werkt nog niet

Dependencies:   HIDScope MODSERIAL biquadFilter mbed QEI

Fork of Project_script_union by Marijke Zondag

main.cpp

Committer:
MarijkeZondag
Date:
2018-10-31
Revision:
28:61d1372349c8
Parent:
27:fa493551be99
Child:
29:df10cb76ef26

File content as of revision 28:61d1372349c8:

#include "mbed.h"
#include "MODSERIAL.h"
#include "BiQuad.h"
#include "HIDScope.h"
#include <math.h>

//ATTENTION:    set mBed to version 151
//              set QEI to version 0, (gebruiken wij (nog) niet, is voor encoder)
//              set MODSERIAL to version 44
//              set HIDScope to version 7
//              set biquadFilter to version 7

//AnalogIn potmeter1          (A0);                   //First raw EMG signal input
//AnalogIn potmeter2          (A1);                   //Second raw EMG signal input

InterruptIn encoderA1       (D9);
InterruptIn encoderB1       (D8);
InterruptIn encoderA2       (D12);
InterruptIn encoderB2       (D13);

InterruptIn button1         (D10);                  
InterruptIn button2         (D11);

DigitalOut directionpin1    (D7);
DigitalOut directionpin2    (D4);

PwmOut pwmpin1              (D6);
PwmOut pwmpin2              (D5);

DigitalOut ledr             (LED_RED);
DigitalOut ledb             (LED_BLUE);
DigitalOut ledg             (LED_GREEN);


MODSERIAL pc(USBTX, USBRX);                       //Serial communication to see if the code works step by step, turn on if hidscope is off

//HIDScope    scope( 6 );                             //HIDScope set to 3x2 channels for 3 muscles, raw data + filtered

//Tickers
Ticker      func_tick;  
Ticker      engine_control1_tick;
Ticker      engine_control2_tick;                      

//Global variables
const float T   = 0.002f;                           //Ticker period             Deze wordt ook gebruikt in de PID, moet die niet anders???
const float T2  = 0.01f;

// Inverse Kinematica variables
const double L1 = 0.208;                                  // Hoogte van tafel tot joint 1
//const double L2 = 0.288;                                  // Hoogte van tafel tot joint 2
const double L3 = 0.212;                                  // Lengte van de arm
const double L4 = 0.089;                                  // Afstand van achterkant base tot joint 1
//const double L5 = 0.030;                                  // Afstand van joint 1 naar joint 2
const double r_trans = 0.035;                             // Kan gebruikt worden om om te rekenen van translation naar shaft rotation 

// Variërende variabelen inverse kinematics: 
double q1ref = 0;                                   // Huidige motorhoek van joint 1 zoals bepaald uit referentiesignaal --> checken of het goede type is
double q2ref = 0;                                   // Huidige motorhoek van joint 2 zoals bepaald uit referentiesignaal --> checken of het goede type is
double v_x;                                         // Desired velocity end effector in x direction --> Determined by EMG signals
double v_y;                                         // Desired velocity end effector in y direction --> Determined by EMG signals

double Lq1;                                         // Translatieafstand als gevolg van motor rotation joint 1
double Cq2;                                         // Joint angle of the system (corrected for gear ratio 1:5)

double q1_dot;                                      // Benodigde hoeksnelheid van motor 1 om v_des te bereiken
double q2_dot;                                      // Benodigde hoeksnelheid van motor 2 om v_des te bereiken 

double q1_ii;                                       // Reference signal for motorangle q1ref 
double q2_ii;                                       // Reference signal for motorangle q2ref

//Variables PID controller
double PI = 3.14159;
double Kp1 = 5.0;                                  //Motor 1           eerst 17.5 , nu 5
double Ki1 = 1.02;
double Kd1 = 23.2;
double encoder1 = 0;
double encoder_radians1=0;

double Kp2 = 5.0;                                  //Motor 2            eerst 17.5, nu 5
double Ki2 = 1.02;
double Kd2 = 23.2;
double encoder2 = 0;
double encoder_radians2=0;

int start_control = 0;

