werkt nog niet

Dependencies:   HIDScope MODSERIAL biquadFilter mbed QEI

Fork of Project_script_union by Marijke Zondag

Revision:
28:61d1372349c8
Parent:
27:fa493551be99
Child:
29:df10cb76ef26
diff -r fa493551be99 -r 61d1372349c8 main.cpp
--- a/main.cpp	Wed Oct 31 12:38:00 2018 +0000
+++ b/main.cpp	Wed Oct 31 19:14:56 2018 +0000
@@ -10,9 +10,8 @@
 //              set HIDScope to version 7
 //              set biquadFilter to version 7
 
-AnalogIn emg0_in            (A0);                   //First raw EMG signal input
-AnalogIn emg1_in            (A1);                   //Second raw EMG signal input
-AnalogIn emg2_in            (A2);                   //Third raw EMG signal input
+//AnalogIn potmeter1          (A0);                   //First raw EMG signal input
+//AnalogIn potmeter2          (A1);                   //Second raw EMG signal input
 
 InterruptIn encoderA1       (D9);
 InterruptIn encoderB1       (D8);
@@ -38,53 +37,20 @@
 //HIDScope    scope( 6 );                             //HIDScope set to 3x2 channels for 3 muscles, raw data + filtered
 
 //Tickers
-Ticker      ticker;                          
+Ticker      func_tick;  
+Ticker      engine_control1_tick;
+Ticker      engine_control2_tick;                      
 
 //Global variables
 const float T   = 0.002f;                           //Ticker period             Deze wordt ook gebruikt in de PID, moet die niet anders???
-
-//EMG filter
-double emg0_filt, emg1_filt, emg2_filt;                                                          //Variables for filtered EMG data channel 0, 1 and 2
-double emg0_raw, emg1_raw, emg2_raw;
-double emg0_filt_x, emg1_filt_x, emg2_filt_x;
-const int windowsize = 150;                                                                      //Size of the array over which the moving average (MovAg) is calculated. (random number)
-double sum, sum1, sum2, sum3;                                                                    //variables used to sum elements in array
-double StoreArray0[windowsize], StoreArray1[windowsize], StoreArray2[windowsize];                //Empty arrays to calculate MoveAg
-double movAg0, movAg1, movAg2;                                                                   //outcome of MovAg (moet dit een array zijn??)
-
-//Calibration variables
-int x = -1;                                                                                      //Start switch, colour LED is blue.
-int emg_cal = 0;                                                                                 //if emg_cal is set to 1, motors can begin to work in this code (!!)
-const int sizeCal = 1500;                                                                        //size of the dataset used for calibration, eerst 2000
-double StoreCal0[sizeCal], StoreCal1[sizeCal], StoreCal2[sizeCal];                               //arrays to put the dataset of the calibration in
-double Mean0,Mean1,Mean2;                                                                        //average of maximum tightening
-double Threshold0, Threshold1, Threshold2; 
-
-//Biquad                                                                                         //Variables for the biquad band filters (alle 3 dezelfde maar je kan niet 3x 'emg0band' aanroepen ofzo)
-BiQuadChain emg0filter;
-BiQuad emg0band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 );
-BiQuad emg0band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 );
-BiQuad emg0band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 );
-BiQuad notch1( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 );                //Notch filter biquad coefficients
-
-BiQuadChain emg1filter;
-BiQuad emg1band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 );
-BiQuad emg1band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 );
-BiQuad emg1band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 );
-BiQuad notch2( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 );                //Notch filter
-
-BiQuadChain emg2filter;
-BiQuad emg2band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 );
-BiQuad emg2band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 );
-BiQuad emg2band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 );
-BiQuad notch3( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 );                //Notch filter
+const float T2  = 0.01f;
 
