mooie code

Dependencies:   HIDScope MODSERIAL QEI biquadFilter mbed

Fork of Project_script_union_final by Esmee Buter

Revision:
26:ac5656aa35c7
Parent:
25:bbef09ff226b
Child:
27:fa493551be99
--- a/main.cpp	Wed Oct 31 09:28:45 2018 +0000
+++ b/main.cpp	Wed Oct 31 10:36:01 2018 +0000
@@ -14,11 +14,17 @@
 AnalogIn emg1_in            (A1);                   //Second raw EMG signal input
 AnalogIn emg2_in            (A2);                   //Third raw EMG signal input
 
-InterruptIn button1         (D10);                  //Is this one available? We need to make a map of which pins are used for what.
+InterruptIn encoderA1       (D9);
+InterruptIn encoderB1       (D8);
+InterruptIn encoderA2       (D12);
+InterruptIn encoderB2       (D13);
+
+InterruptIn button1         (D10);                  
 InterruptIn button2         (D11);
 
 DigitalOut directionpin1    (D7);
 DigitalOut directionpin2    (D4);
+
 PwmOut pwmpin1              (D6);
 PwmOut pwmpin2              (D5);
 
@@ -73,14 +79,13 @@
 BiQuad emg2band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 );
 BiQuad notch3( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 );                //Notch filter
 
-// Inverse Kinematica variabelen
+// Inverse Kinematica variables
 const double L1 = 0.208;                                  // Hoogte van tafel tot joint 1
 const double L2 = 0.288;                                  // Hoogte van tafel tot joint 2
 const double L3 = 0.212;                                  // Lengte van de arm
 const double L4 = 0.089;                                  // Afstand van achterkant base tot joint 1
 const double L5 = 0.030;                                  // Afstand van joint 1 naar joint 2
 const double r_trans = 0.035;                             // Kan gebruikt worden om om te rekenen van translation naar shaft rotation 
-//const double T = 0.002f;                                  // Ticker value
 
 // Variërende variabelen inverse kinematics: 
 double q1ref = 0;                                   // Huidige motorhoek van joint 1 zoals bepaald uit referentiesignaal --> checken of het goede type is
@@ -97,9 +102,199 @@
 double q1_ii;                                       // Reference signal for motorangle q1ref 
 double q2_ii;                                       // Reference signal for motorangle q2ref
 
+//Variables PID controller
+double PI = 3.14159;
+double Kp1 = 17.5;                                  //Motor 1
+double Ki1 = 1.02;
+double Kd1 = 23.2;
+double encoder1 = 0;
+double encoder_radians1=0;
 
-//Functions
+double Kp2 = 17.5;                                  //Motor 2
+double Ki2 = 1.02;
+double Kd2 = 23.2;
+double encoder2 = 0;
+double encoder_radians2=0;
+
+
+//--------------Functions----------------------------------------------------------------------------------------------------------------------------//
+
+
+//------------------ Encoder motor 1 --------------------------------//
+
+void encoderA1_rise()       
+{
+    if(encoderB1==false)
+    {
+        encoder1++;
+    }
+    else
+    {
+        encoder1--;
+    }
+}
+
+void encoderA1_fall()      
+{
+    if(encoderB1==true)
+    {
+        encoder1++;
+    }
+    else
+    {
+        encoder1--;
+    }
+}
+
+void encoderB1_rise()       
+{
+    if(encoderA1==true)
+    {
+        encoder1++;
+    }
+    else
+    {
+        encoder1--;
+    }
+}
+
+void encoderB1_fall()      
+{
+    if(encoderA1==false)
+    {
+        encoder1++;
+    }
+    else
+    {
+        encoder1--;
+    }
+}
+
+void encoder_count1()
+{
+    encoderA1.rise(&encoderA1_rise);
+    encoderA1.fall(&encoderA1_fall);
+    encoderB1.rise(&encoderB1_rise);
+    encoderB1.fall(&encoderB1_fall);
+}
+
+//------------------ Encoder motor 2 --------------------------------//
+
+void encoderA2_rise()       
+{
+    if(encoderB2==false)
+    {
+        encoder2++;
+    }
+    else
+    {
+        encoder2--;
+    }
+}
 