//double potmeter1s = (potmeter1*2)-1.0f;
//double potmeter2s = (potmeter2*2)-1.0f;
double emg_cal = 1;


//--------------Functions----------------------------------------------------------------------------------------------------------------------------//


//------------------ Encoder motor 1 --------------------------------//

void encoderA1_rise()       
{
    if(encoderB1==false)
    {
        encoder1++;
    }
    else
    {
        encoder1--;
    }
}

void encoderA1_fall()      
{
    if(encoderB1==true)
    {
        encoder1++;
    }
    else
    {
        encoder1--;
    }
}

void encoderB1_rise()       
{
    if(encoderA1==true)
    {
        encoder1++;
    }
    else
    {
        encoder1--;
    }
}

void encoderB1_fall()      
{
    if(encoderA1==false)
    {
        encoder1++;
    }
    else
    {
        encoder1--;
    }
}

void encoder_count1()
{
    encoderA1.rise(&encoderA1_rise);
    encoderA1.fall(&encoderA1_fall);
    encoderB1.rise(&encoderB1_rise);
    encoderB1.fall(&encoderB1_fall);
}

//------------------ Encoder motor 2 --------------------------------//

void encoderA2_rise()       
{
    if(encoderB2==false)
    {
        encoder2++;
    }
    else
    {
        encoder2--;
    }
}

void encoderA2_fall()      
{
    if(encoderB2==true)
    {
        encoder2++;
    }
    else
    {
        encoder2--;
    }
}

void encoderB2_rise()       
{
    if(encoderA2==true)
    {
        encoder2++;
    }
    else
    {
        encoder2--;
    }
}

void encoderB2_fall()      
{
    if(encoderA2==false)
    {
        encoder2++;
    }
    else
    {
        encoder2--;
    }
}

void encoder_count2()
{
    encoderA2.rise(&encoderA2_rise);
    encoderA2.fall(&encoderA2_fall);
    encoderB2.rise(&encoderB2_rise);
    encoderB2.fall(&encoderB2_fall);
}

//------------------ Filter EMG + Calibration EMG --------------------------------//


//------------------ Inversed Kinematics --------------------------------//


//---------PID controller motor 1 + start motor 1 -----------------------------------------------------------//
double PID_controller1(double err1)
{
    pc.printf("ik doe het, PDI 1\n\r");

  static double err_integral1 = 0;
  static double err_prev1 = err1; // initialization with this value only done once!
  
  static BiQuad LowPassFilter1(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);

  // Proportional part:
  double u_k1 = Kp1 * err1;

  /* Integral part  
  err_integral1 = err_integral1 + err1 * T;
  double u_i1 = Ki1 * err_integral1;

  // Derivative part
  double err_derivative1 = (err1 - err_prev1)/T;
  double filtered_err_derivative1 = LowPassFilter1.step(err_derivative1);
  double u_d1 = Kd1 * filtered_err_derivative1;
  err_prev1 = err1;
  */

  // Sum all parts and return it
  return u_k1+0; //+ u_i1 + u_d1;  
}

void start_your_engines1(double u1)
{
    pc.printf("ik doe het, engine start 1\n\r");

    if(encoder1<5250 && encoder1>-5250)                              //limits rotation, in counts                
    {
         pwmpin1 = 1;                                         //u_total moet nog geschaald worden om in de motor gevoerd te worden!!!
         directionpin1.write(0);
    }
    else
    {
        pwmpin1 = 0;
    }
}  

void engine_control1()                                           //Engine 1 is rotational engine, connected with left side pins
{
    //while(start_control == 1)
    //{
        pc.printf("ik doe het, engine control 1\n\r");
        encoder_radians1 = encoder1*(2*PI)/8400;
        double err1 = q1ref - encoder_radians1;
        double u1 = PID_controller1(err1);                               //PID controller function call
        start_your_engines1(u1);  

    //   break;
    //}
}



//---------PID controller motor 2 + start motor 2 -----------------------------------------------------------//
double PID_controller2(double err2)
{
  pc.printf("ik doe het, PDI 2\n\r");

  static double err_integral2 = 0;
  static double err_prev2 = err2; // initialization with this value only done once!
  