 // Inverse Kinematica variables
 const double L1 = 0.208;                                  // Hoogte van tafel tot joint 1
-const double L2 = 0.288;                                  // Hoogte van tafel tot joint 2
+//const double L2 = 0.288;                                  // Hoogte van tafel tot joint 2
 const double L3 = 0.212;                                  // Lengte van de arm
 const double L4 = 0.089;                                  // Afstand van achterkant base tot joint 1
-const double L5 = 0.030;                                  // Afstand van joint 1 naar joint 2
+//const double L5 = 0.030;                                  // Afstand van joint 1 naar joint 2
 const double r_trans = 0.035;                             // Kan gebruikt worden om om te rekenen van translation naar shaft rotation 
 
 // Variërende variabelen inverse kinematics: 
@@ -104,19 +70,23 @@
 
 //Variables PID controller
 double PI = 3.14159;
-double Kp1 = 17.5;                                  //Motor 1
+double Kp1 = 5.0;                                  //Motor 1           eerst 17.5 , nu 5
 double Ki1 = 1.02;
 double Kd1 = 23.2;
 double encoder1 = 0;
 double encoder_radians1=0;
 
-double Kp2 = 17.5;                                  //Motor 2
+double Kp2 = 5.0;                                  //Motor 2            eerst 17.5, nu 5
 double Ki2 = 1.02;
 double Kd2 = 23.2;
 double encoder2 = 0;
 double encoder_radians2=0;
 
-double start_control = 0;
+int start_control = 0;
+
+//double potmeter1s = (potmeter1*2)-1.0f;
+//double potmeter2s = (potmeter2*2)-1.0f;
+double emg_cal = 1;
 
 
 //--------------Functions----------------------------------------------------------------------------------------------------------------------------//
@@ -240,178 +210,128 @@
 
 //------------------ Filter EMG + Calibration EMG --------------------------------//
 
