTap(); |
MarijnJ | 0:4dc21c013b2a | 170 | } |
MarijnJ | 0:4dc21c013b2a | 171 | // Detects taps on the x axis and resets some of the flags |
MarijnJ | 0:4dc21c013b2a | 172 | if (zTap) // check for tap |
MarijnJ | 0:4dc21c013b2a | 173 | { |
MarijnJ | 0:4dc21c013b2a | 174 | now = t.read_ms(); |
MarijnJ | 0:4dc21c013b2a | 175 | if (tapCount == 0) tapCycleStart = now; // if first tap reset tap cycle |
MarijnJ | 0:4dc21c013b2a | 176 | tapCount++; // increment tap counter |
MarijnJ | 0:4dc21c013b2a | 177 | if ((now - tapCycleStart) > tapCycleLimit || tapCount >= tapAction) tapCount = 0; //Reset tap count after cycle ends |
MarijnJ | 0:4dc21c013b2a | 178 | if (tapCount == tapAction) |
MarijnJ | 0:4dc21c013b2a | 179 | { |
MarijnJ | 0:4dc21c013b2a | 180 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 181 | SEGGER_RTT_WriteString(0, "---------------------------------Triple tap\n"); // do we have 3 taps during cycle? |
MarijnJ | 0:4dc21c013b2a | 182 | #endif |
MarijnJ | 0:4dc21c013b2a | 183 | } |
MarijnJ | 0:4dc21c013b2a | 184 | } |
MarijnJ | 0:4dc21c013b2a | 185 | } |
MarijnJ | 0:4dc21c013b2a | 186 | |
MarijnJ | 0:4dc21c013b2a | 187 | /* |
MarijnJ | 0:4dc21c013b2a | 188 | Restart advertising when client disconnects |
MarijnJ | 0:4dc21c013b2a | 189 | */ |
MarijnJ | 0:4dc21c013b2a | 190 | void disconnectionCallback(const Gap::DisconnectionCallbackParams_t *) { |
MarijnJ | 0:4dc21c013b2a | 191 | BLE::Instance(BLE::DEFAULT_INSTANCE).gap().startAdvertising(); |
MarijnJ | 0:4dc21c013b2a | 192 | } |
MarijnJ | 0:4dc21c013b2a | 193 | |
MarijnJ | 0:4dc21c013b2a | 194 | /* |
MarijnJ | 0:4dc21c013b2a | 195 | Callback when a device disconnects |
MarijnJ | 0:4dc21c013b2a | 196 | */ |
MarijnJ | 0:4dc21c013b2a | 197 | void timeoutCallback(Gap::TimeoutSource_t source) { |
MarijnJ | 0:4dc21c013b2a | 198 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 199 | SEGGER_RTT_printf(0, "Fuck, got a timeout on BLE connection with error %d...", source); |
MarijnJ | 0:4dc21c013b2a | 200 | #endif |
MarijnJ | 0:4dc21c013b2a | 201 | } |
MarijnJ | 0:4dc21c013b2a | 202 | /* |
MarijnJ | 0:4dc21c013b2a | 203 | Callback function to check if we need to update sensor values |
MarijnJ | 0:4dc21c013b2a | 204 | */ |
MarijnJ | 0:4dc21c013b2a | 205 | void periodicCallback() { |
MarijnJ | 0:4dc21c013b2a | 206 | // Note that the periodicCallback() executes in interrupt context, so it is |
MarijnJ | 0:4dc21c013b2a | 207 | // safer to do heavy-weight sensor polling from the main thread |
MarijnJ | 0:4dc21c013b2a | 208 | triggerSensorPolling = true; |
MarijnJ | 0:4dc21c013b2a | 209 | } |
MarijnJ | 0:4dc21c013b2a | 210 | |
MarijnJ | 0:4dc21c013b2a | 211 | |
MarijnJ | 0:4dc21c013b2a | 212 | /* |
MarijnJ | 0:4dc21c013b2a | 213 | Handle writes to writeCharacteristic |
MarijnJ | 0:4dc21c013b2a | 214 | TODO: Remove this or find a use for it |
MarijnJ | 0:4dc21c013b2a | 215 | */ |
MarijnJ | 0:4dc21c013b2a | 216 | void writeCharCallback(const GattWriteCallbackParams *params) { |
MarijnJ | 0:4dc21c013b2a | 217 | // Check to see what characteristic was written, by handle |
MarijnJ | 0:4dc21c013b2a | 218 | if (params->handle == writeChar.getValueHandle()) { |
MarijnJ | 0:4dc21c013b2a | 219 | // toggle LED if only 1 byte is written |
MarijnJ | 0:4dc21c013b2a | 220 | if (params->len == 1) { |
MarijnJ | 0:4dc21c013b2a | 221 | (params->data[0] == 0x00) ? printf("led on\n\r") : printf("led off\n\r"); |
MarijnJ | 0:4dc21c013b2a | 222 | } else { |
MarijnJ | 0:4dc21c013b2a | 223 | // Print the data if more than 1 byte is written |
MarijnJ | 0:4dc21c013b2a | 224 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 225 | SEGGER_RTT_printf(0, "Data received: length = %d, data = 0x", params->len); |
MarijnJ | 0:4dc21c013b2a | 226 | #endif |
MarijnJ | 0:4dc21c013b2a | 227 | |