  static BiQuad LowPassFilter2(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);

  // Proportional part:
  double u_k2 = Kp2 * err2;

  /* Integral part
  err_integral2 = err_integral2 + err2 * T;
  double u_i2 = Ki2 * err_integral2;

  // Derivative part
  double err_derivative2 = (err2 - err_prev2)/T;
  double filtered_err_derivative2 = LowPassFilter2.step(err_derivative2);
  double u_d2 = Kd2 * filtered_err_derivative2;
  err_prev2 = err2;
  */

  // Sum all parts and return it
  return u_k2+0; //+ u_i2 + u_d2;  
}

void start_your_engines2(double u2)
{
    pc.printf("ik doe het, engine start 2\n\r");

     if(encoder2<12600 && encoder2>-1)                              //limits translation in counts
     {
        pwmpin2 = 1;                                       //u_total moet nog geschaald worden om in de motor gevoerd te worden!!!
        directionpin2.write(0);
     }
    else
     {
        pwmpin2 = 0;
     }
    
}  

void engine_control2()                                             //Engine 2 is translational engine, connected with right side wires
{
        pc.printf("ik doe het, engine control 2\n\r");

        encoder_radians2 = encoder2*(2*PI)/8400;
        double err2 = q2ref - encoder_radians2;
        double u2 = PID_controller2(err2);                             //PID controller function call
        start_your_engines2(u2);                                       //Call start_your_engines function
}


void inverse_kinematics()
{
    
    pc.printf("ik doe het, inverse kinematics\n\r");
    Lq1 = q1ref*r_trans;                            
    Cq2 = q2ref/5.0;                               

    q1_dot = v_x + (v_y*(L1 + L3*sin(Cq2)))/(L4 + Lq1 + L3*cos(Cq2));     
    q2_dot = v_y/(L4 + Lq1 + L3*cos(Cq2));                                       

    q1_ii = q1ref + q1_dot*T;                       
    q2_ii = q2ref + q2_dot*T; 
        
    q1ref = q1_ii;
    q2ref = q2_ii; 
    
    //start_control = 1;
    engine_control1();
    engine_control2();
}

void v_des_calculate_qref()
{
                if(button1==0)                   //If the filtered EMG signal of muscle 1 is higher than the threshold, motor 1 will turn
                {
                    v_x = 0.5f;                          //beweging in +x direction
                    ledr = 0;                           //red
                    ledb = 1;
                    ledg = 1;
                }
                else if(button2==0)              //If the filtered EMG signal of muscle 2 is higher than the threshold, motor 1 and 2 will turn
                {
                    v_y = 0.5f;                          //beweging in +y direction
                    ledr = 1;                           //green
                    ledb = 1;
                    ledg = 0;
                }
               /*
                else if(button1==0 && button2==0)              //If the filtered EMG signal of muscle 0 is higher than the threshold, motor1 will turn in 1 direction
                {
                    v_x = -0.5f;
                    v_y = -0.5f;
                    ledr = 1;                           //Blue
                    ledb = 0;
                    ledg = 1;  
                }             
                */
                else                                    //If not higher than the threshold, motors will not turn at all
                {                    
                    v_x = 0;
                    v_y = 0;
                    ledr = 0;                           //white
                    ledb = 0;
                    ledg = 0;
                    //pwmpin1 = 0;
                    //pwmpin2 = 0;
                }
                
        inverse_kinematics();                           //Call inverse kinematics function
       
}

//------------------ Start main function --------------------------//


int main()
{         
        pc.baud(115200);
        pc.printf("Hello World!\r\n");                            //Serial communication only works if hidscope is turned off.
        pwmpin1.period_us(60);                                    //60 microseconds PWM period, 16.7 kHz 
        
        func_tick.attach(&v_des_calculate_qref,T2);                 //v_des determined every T
        //engine_control1_tick.attach(&engine_control1,T2);
        //engine_control2_tick.attach(&engine_control2,T2);
        
           // HIDScope_tick.attach(&HIDScope_sample,T);             //EMG signals raw + filtered to HIDScope every T sec.
        
        
    while(true)
    {;}      
}