+void encoderA2_fall()      
+{
+    if(encoderB2==true)
+    {
+        encoder2++;
+    }
+    else
+    {
+        encoder2--;
+    }
+}
+
+void encoderB2_rise()       
+{
+    if(encoderA2==true)
+    {
+        encoder2++;
+    }
+    else
+    {
+        encoder2--;
+    }
+}
+
+void encoderB2_fall()      
+{
+    if(encoderA2==false)
+    {
+        encoder2++;
+    }
+    else
+    {
+        encoder2--;
+    }
+}
+
+void encoder_count2()
+{
+    encoderA2.rise(&encoderA2_rise);
+    encoderA2.fall(&encoderA2_fall);
+    encoderB2.rise(&encoderB2_rise);
+    encoderB2.fall(&encoderB2_fall);
+}
+
+//------------------ Filter EMG + Calibration EMG --------------------------------//
+
+void EMGFilter0()
+{   
+    emg0_raw      = emg0_in.read();                      //give name to raw EMG0 data calve
+    emg0_filt_x   = emg0filter.step(emg0_raw);           //Use biquad chain to filter raw EMG data
+    emg0_filt     = abs(emg0_filt_x);                    //rectifier. LET OP: volgorde filter: band-notch-rectifier. Eerst band-rect-notch, stel er komt iets raars uit, dan Notch uit de biquad chain halen en aparte chain voor aanmaken.
+}
+
+void EMGFilter1()
+{
+    emg1_raw      = emg1_in.read();                      //give name to raw EMG1 data bicep 1
+    emg1_filt_x   = emg1filter.step(emg1_raw);           //Use biquad chain to filter raw EMG data
+    emg1_filt     = abs(emg1_filt_x);                    //rectifier. LET OP: volgorde filter: band-notch-rectifier. Eerst band-rect-notch.
+}
+
+void EMGFilter2()
+{
+    emg2_raw      = emg2_in.read();                      //Give name to raw EMG1 data bicep 2
+    emg2_filt_x   = emg2filter.step(emg2_raw);           //Use biquad chain to filter raw EMG data
+    emg2_filt     = abs(emg2_filt_x);                    //Rectifier. LET OP: volgorde filter: band-notch-rectifier.
+}
+ 
+void MovAg()                                         //Calculate moving average (MovAg)
+{
+    for (int i = windowsize-1; i>=0; i--)            //Make arrays for the last datapoints of the filtered signals
+    {
+        StoreArray0[i] = StoreArray0[i-1];           //Shifts the i'th element one place to the right, this makes it "rolling or moving" average.
+        StoreArray1[i] = StoreArray1[i-1];
+        StoreArray2[i] = StoreArray2[i-1];
+    }
+    
+    StoreArray0[0] = emg0_filt;                      //Stores the latest datapoint of the filtered signal in the first element of the array
+    StoreArray1[0] = emg1_filt;
+    StoreArray2[0] = emg2_filt;
+    
+    sum1 = 0.0;
+    sum2 = 0.0;
+    sum3 = 0.0;
+    
+    for(int a = 0; a<= windowsize-1; a++)            //Sums the elements in the arrays
+    {
+        sum1 += StoreArray0[a];
+        sum2 += StoreArray1[a];
+        sum3 += StoreArray2[a];
+    }
+    
+    movAg0 = sum1/windowsize;                        //calculates an average in the array
+    movAg1 = sum2/windowsize;
+    movAg2 = sum3/windowsize;
+    //serial getallen sturen, als het 1 getal is gaat hier wat fout, als het een reeks is dan gaat er bij de input naar HIDscope wat fout.
+}
+
+void emg_filtered()             //Call all filter functions
+{
+    EMGFilter0();
+    EMGFilter1();
+    EMGFilter2();
+}
 void switch_to_calibrate()
 {
     x++;                        //Every time function gets called, x increases. Every button press --> new calibration state.
@@ -193,80 +388,24 @@
         }
     }
 }
-
+/*
 void HIDScope_sample()
 {    
-    /* Set the sampled emg values in channel 0 (the first channel) and 1 (the second channel) in the 'HIDScope' instance named 'scope' */
-    //scope.set(0,emg0_raw);
-    //scope.set(1,emg0_filt);
-    //scope.set(1,movAg0);          //als moving average werkt
-    //scope.set(2,emg1_raw);
-    //scope.set(3,emg1_filt);
-    //scope.set(3,movAg1);          //als moving average werkt
-    //scope.set(4,emg2_raw);
-    //scope.set(5,emg2_filt);
-    //scope.set(5,movAg2);          //als moving average werkt
-
-    //scope.send();                   //Send data to HIDScope server
-}
+    scope.set(0,emg0_raw);
+    scope.set(1,emg0_filt);
+    scope.set(1,movAg0);          //als moving average werkt
+    scope.set(2,emg1_raw);
+    scope.set(3,emg1_filt);
+    scope.set(3,movAg1);          //als moving average werkt
+    scope.set(4,emg2_raw);
+    scope.set(5,emg2_filt);
+    scope.set(5,movAg2);          //als moving average werkt
 