MarijnJ | 0:4dc21c013b2a | 228 | for(int x=0; x < params->len; x++) { |
MarijnJ | 0:4dc21c013b2a | 229 | printf("%x", params->data[x]); |
MarijnJ | 0:4dc21c013b2a | 230 | } |
MarijnJ | 0:4dc21c013b2a | 231 | |
MarijnJ | 0:4dc21c013b2a | 232 | printf("\n\r"); |
MarijnJ | 0:4dc21c013b2a | 233 | } |
MarijnJ | 0:4dc21c013b2a | 234 | } |
MarijnJ | 0:4dc21c013b2a | 235 | } |
MarijnJ | 0:4dc21c013b2a | 236 | |
MarijnJ | 0:4dc21c013b2a | 237 | /* |
MarijnJ | 0:4dc21c013b2a | 238 | Initialization callback |
MarijnJ | 0:4dc21c013b2a | 239 | */ |
MarijnJ | 0:4dc21c013b2a | 240 | void bleInitComplete(BLE::InitializationCompleteCallbackContext *params) { |
MarijnJ | 0:4dc21c013b2a | 241 | BLE &ble = params->ble; |
MarijnJ | 0:4dc21c013b2a | 242 | ble_error_t error = params->error; |
MarijnJ | 0:4dc21c013b2a | 243 | |
MarijnJ | 0:4dc21c013b2a | 244 | if (error != BLE_ERROR_NONE) { |
MarijnJ | 0:4dc21c013b2a | 245 | return; |
MarijnJ | 0:4dc21c013b2a | 246 | } |
MarijnJ | 0:4dc21c013b2a | 247 | |
MarijnJ | 0:4dc21c013b2a | 248 | ble.gap().onDisconnection(disconnectionCallback); |
MarijnJ | 0:4dc21c013b2a | 249 | // ble.gattServer().onDataWritten(writeCharCallback); |
MarijnJ | 0:4dc21c013b2a | 250 | ble.gap().onTimeout(timeoutCallback); |
MarijnJ | 0:4dc21c013b2a | 251 | |
MarijnJ | 0:4dc21c013b2a | 252 | // Setup information service |
MarijnJ | 0:4dc21c013b2a | 253 | deviceInfoService = new DeviceInformationService(ble, "ARM", "Model1", "SN1", |
MarijnJ | 0:4dc21c013b2a | 254 | "hw-rev1", "fw-rev1", "soft-rev1"); |
MarijnJ | 0:4dc21c013b2a | 255 | |
MarijnJ | 0:4dc21c013b2a | 256 | // Setup advertising, BLE only, no classic BT |
MarijnJ | 0:4dc21c013b2a | 257 | ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::BREDR_NOT_SUPPORTED | GapAdvertisingData::LE_GENERAL_DISCOVERABLE); |
MarijnJ | 0:4dc21c013b2a | 258 | ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LIST_16BIT_SERVICE_IDS, |
MarijnJ | 0:4dc21c013b2a | 259 | (uint8_t *)uuid16List, sizeof(uuid16List)); |
MarijnJ | 0:4dc21c013b2a | 260 | ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LOCAL_NAME, |
MarijnJ | 0:4dc21c013b2a | 261 | (uint8_t *)DEVICE_NAME, sizeof(DEVICE_NAME)); |
MarijnJ | 0:4dc21c013b2a | 262 | |
MarijnJ | 0:4dc21c013b2a | 263 | ble.gap().setAdvertisingType(GapAdvertisingParams::ADV_CONNECTABLE_UNDIRECTED); |
MarijnJ | 0:4dc21c013b2a | 264 | ble.gap().setAdvertisingInterval(ADVERTISING_INTERVAL); |
MarijnJ | 0:4dc21c013b2a | 265 | ble.gap().setAdvertisingTimeout(0); |
MarijnJ | 0:4dc21c013b2a | 266 | |
MarijnJ | 0:4dc21c013b2a | 267 | // Get current advertising power level... |
MarijnJ | 0:4dc21c013b2a | 268 | // TODO: Remove this useless crap since it doesnt do anything... |
MarijnJ | 0:4dc21c013b2a | 269 | /* |
MarijnJ | 0:4dc21c013b2a | 270 | GapAdvertisingData payload = ble.gap().getAdvertisingPayload(); |
MarijnJ | 0:4dc21c013b2a | 271 | |
MarijnJ | 0:4dc21c013b2a | 272 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 273 | SEGGER_RTT_printf(0, "Current advertising Tx power: %d dBm\n", payload.TX_POWER_LEVEL); |
MarijnJ | 0:4dc21c013b2a | 274 | #endif |
MarijnJ | 0:4dc21c013b2a | 275 | |
MarijnJ | 0:4dc21c013b2a | 276 | error = ble.gap().accumulateAdvertisingPayloadTxPower(TX_POWER_ADVERTISING); |
MarijnJ | 0:4dc21c013b2a | 277 | |
MarijnJ | 0:4dc21c013b2a | 278 | if (error != BLE_ERROR_NONE) { |
MarijnJ | 0:4dc21c013b2a | 279 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 280 | SEGGER_RTT_printf(0, "Failed to set advertising TX power to %d dBm!\n", TX_POWER_ADVERTISING); |
MarijnJ | 0:4dc21c013b2a | 281 | #endif |
MarijnJ | 0:4dc21c013b2a | 282 | } else { |
MarijnJ | 0:4dc21c013b2a | 283 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 284 | SEGGER_RTT_printf(0, "Set advertising TX power to %d dBm!\n", TX_POWER_ADVERTISING); |
MarijnJ | 0:4dc21c013b2a | 285 | #endif |