-void EMGFilter0()
-{   
-    emg0_raw      = emg0_in.read();                      //give name to raw EMG0 data calve
-    emg0_filt_x   = emg0filter.step(emg0_raw);           //Use biquad chain to filter raw EMG data
-    emg0_filt     = abs(emg0_filt_x);                    //rectifier. LET OP: volgorde filter: band-notch-rectifier. Eerst band-rect-notch, stel er komt iets raars uit, dan Notch uit de biquad chain halen en aparte chain voor aanmaken.
-}
-
-void EMGFilter1()
-{
-    emg1_raw      = emg1_in.read();                      //give name to raw EMG1 data bicep 1
-    emg1_filt_x   = emg1filter.step(emg1_raw);           //Use biquad chain to filter raw EMG data
-    emg1_filt     = abs(emg1_filt_x);                    //rectifier. LET OP: volgorde filter: band-notch-rectifier. Eerst band-rect-notch.
-}
-
-void EMGFilter2()
-{
-    emg2_raw      = emg2_in.read();                      //Give name to raw EMG1 data bicep 2
-    emg2_filt_x   = emg2filter.step(emg2_raw);           //Use biquad chain to filter raw EMG data
-    emg2_filt     = abs(emg2_filt_x);                    //Rectifier. LET OP: volgorde filter: band-notch-rectifier.
-}
- 
-void MovAg()                                         //Calculate moving average (MovAg)
-{
-    for (int i = windowsize-1; i>=0; i--)            //Make arrays for the last datapoints of the filtered signals
-    {
-        StoreArray0[i] = StoreArray0[i-1];           //Shifts the i'th element one place to the right, this makes it "rolling or moving" average.
-        StoreArray1[i] = StoreArray1[i-1];
-        StoreArray2[i] = StoreArray2[i-1];
-    }
-    
-    StoreArray0[0] = emg0_filt;                      //Stores the latest datapoint of the filtered signal in the first element of the array
-    StoreArray1[0] = emg1_filt;
-    StoreArray2[0] = emg2_filt;
-    
-    sum1 = 0.0;
-    sum2 = 0.0;
-    sum3 = 0.0;
-    
-    for(int a = 0; a<= windowsize-1; a++)            //Sums the elements in the arrays
-    {
-        sum1 += StoreArray0[a];
-        sum2 += StoreArray1[a];
-        sum3 += StoreArray2[a];
-    }
-    
-    movAg0 = sum1/windowsize;                        //calculates an average in the array
-    movAg1 = sum2/windowsize;
-    movAg2 = sum3/windowsize;
-}
-
-void emg_filtered()             //Call all filter functions
-{
-    EMGFilter0();
-    EMGFilter1();
-    EMGFilter2();
-    MovAg();
-}
-void switch_to_calibrate()
-{
-    x++;                        //Every time function gets called, x increases. Every button press --> new calibration state.
-                                //Starts with x = -1. So when function gets called 1 time, x = 0.  In the end, x = 4 will reset to -1.
-
-    if(x==0)                    //If x = 0, led is red
-    {
-        ledr = 0;
-        ledb = 1;
-        ledg = 1;
-    }
-    else if (x==1)              //If x = 1, led is blue
-    {
-        ledr = 1;
-        ledb = 0;
-        ledg = 1;
-    }
-    else if (x==2)            //If x = 2, led is green
-    {
-        ledr = 1;
-        ledb = 1;
-        ledg = 0;
-    }
-    else                        //If x = 3 or 4, led is white
-    {
-        ledr = 0;
-        ledb = 0;
-        ledg = 0;
-    }
-   
-    if(x==4)                    //Reset back to x = -1
-    {
-        x = -1;
-        emg_cal=0;              //reset, motors off
-    }
-}
-    
-        
-void calibrate(void)
-{
-    switch(x)
-    {
-        case 0:                                         //If calibration state 0:
-        {
-            sum = 0.0;
-            for(int j = 0; j<=sizeCal-1; j++)           //Array filled with datapoints from the EMGfilter signal of muscle 0
-            {
-                StoreCal0[j] = emg0_filt;
-                sum+=StoreCal0[j];
-                wait(0.001f);                           //Does there need to be a wait?
-            }
-            Mean0       = sum/sizeCal;                  //Calculate mean of the datapoints in the calibration set (2000 samples)
-            Threshold0  = Mean0/2;                      //Threshold calculation = 0.5*mean                                            
-            break;                                      //Stop. Threshold is calculated, we will use this further in the code
-        }
-        case 1:                                         //If calibration state 1:
-        {
-            sum = 0.0;                                  
-            for(int j = 0; j<=sizeCal-1; j++)           //Array filled with datapoints from the EMGfilter signal of muscle 1
-            {
-                StoreCal1[j] = emg1_filt;
-                sum+=StoreCal1[j];
-                wait(0.001f);
-            }
-            Mean1       = sum/sizeCal;
-            Threshold1  = Mean1/2;                      
-            break;
-        }
-        case 2:                                         //If calibration state 2:
-        {
-            sum = 0.0;
-            for(int j = 0; j<=sizeCal-1; j++)           //Array filled with datapoints from the EMGfilter signal of muscle 2
-            {
-                StoreCal2[j] = emg2_filt;
-                sum+=StoreCal2[j];
-                wait(0.001f);
-            }
-            Mean2       = sum/sizeCal;
-            Threshold2  = Mean2/2;                    
-            break;
-        }
-        case 3:                                         //EMG is calibrated, robot can be set to Home position.
-        {
-            emg_cal = 1;                                //This is the setting for which the motors can begin turning in this code (!!)
-            
-            wait(0.001f);
-            break;
-        }
-        default:                                        //Ensures nothing happens if x is not 0,1 or 2.
-        {
-            break;
-        }
-    }
-}
-/*
-void HIDScope_sample()
-{    
-    scope.set(0,emg0_raw);
-    scope.set(1,emg0_filt);
-    scope.set(1,movAg0);          //als moving average werkt
-    scope.set(2,emg1_raw);
-    scope.set(3,emg1_filt);
-    scope.set(3,movAg1);          //als moving average werkt
-    scope.set(4,emg2_raw);
-    scope.set(5,emg2_filt);
-    scope.set(5,movAg2);          //als moving average werkt
-
-    scope.send();                   //Send data to HIDScope server
-}
-*/
 