-void EMGFilter0()
-{   
-    emg0_raw      = emg0_in.read();                      //give name to raw EMG0 data
-    emg0_filt_x   = emg0filter.step(emg0_raw);           //Use biquad chain to filter raw EMG data
-    emg0_filt     = abs(emg0_filt_x);                    //rectifier. LET OP: volgorde filter: band-notch-rectifier. Eerst band-rect-notch, stel er komt iets raars uit, dan Notch uit de biquad chain halen en aparte chain voor aanmaken.
-}
-
-void EMGFilter1()
-{
-    emg1_raw      = emg1_in.read();                      //give name to raw EMG1 data
-    emg1_filt_x   = emg1filter.step(emg1_raw);           //Use biquad chain to filter raw EMG data
-    emg1_filt     = abs(emg1_filt_x);                    //rectifier. LET OP: volgorde filter: band-notch-rectifier. Eerst band-rect-notch.
-}
-
-void EMGFilter2()
-{
-    emg2_raw      = emg2_in.read();                      //Give name to raw EMG1 data
-    emg2_filt_x   = emg2filter.step(emg2_raw);           //Use biquad chain to filter raw EMG data
-    emg2_filt     = abs(emg2_filt_x);                    //Rectifier. LET OP: volgorde filter: band-notch-rectifier.
+    scope.send();                   //Send data to HIDScope server
 }
- 
-void MovAg()                                         //Calculate moving average (MovAg), klopt nog niet!!
-{
-    for (int i = windowsize-1; i>=0; i--)            //Make arrays for the last datapoints of the filtered signals
-    {
-        StoreArray0[i] = StoreArray0[i-1];           //Shifts the i'th element one place to the right, this makes it "rolling or moving" average.
-        StoreArray1[i] = StoreArray1[i-1];
-        StoreArray2[i] = StoreArray2[i-1];
-    }
-    
-    StoreArray0[0] = emg0_filt;                      //Stores the latest datapoint of the filtered signal in the first element of the array
-    StoreArray1[0] = emg1_filt;
-    StoreArray2[0] = emg2_filt;
-    
-    sum1 = 0.0;
-    sum2 = 0.0;
-    sum3 = 0.0;
-    
-    for(int a = 0; a<= windowsize-1; a++)            //Sums the elements in the arrays
-    {
-        sum1 += StoreArray0[a];
-        sum2 += StoreArray1[a];
-        sum3 += StoreArray2[a];
-    }
-    
-    movAg0 = sum1/windowsize;                        //calculates an average in the array
-    movAg1 = sum2/windowsize;
-    movAg2 = sum3/windowsize;
-    //serial getallen sturen, als het 1 getal is gaat hier wat fout, als het een reeks is dan gaat er bij de input naar HIDscope wat fout.
-}
+*/
 
-void emg_filtered()             //Call all filter functions
-{
-    EMGFilter0();
-    EMGFilter1();
-    EMGFilter2();
-}
+//------------------ Inversed Kinematics --------------------------------//
 