MarijnJ | 0:4dc21c013b2a | 286 | } |
MarijnJ | 0:4dc21c013b2a | 287 | |
MarijnJ | 0:4dc21c013b2a | 288 | // Get current advertising power level... |
MarijnJ | 0:4dc21c013b2a | 289 | payload = ble.gap().getAdvertisingPayload(); |
MarijnJ | 0:4dc21c013b2a | 290 | |
MarijnJ | 0:4dc21c013b2a | 291 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 292 | SEGGER_RTT_printf(0, "Current advertising Tx power: %d dBm\n", payload.TX_POWER_LEVEL); |
MarijnJ | 0:4dc21c013b2a | 293 | #endif |
MarijnJ | 0:4dc21c013b2a | 294 | |
MarijnJ | 0:4dc21c013b2a | 295 | error = ble.gap().setTxPower(TX_POWER_CONNECTION); |
MarijnJ | 0:4dc21c013b2a | 296 | |
MarijnJ | 0:4dc21c013b2a | 297 | if (error != BLE_ERROR_NONE) { |
MarijnJ | 0:4dc21c013b2a | 298 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 299 | SEGGER_RTT_printf(0, "Failed to set general TX power to %d dBm!\n", TX_POWER_CONNECTION); |
MarijnJ | 0:4dc21c013b2a | 300 | #endif |
MarijnJ | 0:4dc21c013b2a | 301 | } else { |
MarijnJ | 0:4dc21c013b2a | 302 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 303 | SEGGER_RTT_printf(0, "Set general TX power to %d dBm!\n", TX_POWER_CONNECTION); |
MarijnJ | 0:4dc21c013b2a | 304 | #endif |
MarijnJ | 0:4dc21c013b2a | 305 | } |
MarijnJ | 0:4dc21c013b2a | 306 | */ |
MarijnJ | 0:4dc21c013b2a | 307 | |
MarijnJ | 0:4dc21c013b2a | 308 | ble.addService(customService); |
MarijnJ | 0:4dc21c013b2a | 309 | ble.gap().startAdvertising(); |
MarijnJ | 0:4dc21c013b2a | 310 | } |
MarijnJ | 0:4dc21c013b2a | 311 | |
MarijnJ | 0:4dc21c013b2a | 312 | void printPowerValues() { |
MarijnJ | 0:4dc21c013b2a | 313 | const int8_t *power_values; |
MarijnJ | 0:4dc21c013b2a | 314 | size_t count; |
MarijnJ | 0:4dc21c013b2a | 315 | |
MarijnJ | 0:4dc21c013b2a | 316 | BLE &ble = BLE::Instance(BLE::DEFAULT_INSTANCE); |
MarijnJ | 0:4dc21c013b2a | 317 | ble.gap().getPermittedTxPowerValues(&power_values, &count); |
MarijnJ | 0:4dc21c013b2a | 318 | |
MarijnJ | 0:4dc21c013b2a | 319 | for (int i = 0; i < count; ++i) { |
MarijnJ | 0:4dc21c013b2a | 320 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 321 | SEGGER_RTT_printf(0, "Got power value: %d dBm\n", power_values[i]); |
MarijnJ | 0:4dc21c013b2a | 322 | #endif |
MarijnJ | 0:4dc21c013b2a | 323 | } |
MarijnJ | 0:4dc21c013b2a | 324 | } |
MarijnJ | 0:4dc21c013b2a | 325 | |
MarijnJ | 0:4dc21c013b2a | 326 | /* |
MarijnJ | 0:4dc21c013b2a | 327 | Copies the measurements float array into the BLE readChar. |
MarijnJ | 0:4dc21c013b2a | 328 | Make sure the destination buffer has sufficient space! Its size should be |
MarijnJ | 0:4dc21c013b2a | 329 | at least 4 times that of measurements. This function assumes that |
MarijnJ | 0:4dc21c013b2a | 330 | sizeof(float) = 4 bytes, aka 32 bits, aka 4 uint8_t values. |
MarijnJ | 0:4dc21c013b2a | 331 | */ |
MarijnJ | 0:4dc21c013b2a | 332 | void copyMeasurementsToBLEChar(float *measurements, uint8_t *destination, uint16_t numElements) { |
MarijnJ | 0:4dc21c013b2a | 333 | for (uint16_t i = 0; i < numElements; i++) { |
MarijnJ | 0:4dc21c013b2a | 334 | // Use a dirty union to slice the floats into 4 uint8_t's |
MarijnJ | 0:4dc21c013b2a | 335 | union { |
MarijnJ | 0:4dc21c013b2a | 336 | float f; |
MarijnJ | 0:4dc21c013b2a | 337 | uint8_t uints[4]; |
MarijnJ | 0:4dc21c013b2a | 338 | } dirtyHack; |
MarijnJ | 0:4dc21c013b2a | 339 | |
MarijnJ | 0:4dc21c013b2a | 340 | dirtyHack.f = measurements[i]; |
MarijnJ | 0:4dc21c013b2a | 341 | destination[i * 4] = dirtyHack.uints[0]; |
MarijnJ | 0:4dc21c013b2a | 342 | destination[i * 4 + 1] = dirtyHack.uints[1]; |
MarijnJ | 0:4dc21c013b2a | 343 | destination[i * 4 + 2] = dirtyHack.uints[2]; |
MarijnJ | 0:4dc21c013b2a | 344 | destination[i * 4 + 3] = dirtyHack.uints[3]; |
MarijnJ | 0:4dc21c013b2a | 345 | } |
MarijnJ | 0:4dc21c013b2a | 346 | } |
MarijnJ | 0:4dc21c013b2a | 347 | |