 //------------------ Inversed Kinematics --------------------------------//
 
+
+//---------PID controller motor 1 + start motor 1 -----------------------------------------------------------//
+double PID_controller1(double err1)
+{
+    pc.printf("ik doe het, PDI 1\n\r");
+
+  static double err_integral1 = 0;
+  static double err_prev1 = err1; // initialization with this value only done once!
+  
+  static BiQuad LowPassFilter1(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
+
+  // Proportional part:
+  double u_k1 = Kp1 * err1;
+
+  /* Integral part  
+  err_integral1 = err_integral1 + err1 * T;
+  double u_i1 = Ki1 * err_integral1;
+
+  // Derivative part
+  double err_derivative1 = (err1 - err_prev1)/T;
+  double filtered_err_derivative1 = LowPassFilter1.step(err_derivative1);
+  double u_d1 = Kd1 * filtered_err_derivative1;
+  err_prev1 = err1;
+  */
+
+  // Sum all parts and return it
+  return u_k1+0; //+ u_i1 + u_d1;  
+}
+
+void start_your_engines1(double u1)
+{
+    pc.printf("ik doe het, engine start 1\n\r");
+
+    if(encoder1<5250 && encoder1>-5250)                              //limits rotation, in counts                
+    {
+         pwmpin1 = 1;                                         //u_total moet nog geschaald worden om in de motor gevoerd te worden!!!
+         directionpin1.write(0);
+    }
+    else
+    {
+        pwmpin1 = 0;
+    }
+}  
+
+void engine_control1()                                           //Engine 1 is rotational engine, connected with left side pins
+{
+    //while(start_control == 1)
+    //{
+        pc.printf("ik doe het, engine control 1\n\r");
+        encoder_radians1 = encoder1*(2*PI)/8400;
+        double err1 = q1ref - encoder_radians1;
+        double u1 = PID_controller1(err1);                               //PID controller function call
+        start_your_engines1(u1);  
+
+    //   break;
+    //}
+}
+
+
+
+//---------PID controller motor 2 + start motor 2 -----------------------------------------------------------//
+double PID_controller2(double err2)
+{
+  pc.printf("ik doe het, PDI 2\n\r");
+
+  static double err_integral2 = 0;
+  static double err_prev2 = err2; // initialization with this value only done once!
+  
+  static BiQuad LowPassFilter2(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
+
+  // Proportional part:
+  double u_k2 = Kp2 * err2;
+
+  /* Integral part
+  err_integral2 = err_integral2 + err2 * T;
+  double u_i2 = Ki2 * err_integral2;
+
+  // Derivative part
+  double err_derivative2 = (err2 - err_prev2)/T;
+  double filtered_err_derivative2 = LowPassFilter2.step(err_derivative2);
+  double u_d2 = Kd2 * filtered_err_derivative2;
+  err_prev2 = err2;
+  */
+
+  // Sum all parts and return it
+  return u_k2+0; //+ u_i2 + u_d2;  
+}
+
+void start_your_engines2(double u2)
+{
+    pc.printf("ik doe het, engine start 2\n\r");
+
+     if(encoder2<12600 && encoder2>-1)                              //limits translation in counts
+     {
+        pwmpin2 = 1;                                       //u_total moet nog geschaald worden om in de motor gevoerd te worden!!!
+        directionpin2.write(0);
+     }
+    else
+     {
+        pwmpin2 = 0;
+     }
+    
+}  
+
+void engine_control2()                                             //Engine 2 is translational engine, connected with right side wires
+{
+        pc.printf("ik doe het, engine control 2\n\r");
+
+        encoder_radians2 = encoder2*(2*PI)/8400;
+        double err2 = q2ref - encoder_radians2;
+        double u2 = PID_controller2(err2);                             //PID controller function call
+        start_your_engines2(u2);                                       //Call start_your_engines function
+}
+
+
 void inverse_kinematics()
 {
+    
+    pc.printf("ik doe het, inverse kinematics\n\r");
     Lq1 = q1ref*r_trans;                            
     Cq2 = q2ref/5.0;                               
 