MarijnJ | 0:4dc21c013b2a | 348 | |
MarijnJ | 0:4dc21c013b2a | 349 | /* |
MarijnJ | 0:4dc21c013b2a | 350 | Returns true/false if the sensor has new data. If not, no measurements are |
MarijnJ | 0:4dc21c013b2a | 351 | done. If the sensor has new data, then the measurements array |
MarijnJ | 0:4dc21c013b2a | 352 | (sized appropriately) will be filled according to the format specified at |
MarijnJ | 0:4dc21c013b2a | 353 | the top of this file. |
MarijnJ | 0:4dc21c013b2a | 354 | */ |
MarijnJ | 0:4dc21c013b2a | 355 | bool measureSensor(MPU9250 *mpu9250, float *measurements) { |
MarijnJ | 0:4dc21c013b2a | 356 | |
MarijnJ | 0:4dc21c013b2a | 357 | if (!mpu9250->hasNewData()) { |
MarijnJ | 0:4dc21c013b2a | 358 | return false; |
MarijnJ | 0:4dc21c013b2a | 359 | } |
MarijnJ | 0:4dc21c013b2a | 360 | |
MarijnJ | 0:4dc21c013b2a | 361 | // Temporary variables to store results |
MarijnJ | 0:4dc21c013b2a | 362 | float ax, ay, az, gx, gy, gz, mx, my, mz, temperature; |
MarijnJ | 0:4dc21c013b2a | 363 | |
MarijnJ | 0:4dc21c013b2a | 364 | // Get the accleration value into actual g's |
MarijnJ | 0:4dc21c013b2a | 365 | mpu9250->readAccelData(&ax, &ay, &az); |
MarijnJ | 0:4dc21c013b2a | 366 | |
MarijnJ | 0:4dc21c013b2a | 367 | // Get the gyro values into actual degrees per second |
MarijnJ | 0:4dc21c013b2a | 368 | mpu9250->readGyroData(&gx, &gy, &gz); |
MarijnJ | 0:4dc21c013b2a | 369 | |
MarijnJ | 0:4dc21c013b2a | 370 | // Get actual magnetometer value, this depends on scale being set |
MarijnJ | 0:4dc21c013b2a | 371 | mpu9250->readMagData(&gx, &gy, &gz); |
MarijnJ | 0:4dc21c013b2a | 372 | |
MarijnJ | 0:4dc21c013b2a | 373 | // Temperature in degrees Celsius |
MarijnJ | 0:4dc21c013b2a | 374 | temperature = mpu9250->getTemperature(); |
MarijnJ | 0:4dc21c013b2a | 375 | |
MarijnJ | 0:4dc21c013b2a | 376 | // Store it in the measurements array |
MarijnJ | 0:4dc21c013b2a | 377 | measurements[0] = ax; |
MarijnJ | 0:4dc21c013b2a | 378 | measurements[1] = ay; |
MarijnJ | 0:4dc21c013b2a | 379 | measurements[2] = az; |
MarijnJ | 0:4dc21c013b2a | 380 | measurements[3] = gx; |
MarijnJ | 0:4dc21c013b2a | 381 | measurements[4] = gy; |
MarijnJ | 0:4dc21c013b2a | 382 | measurements[5] = gz; |
MarijnJ | 0:4dc21c013b2a | 383 | measurements[6] = mx; |
MarijnJ | 0:4dc21c013b2a | 384 | measurements[7] = my; |
MarijnJ | 0:4dc21c013b2a | 385 | measurements[8] = mz; |
MarijnJ | 0:4dc21c013b2a | 386 | measurements[9] = temperature; |
MarijnJ | 0:4dc21c013b2a | 387 | |
MarijnJ | 0:4dc21c013b2a | 388 | detectTap(); |
MarijnJ | 0:4dc21c013b2a | 389 | return true; |
MarijnJ | 0:4dc21c013b2a | 390 | } |
MarijnJ | 0:4dc21c013b2a | 391 | |
MarijnJ | 0:4dc21c013b2a | 392 | |
MarijnJ | 0:4dc21c013b2a | 393 | /* |
MarijnJ | 0:4dc21c013b2a | 394 | Sets up the given sensor |
MarijnJ | 0:4dc21c013b2a | 395 | */ |
MarijnJ | 0:4dc21c013b2a | 396 | void setupSensor(MPU9250 *mpu9250) { |
MarijnJ | 0:4dc21c013b2a | 397 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 398 | SEGGER_RTT_printf(0, "CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); |
MarijnJ | 0:4dc21c013b2a | 399 | #endif |
MarijnJ | 0:4dc21c013b2a | 400 | |
MarijnJ | 0:4dc21c013b2a | 401 | float SelfTest[6]; |
MarijnJ | 0:4dc21c013b2a | 402 | |
MarijnJ | 0:4dc21c013b2a | 403 | // Read the WHO_AM_I register, this is a good test of communication |
MarijnJ | 0:4dc21c013b2a | 404 | // Read WHO_AM_I register for MPU-9250 |
MarijnJ | 0:4dc21c013b2a | 405 | uint8_t whoami = mpu9250->getWhoAmI(); |
MarijnJ | 0:4dc21c013b2a | 406 | |
MarijnJ | 0:4dc21c013b2a | 407 | // WHO_AM_I should always be 0x71 |
MarijnJ | 0:4dc21c013b2a | 408 | if (whoami == CORRECT_WHO_AM_I) { |
MarijnJ | 0:4dc21c013b2a | 409 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 410 | SEGGER_RTT_WriteString(0, "MPU9250 is online...\n\n"); |
MarijnJ | 0:4dc21c013b2a | 411 | #endif |
MarijnJ | 0:4dc21c013b2a | 412 | |
MarijnJ | 0:4dc21c013b2a | 413 | wait(1); |
MarijnJ | 0:4dc21c013b2a | 414 | |
MarijnJ | 0:4dc21c013b2a | 415 | // Reset registers to default in preparation for device calibration |
MarijnJ | 0:4dc21c013b2a | 416 | mpu9250->resetMPU9250(); |
MarijnJ | 0:4dc21c013b2a | 417 | |
MarijnJ | 0:4dc21c013b2a | 418 | // Start by performing self test and reporting values |
MarijnJ | 0:4dc21c013b2a | 419 | mpu9250->MPU9250SelfTest(SelfTest); |
MarijnJ | 0:4dc21c013b2a | 420 | |
MarijnJ | 0:4dc21c013b2a | 421 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 422 | SEGGER_RTT_printf(0, "x-axis self test: accel trim within : %d % of factory value\n", |
MarijnJ | 0:4dc21c013b2a | 423 | toInt(SelfTest[0])); |
MarijnJ | 0:4dc21c013b2a | 424 | SEGGER_RTT_printf(0, "y-axis self test: accel trim within : %d % of factory value\n", |
MarijnJ | 0:4dc21c013b2a | 425 | toInt(SelfTest[1])); |
MarijnJ | 0:4dc21c013b2a | 426 | SEGGER_RTT_printf(0, "z-axis self test: accel trim within : %d % of factory value\n", |
MarijnJ | 0:4dc21c013b2a | 427 | toInt(SelfTest[2])); |
MarijnJ | 0:4dc21c013b2a | 428 | SEGGER_RTT_printf(0, "x-axis self test: gyration trim within : %d % of factory value\n", |
MarijnJ | 0:4dc21c013b2a | 429 | toInt(SelfTest[3])); |
MarijnJ | 0:4dc21c013b2a | 430 | SEGGER_RTT_printf(0, "y-axis self test: gyration trim within : %d % of factory value\n", |
MarijnJ | 0:4dc21c013b2a | 431 | toInt(SelfTest[4])); |
MarijnJ | 0:4dc21c013b2a | 432 | SEGGER_RTT_printf(0, "z-axis self test: gyration trim within : %d % of factory value\n\n", |
MarijnJ | 0:4dc21c013b2a | 433 | toInt(SelfTest[5])); |
MarijnJ | 0:4dc21c013b2a | 434 | #endif |
MarijnJ | 0:4dc21c013b2a | 435 | |
MarijnJ | 0:4dc21c013b2a | 436 | // Calibrate gyro and accelerometers, load biases in bias registers |
MarijnJ | 0:4dc21c013b2a | 437 | mpu9250->calibrateMPU9250(); |
MarijnJ | 0:4dc21c013b2a | 438 | |
MarijnJ | 0:4dc21c013b2a | 439 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 440 | SEGGER_RTT_printf(0, "x gyro bias = %d\n", toInt(mpu9250->gyroBias[0])); |
MarijnJ | 0:4dc21c013b2a | 441 | SEGGER_RTT_printf(0, "y gyro bias = %d\n", toInt(mpu9250->gyroBias[1])); |
MarijnJ | 0:4dc21c013b2a | 442 | SEGGER_RTT_printf(0, "z gyro bias = %d\n", toInt(mpu9250->gyroBias[2])); |
MarijnJ | 0:4dc21c013b2a | 443 | SEGGER_RTT_printf(0, "x accel bias = %d\n", toInt(mpu9250->accelBias[0])); |
MarijnJ | 0:4dc21c013b2a | 444 | SEGGER_RTT_printf(0, "y accel bias = %d\n", toInt(mpu9250->accelBias[1])); |
MarijnJ | 0:4dc21c013b2a | 445 | SEGGER_RTT_printf(0, "z accel bias = %d\n\n", toInt(mpu9250->accelBias[2])); |
MarijnJ | 0:4dc21c013b2a | 446 | #endif |
MarijnJ | 0:4dc21c013b2a | 447 | |
MarijnJ | 0:4dc21c013b2a | 448 | wait(2); |
MarijnJ | 0:4dc21c013b2a | 449 | |
MarijnJ | 0:4dc21c013b2a | 450 | // Initialize device for active mode read of acclerometer, gyroscope, and temperature |
MarijnJ | 0:4dc21c013b2a | 451 | mpu9250->initMPU9250(); |
MarijnJ | 0:4dc21c013b2a | 452 | |
MarijnJ | 0:4dc21c013b2a | 453 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 454 | SEGGER_RTT_WriteString(0, "MPU9250 initialized for active data mode....\n"); |
MarijnJ | 0:4dc21c013b2a | 455 | #endif |
MarijnJ | 0:4dc21c013b2a | 456 | |
MarijnJ | 0:4dc21c013b2a | 457 | // Initialize device for active mode read of magnetometer |
MarijnJ | 0:4dc21c013b2a | 458 | mpu9250->initAK8963(); |
MarijnJ | 0:4dc21c013b2a | 459 | |
MarijnJ | 0:4dc21c013b2a | 460 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 461 | SEGGER_RTT_WriteString(0, "AK8963 initialized for active data mode....\n"); |
MarijnJ | 0:4dc21c013b2a | 462 | SEGGER_RTT_printf(0, "Accelerometer full-scale range = %d g\n", |
MarijnJ | 0:4dc21c013b2a | 463 | toInt(2.0f * (float) (1<<mpu9250->Ascale))); |