@@ -424,36 +344,37 @@
     q1ref = q1_ii;
     q2ref = q2_ii; 
     
-    start_control = 1;
+    //start_control = 1;
+    engine_control1();
+    engine_control2();
 }
 
 void v_des_calculate_qref()
 {
-    if(emg_cal==1)                                   //After calibration is finished, emg_cal will be 1. Otherwise 0. 
-    { 
-                if(movAg1>Threshold1)                   //If the filtered EMG signal of muscle 1 is higher than the threshold, motor 1 will turn
+                if(button1==0)                   //If the filtered EMG signal of muscle 1 is higher than the threshold, motor 1 will turn
                 {
-                    v_x = 1.0;                          //beweging in +x direction
+                    v_x = 0.5f;                          //beweging in +x direction
                     ledr = 0;                           //red
                     ledb = 1;
                     ledg = 1;
                 }
-                else if(movAg2>Threshold2)              //If the filtered EMG signal of muscle 2 is higher than the threshold, motor 1 and 2 will turn
+                else if(button2==0)              //If the filtered EMG signal of muscle 2 is higher than the threshold, motor 1 and 2 will turn
                 {
-                    v_y = 1.0;                          //beweging in +y direction
+                    v_y = 0.5f;                          //beweging in +y direction
                     ledr = 1;                           //green
                     ledb = 1;
                     ledg = 0;
                 }
-               
-                else if(movAg0>Threshold0)              //If the filtered EMG signal of muscle 0 is higher than the threshold, motor1 will turn in 1 direction
+               /*
+                else if(button1==0 && button2==0)              //If the filtered EMG signal of muscle 0 is higher than the threshold, motor1 will turn in 1 direction
                 {
-                    v_x = -v_x;
-                    v_y = -v_y;
+                    v_x = -0.5f;
+                    v_y = -0.5f;
                     ledr = 1;                           //Blue
                     ledb = 0;
                     ledg = 1;  
                 }             
+                */
                 else                                    //If not higher than the threshold, motors will not turn at all
                 {                    
                     v_x = 0;
@@ -461,116 +382,12 @@
                     ledr = 0;                           //white
                     ledb = 0;
                     ledg = 0;
+                    //pwmpin1 = 0;
+                    //pwmpin2 = 0;
                 }
                 