MarijnJ | 0:4dc21c013b2a | 464 | SEGGER_RTT_printf(0, "Gyroscope full-scale range = %d deg/s\n", |
MarijnJ | 0:4dc21c013b2a | 465 | toInt(250.0f * (float) (1<<mpu9250->Gscale))); |
MarijnJ | 0:4dc21c013b2a | 466 | |
MarijnJ | 0:4dc21c013b2a | 467 | if (mpu9250->Mscale == 0) { |
MarijnJ | 0:4dc21c013b2a | 468 | SEGGER_RTT_WriteString(0, "Magnetometer resolution = 14 bits\n"); |
MarijnJ | 0:4dc21c013b2a | 469 | } |
MarijnJ | 0:4dc21c013b2a | 470 | |
MarijnJ | 0:4dc21c013b2a | 471 | if (mpu9250->Mscale == 1) { |
MarijnJ | 0:4dc21c013b2a | 472 | SEGGER_RTT_WriteString(0, "Magnetometer resolution = 16 bits\n"); |
MarijnJ | 0:4dc21c013b2a | 473 | } |
MarijnJ | 0:4dc21c013b2a | 474 | |
MarijnJ | 0:4dc21c013b2a | 475 | if (mpu9250->Mmode == 2) { |
MarijnJ | 0:4dc21c013b2a | 476 | SEGGER_RTT_WriteString(0, "Magnetometer ODR = 8 Hz\n"); |
MarijnJ | 0:4dc21c013b2a | 477 | } |
MarijnJ | 0:4dc21c013b2a | 478 | |
MarijnJ | 0:4dc21c013b2a | 479 | if (mpu9250->Mmode == 6) { |
MarijnJ | 0:4dc21c013b2a | 480 | SEGGER_RTT_WriteString(0, "Magnetometer ODR = 100 Hz\n"); |
MarijnJ | 0:4dc21c013b2a | 481 | } |
MarijnJ | 0:4dc21c013b2a | 482 | |
MarijnJ | 0:4dc21c013b2a | 483 | SEGGER_RTT_WriteString(0, "\n"); |
MarijnJ | 0:4dc21c013b2a | 484 | |
MarijnJ | 0:4dc21c013b2a | 485 | // Scale resolutions per LSB for the sensors |
MarijnJ | 0:4dc21c013b2a | 486 | SEGGER_RTT_printf(0, "Accelerometer sensitivity is %d LSB/g \n", |
MarijnJ | 0:4dc21c013b2a | 487 | toInt(1.0f / mpu9250->getAres())); |
MarijnJ | 0:4dc21c013b2a | 488 | SEGGER_RTT_printf(0, "Gyroscope sensitivity is %d LSB/deg/s \n", |
MarijnJ | 0:4dc21c013b2a | 489 | toInt(1.0f / mpu9250->getGres())); |
MarijnJ | 0:4dc21c013b2a | 490 | SEGGER_RTT_printf(0, "Magnetometer sensitivity is %d LSB/G \n", |
MarijnJ | 0:4dc21c013b2a | 491 | toInt(1.0f / mpu9250->getMres())); |
MarijnJ | 0:4dc21c013b2a | 492 | #endif |
MarijnJ | 0:4dc21c013b2a | 493 | |
MarijnJ | 0:4dc21c013b2a | 494 | wait(1); |
MarijnJ | 0:4dc21c013b2a | 495 | } else { |
MarijnJ | 0:4dc21c013b2a | 496 | // Loop forever if communication doesn't happen... |
MarijnJ | 0:4dc21c013b2a | 497 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 498 | SEGGER_RTT_printf(0, "Could not connect to MPU9250: 0x%x \n", whoami); |
MarijnJ | 0:4dc21c013b2a | 499 | #endif |
MarijnJ | 0:4dc21c013b2a | 500 | while(1); |
MarijnJ | 0:4dc21c013b2a | 501 | } |
MarijnJ | 0:4dc21c013b2a | 502 | } |
MarijnJ | 0:4dc21c013b2a | 503 | |
MarijnJ | 0:4dc21c013b2a | 504 | |
MarijnJ | 0:4dc21c013b2a | 505 | |
MarijnJ | 0:4dc21c013b2a | 506 | /* |
MarijnJ | 0:4dc21c013b2a | 507 | Main function |
MarijnJ | 0:4dc21c013b2a | 508 | */ |
MarijnJ | 0:4dc21c013b2a | 509 | int main() { |
MarijnJ | 0:4dc21c013b2a | 510 | // Setup periodicCallback ticker |
MarijnJ | 0:4dc21c013b2a | 511 | Ticker ticker; |
MarijnJ | 0:4dc21c013b2a | 512 | ticker.attach(&periodicCallback, 1); |
MarijnJ | 0:4dc21c013b2a | 513 | |
MarijnJ | 0:4dc21c013b2a | 514 | BLE &ble = BLE::Instance(BLE::DEFAULT_INSTANCE); |
MarijnJ | 0:4dc21c013b2a | 515 | ble.init(bleInitComplete); |
MarijnJ | 0:4dc21c013b2a | 516 | |
MarijnJ | 0:4dc21c013b2a | 517 | // SpinWait for initialization to complete. This is necessary because the |
MarijnJ | 0:4dc21c013b2a | 518 | // BLE object is used in the main loop below. |
MarijnJ | 0:4dc21c013b2a | 519 | while (ble.hasInitialized() == false) { /* spin loop */ } |
MarijnJ | 0:4dc21c013b2a | 520 | |
MarijnJ | 0:4dc21c013b2a | 521 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 522 | SEGGER_RTT_WriteString(0, "Initialized BLE...\n"); |
MarijnJ | 0:4dc21c013b2a | 523 | #endif |
MarijnJ | 0:4dc21c013b2a | 524 | |
MarijnJ | 0:4dc21c013b2a | 525 | printPowerValues(); |
MarijnJ | 0:4dc21c013b2a | 526 | |
MarijnJ | 0:4dc21c013b2a | 527 | // Setup temporary array of 10 bytes so we don't have to use the heap |
MarijnJ | 0:4dc21c013b2a | 528 | uint8_t newReadValue[READ_CHAR_SIZE] = {0}; |
MarijnJ | 0:4dc21c013b2a | 529 | |
MarijnJ | 0:4dc21c013b2a | 530 | // Setup I2C and MPU9250 sensor |
MarijnJ | 0:4dc21c013b2a | 531 | I2C i2cConnection(P0_8, P0_9); |
MarijnJ | 0:4dc21c013b2a | 532 | MPU9250 mpu9250(&i2cConnection); |
MarijnJ | 0:4dc21c013b2a | 533 | setupSensor(&mpu9250); |
MarijnJ | 0:4dc21c013b2a | 534 | |
MarijnJ | 0:4dc21c013b2a | 535 | Timer t; |
MarijnJ | 0:4dc21c013b2a | 536 | t.start(); |
MarijnJ | 0:4dc21c013b2a | 537 | |
MarijnJ | 0:4dc21c013b2a | 538 | // Variables to hold latest sensor data values |
MarijnJ | 0:4dc21c013b2a | 539 | //float pitch, yaw, roll; |
MarijnJ | 0:4dc21c013b2a | 540 | bool sensorHasNewData = false; |
MarijnJ | 0:4dc21c013b2a | 541 | |
MarijnJ | 0:4dc21c013b2a | 542 | // Used to control display output rate |
MarijnJ | 0:4dc21c013b2a | 543 | float shift = 0.0f; |
MarijnJ | 0:4dc21c013b2a | 544 | int delt_t = 0; |
MarijnJ | 0:4dc21c013b2a | 545 | int count = 0; |
MarijnJ | 0:4dc21c013b2a | 546 | int cycle = 0; |
MarijnJ | 0:4dc21c013b2a | 547 | |
MarijnJ | 0:4dc21c013b2a | 548 | // Used to calculate integration interval |
MarijnJ | 0:4dc21c013b2a | 549 | int lastUpdate = 0, firstUpdate = 0, currentTime = 0; |
MarijnJ | 0:4dc21c013b2a | 550 | |
MarijnJ | 0:4dc21c013b2a | 551 | resetTap(); |
MarijnJ | 0:4dc21c013b2a | 552 | |
MarijnJ | 0:4dc21c013b2a | 553 | while (1) { |
MarijnJ | 0:4dc21c013b2a | 554 | // If not enough measurements for the sensor have been done, or the |
MarijnJ | 0:4dc21c013b2a | 555 | // trigger has been activated, do a measurement |
MarijnJ | 0:4dc21c013b2a | 556 | if (triggerSensorPolling || !mpu9250.sufficientMeasurements) { |
MarijnJ | 0:4dc21c013b2a | 557 | triggerSensorPolling = false; |
MarijnJ | 0:4dc21c013b2a | 558 | |
MarijnJ | 0:4dc21c013b2a | 559 | // Check if sensor has new data |
MarijnJ | 0:4dc21c013b2a | 560 | sensorHasNewData = measureSensor(&mpu9250, measurements); |
MarijnJ | 0:4dc21c013b2a | 561 | currentTime = t.read_us(); |
MarijnJ | 0:4dc21c013b2a | 562 | |
MarijnJ | 0:4dc21c013b2a | 563 | // Set integration time by time elapsed since last filter update |
MarijnJ | 0:4dc21c013b2a | 564 | mpu9250.deltat = (float) ((currentTime - lastUpdate) / 1000000.0f); |
MarijnJ | 0:4dc21c013b2a | 565 | lastUpdate = currentTime; |
MarijnJ | 0:4dc21c013b2a | 566 | |
MarijnJ | 0:4dc21c013b2a | 567 | if (lastUpdate - firstUpdate > 10000000.0f) { |
MarijnJ | 0:4dc21c013b2a | 568 | // Decrease filter gain and increase bias drift gain after stabilized |
MarijnJ | 0:4dc21c013b2a | 569 | mpu9250.beta = 0.04; |
MarijnJ | 0:4dc21c013b2a | 570 | mpu9250.zeta = 0.015; |
MarijnJ | 0:4dc21c013b2a | 571 | mpu9250.sufficientMeasurements = true; |
MarijnJ | 0:4dc21c013b2a | 572 | } |
MarijnJ | 0:4dc21c013b2a | 573 | |
MarijnJ | 0:4dc21c013b2a | 574 | // Pass gyro rate as rad/s |
MarijnJ | 0:4dc21c013b2a | 575 | // mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx * PI/180.0f, |
MarijnJ | 0:4dc21c013b2a | 576 | // gy * PI/180.0f, gz * PI/180.0f, my, mx, mz); |
MarijnJ | 0:4dc21c013b2a | 577 | /*mpu9250.MahonyQuaternionUpdate(measurements[0], measurements[1], |
MarijnJ | 0:4dc21c013b2a | 578 | measurements[2], DEG2RAD(measurements[3]), DEG2RAD(measurements[4]), |
MarijnJ | 0:4dc21c013b2a | 579 | DEG2RAD(measurements[5]), measurements[6], measurements[7], measurements[8]); |
MarijnJ | 0:4dc21c013b2a | 580 | */ |
MarijnJ | 0:4dc21c013b2a | 581 | // Serial print 1 s rate independent of data rates |
MarijnJ | 0:4dc21c013b2a | 582 | delt_t = t.read_ms() - count; |
MarijnJ | 0:4dc21c013b2a | 583 | |
MarijnJ | 0:4dc21c013b2a | 584 | // Update print once per second independent of read rate |
MarijnJ | 0:4dc21c013b2a | 585 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 586 | SEGGER_RTT_printf(0, "\n\nax = %d", toInt(1000 * measurements[0])); |