         inverse_kinematics();                           //Call inverse kinematics function
-        
-        }
-}
-
-//---------PID controller motor 1 + start motor 1 -----------------------------------------------------------//
-double PID_controller1(double err1)
-{
-  static double err_integral1 = 0;
-  static double err_prev1 = err1; // initialization with this value only done once!
-  
-  static BiQuad LowPassFilter1(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
-
-  // Proportional part:
-  double u_k1 = Kp1 * err1;
-
-  // Integral part  
-  err_integral1 = err_integral1 + err1 * T;
-  double u_i1 = Ki1 * err_integral1;
-
-  // Derivative part
-  double err_derivative1 = (err1 - err_prev1)/T;
-  double filtered_err_derivative1 = LowPassFilter1.step(err_derivative1);
-  double u_d1 = Kd1 * filtered_err_derivative1;
-  err_prev1 = err1;
-
-  // Sum all parts and return it
-  return u_k1 + u_i1 + u_d1;  
-}
-
-void start_your_engines1(double u1)
-{
-    if(encoder1<5250 && encoder1>-5250)                              //limits rotation, in counts                
-    {
-         pwmpin1 = fabs(u1);                                         //u_total moet nog geschaald worden om in de motor gevoerd te worden!!!
-         directionpin1.write(u1 < 0.0f);
-    }
-    else
-    {
-        pwmpin1 = 0;
-    }
-}  
-
-void engine_control1()                                           //Engine 1 is rotational engine, connected with left side pins
-{
-    while(start_control == 1)
-    {
-        encoder_radians1 = encoder1*(2*PI)/8400;
-        double err1 = q1ref - encoder_radians1;
-        double u1 = PID_controller1(err1);                               //PID controller function call
-        start_your_engines1(u1);                                         //Call start_your_engines function
-        
-        break;
-    }
-}
-
-
-
-//---------PID controller motor 1 + start motor 1 -----------------------------------------------------------//
-double PID_controller2(double err2)
-{
-  static double err_integral2 = 0;
-  static double err_prev2 = err2; // initialization with this value only done once!
-  
-  static BiQuad LowPassFilter2(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
-
-  // Proportional part:
-  double u_k2 = Kp2 * err2;
-
-  // Integral part
-  err_integral2 = err_integral2 + err2 * T;
-  double u_i2 = Ki2 * err_integral2;
-
-  // Derivative part
-  double err_derivative2 = (err2 - err_prev2)/T;
-  double filtered_err_derivative2 = LowPassFilter2.step(err_derivative2);
-  double u_d2 = Kd2 * filtered_err_derivative2;
-  err_prev2 = err2;
-
-  // Sum all parts and return it
-  return u_k2 + u_i2 + u_d2;  
-}
-
-void start_your_engines2(double u2)
-{
-     if(encoder2<12600 && encoder2>-1)                              //limits translation in counts
-     {
-        pwmpin2 = fabs(u2);                                       //u_total moet nog geschaald worden om in de motor gevoerd te worden!!!
-        directionpin2.write(u2 < 0.0f);
-     }
-    else
-     {
-        pwmpin2 = 0;
-     }
-    
-}  
-
-void engine_control2()                                             //Engine 2 is translational engine, connected with right side wires
-{
-    while(start_control == 1)
-    {
-        encoder_radians2 = encoder2*(2*PI)/8400;
-        double err2 = q2ref - encoder_radians2;
-        double u2 = PID_controller2(err2);                             //PID controller function call
-        start_your_engines2(u2);                                       //Call start_your_engines function
-        
-        break;
-    }
+       
 }
 
 //------------------ Start main function --------------------------//
@@ -581,26 +398,14 @@
         pc.baud(115200);
         pc.printf("Hello World!\r\n");                            //Serial communication only works if hidscope is turned off.
         pwmpin1.period_us(60);                                    //60 microseconds PWM period, 16.7 kHz 
-
-        emg0filter.add( &emg0band1 ).add( &emg0band2 ).add( &emg0band3 ).add( &notch1 );        //attach biquad elements to chain
-        emg1filter.add( &emg1band1 ).add( &emg1band2 ).add( &emg1band3 ).add( &notch2 );
-        emg2filter.add( &emg2band1 ).add( &emg2band2 ).add( &emg2band3 ).add( &notch3 );
+        
+        func_tick.attach(&v_des_calculate_qref,T2);                 //v_des determined every T
+        //engine_control1_tick.attach(&engine_control1,T2);
+        //engine_control2_tick.attach(&engine_control2,T2);
+        
+           // HIDScope_tick.attach(&HIDScope_sample,T);             //EMG signals raw + filtered to HIDScope every T sec.
+        
         
     while(true)
-    {
-        ticker.attach(&emg_filtered,T);                         //EMG signals filtered + moving average every T sec.
-        ticker.attach(&v_des_calculate_qref,T);                 //v_des determined every T
-              
-       // HIDScope_tick.attach(&HIDScope_sample,T);             //EMG signals raw + filtered to HIDScope every T sec.
-        
-        button1.rise(switch_to_calibrate);                      //Switch state of calibration (which muscle)
-        wait(0.2f);                                             //Wait to avoid bouncing of button
-        button2.rise(calibrate);                                //Calibrate threshold for 3 muscles
-        wait(0.2f);                                             //Wait to avoid bouncing of button
-    
-        pc.printf("x is %i\n\r",x);
-        pc.printf("Movag0 = %f , Movag1 = %f, Movag2 = %f \n\r",movAg0, movAg1, movAg2);
-        pc.printf("Thresh0 = %f , Thresh1 = %f, Thresh2 = %f \n\r",Threshold0, Threshold1, Threshold2);
-        //wait(2.0f);    
-    }      
+    {;}      
 }