MarijnJ | 0:4dc21c013b2a | 587 | SEGGER_RTT_printf(0, " ay = %d", toInt(1000 * measurements[1])); |
MarijnJ | 0:4dc21c013b2a | 588 | SEGGER_RTT_printf(0, " az = %d mg\n", toInt(1000 * measurements[2])); |
MarijnJ | 0:4dc21c013b2a | 589 | |
MarijnJ | 0:4dc21c013b2a | 590 | SEGGER_RTT_printf(0, "gx = %d", toInt(measurements[3])); |
MarijnJ | 0:4dc21c013b2a | 591 | SEGGER_RTT_printf(0, " gy = %d", toInt(measurements[4])); |
MarijnJ | 0:4dc21c013b2a | 592 | SEGGER_RTT_printf(0, " gz = %d deg/s\n", toInt(measurements[5])); |
MarijnJ | 0:4dc21c013b2a | 593 | |
MarijnJ | 0:4dc21c013b2a | 594 | SEGGER_RTT_printf(0, "mx = %d", toInt(measurements[6])); |
MarijnJ | 0:4dc21c013b2a | 595 | SEGGER_RTT_printf(0, " my = %d", toInt(measurements[7])); |
MarijnJ | 0:4dc21c013b2a | 596 | SEGGER_RTT_printf(0, " mz = %d mG\n", toInt(measurements[8])); |
MarijnJ | 0:4dc21c013b2a | 597 | |
MarijnJ | 0:4dc21c013b2a | 598 | SEGGER_RTT_printf(0, "Temperature = %d C\n\n", toInt(measurements[9])); |
MarijnJ | 0:4dc21c013b2a | 599 | #endif |
MarijnJ | 0:4dc21c013b2a | 600 | |
MarijnJ | 0:4dc21c013b2a | 601 | // Get yaw, pitch and roll |
MarijnJ | 0:4dc21c013b2a | 602 | /*mpu9250.getYawPitchRoll(&yaw, &pitch, &roll, SENSOR_DECLINATION); |
MarijnJ | 0:4dc21c013b2a | 603 | |
MarijnJ | 0:4dc21c013b2a | 604 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 605 | SEGGER_RTT_printf(0, "Yaw: %d Pitch: %d Roll: %d\n\n", |
MarijnJ | 0:4dc21c013b2a | 606 | toInt(yaw), toInt(pitch), toInt(roll)); |
MarijnJ | 0:4dc21c013b2a | 607 | #endif*/ |
MarijnJ | 0:4dc21c013b2a | 608 | |
MarijnJ | 0:4dc21c013b2a | 609 | count = t.read_ms(); |
MarijnJ | 0:4dc21c013b2a | 610 | |
MarijnJ | 0:4dc21c013b2a | 611 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 612 | SEGGER_RTT_printf(0, "Time active: %d minutes\n----------------", |
MarijnJ | 0:4dc21c013b2a | 613 | getTime(count, shift)); |
MarijnJ | 0:4dc21c013b2a | 614 | #endif |
MarijnJ | 0:4dc21c013b2a | 615 | |
MarijnJ | 0:4dc21c013b2a | 616 | if (count > 1<<21) { |
MarijnJ | 0:4dc21c013b2a | 617 | // Start the timer over again if ~30 minutes has passed |
MarijnJ | 0:4dc21c013b2a | 618 | t.stop(); |
MarijnJ | 0:4dc21c013b2a | 619 | t.reset(); |
MarijnJ | 0:4dc21c013b2a | 620 | t.start(); |
MarijnJ | 0:4dc21c013b2a | 621 | count = 0; |
MarijnJ | 0:4dc21c013b2a | 622 | |
MarijnJ | 0:4dc21c013b2a | 623 | #ifdef DEBUG_MODE |
MarijnJ | 0:4dc21c013b2a | 624 | SEGGER_RTT_printf(0, "Resetting timer! t.read_ms() now gives: %d\n", |
MarijnJ | 0:4dc21c013b2a | 625 | t.read_ms()); |
MarijnJ | 0:4dc21c013b2a | 626 | #endif |
MarijnJ | 0:4dc21c013b2a | 627 | |
MarijnJ | 0:4dc21c013b2a | 628 | mpu9250.deltat = 0; |
MarijnJ | 0:4dc21c013b2a | 629 | lastUpdate = t.read_us(); |
MarijnJ | 0:4dc21c013b2a | 630 | shift = (++cycle * 34.9525f); |
MarijnJ | 0:4dc21c013b2a | 631 | } |
MarijnJ | 0:4dc21c013b2a | 632 | |
MarijnJ | 0:4dc21c013b2a | 633 | if (ble.getGapState().connected) { |
MarijnJ | 0:4dc21c013b2a | 634 | // Send measurements via bluetooth |
MarijnJ | 0:4dc21c013b2a | 635 | copyMeasurementsToBLEChar(measurements, readValue, NUM_MEASUREMENTS); |
MarijnJ | 0:4dc21c013b2a | 636 | ble.gattServer().write(readChar.getValueHandle(), readValue, READ_CHAR_SIZE); |
MarijnJ | 0:4dc21c013b2a | 637 | } |
MarijnJ | 0:4dc21c013b2a | 638 | } else { |
MarijnJ | 0:4dc21c013b2a | 639 | // Save power by waiting for BLE events, if we already have enough |
MarijnJ | 0:4dc21c013b2a | 640 | // measurements for sufficient sensor accuracy |
MarijnJ | 0:4dc21c013b2a | 641 | if (mpu9250.sufficientMeasurements) { |
MarijnJ | 0:4dc21c013b2a | 642 | ble.waitForEvent(); |
MarijnJ | 0:4dc21c013b2a | 643 | } |
MarijnJ | 0:4dc21c013b2a | 644 | } |
MarijnJ | 0:4dc21c013b2a | 645 | } |
MarijnJ | 0:4dc21c013b2a | 646 | } |