 void inverse_kinematics()
 {
@@ -285,51 +424,148 @@
 
 void v_des_calculate_qref()
 {
-    while(emg_cal==1)                              //After calibration is finished, emg_cal will be 1. Otherwise 0. 
+    while(emg_cal==1)                                   //After calibration is finished, emg_cal will be 1. Otherwise 0. 
     { 
-                if(movAg1>Threshold1)                          //If the filtered EMG signal of muscle 1 is higher than the threshold, motor 1 will turn
+                if(movAg1>Threshold1)                   //If the filtered EMG signal of muscle 1 is higher than the threshold, motor 1 will turn
                 {
-                    v_x = 1.0;                                     //beweging in +x direction
-                    ledr = 0;                                    //red
+                    v_x = 1.0;                          //beweging in +x direction
+                    ledr = 0;                           //red
                     ledb = 1;
                     ledg = 1;
                 }
-                else if(movAg2>Threshold2)                          //If the filtered EMG signal of muscle 2 is higher than the threshold, motor 1 and 2 will turn
+                else if(movAg2>Threshold2)              //If the filtered EMG signal of muscle 2 is higher than the threshold, motor 1 and 2 will turn
                 {
-                    v_y = 1.0;                                    //beweging in +y direction
-                    ledr = 1;                                   //green
+                    v_y = 1.0;                          //beweging in +y direction
+                    ledr = 1;                           //green
                     ledb = 1;
                     ledg = 0;
                 }
                
-                else if(movAg0>Threshold0)                               //If the filtered EMG signal of muscle 0 is higher than the threshold, motor1 will turn in 1 direction
+                else if(movAg0>Threshold0)              //If the filtered EMG signal of muscle 0 is higher than the threshold, motor1 will turn in 1 direction
                 {
                     v_x = -v_x;
                     v_y = -v_y;
-                    ledr = 1;                                    //Blue
+                    ledr = 1;                           //Blue
                     ledb = 0;
                     ledg = 1;  
                 }             
-                else                                               //If not higher than the threshold, motors will not turn at all
+                else                                    //If not higher than the threshold, motors will not turn at all
                 {                    
                     v_x = 0;
                     v_y = 0;
-                    ledr = 0;                                   //white
+                    ledr = 0;                           //white
                     ledb = 0;
                     ledg = 0;
                 }
                             
         break;           
         }
-        inverse_kinematics();
+        
+        inverse_kinematics();                           //Call inverse kinematics function
+}
+
+//---------PID controller motor 1 + start motor 1 -----------------------------------------------------------//
+double PID_controller1(double err1)
+{
+  static double err_integral1 = 0;
+  static double err_prev1 = err1; // initialization with this value only done once!
+  
+  static BiQuad LowPassFilter1(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
+
+  // Proportional part:
+  double u_k1 = Kp1 * err1;
+
+  // Integral part
+  err_integral1 = err_integral1 + err1 * T;
+  double u_i1 = Ki1 * err_integral1;
+
+  // Derivative part
+  double err_derivative1 = (err1 - err_prev1)/T;
+  double filtered_err_derivative1 = LowPassFilter1.step(err_derivative1);
+  double u_d1 = Kd1 * filtered_err_derivative1;
+  err_prev1 = err1;
+
+  // Sum all parts and return it
+  return u_k1 + u_i1 + u_d1;  
+}
+
+void start_your_engines1(double u1)
+{
+    if(encoder1<5250 && encoder1>-5250)                              //limits rotation, in counts                
+    {
+         pwmpin1 = fabs(u1);                                         //u_total moet nog geschaald worden om in de motor gevoerd te worden!!!
+         directionpin1.write(u1 < 0.0f);
+    }
+    else
+    {
+        pwmpin1 = 0;
+    }
+}  
+
+    void engine_control1()                                           //Engine 1 is rotational engine, connected with left side pins
+{
+    encoder_radians1 = encoder1*(2*PI)/8400;
+    double err1 = q1ref - encoder_radians1;
+    double u1 = PID_controller1(err1);                               //PID controller function call
+    start_your_engines1(u1);                                         //Call start_your_engines function
 }
 
 
+
+//---------PID controller motor 1 + start motor 1 -----------------------------------------------------------//
+double PID_controller2(double err2)
+{
+  static double err_integral2 = 0;
+  static double err_prev2 = err2; // initialization with this value only done once!
+  
+  static BiQuad LowPassFilter2(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
+
+  // Proportional part:
+  double u_k2 = Kp2 * err2;
+
+  // Integral part
+  err_integral2 = err_integral2 + err2 * T;
+  double u_i2 = Ki2 * err_integral2;
+
+  // Derivative part
+  double err_derivative2 = (err2 - err_prev2)/T;
+  double filtered_err_derivative2 = LowPassFilter2.step(err_derivative2);
+  double u_d2 = Kd2 * filtered_err_derivative2;
+  err_prev2 = err2;
+
+  // Sum all parts and return it
+  return u_k2 + u_i2 + u_d2;  
+}
+
+void start_your_engines2(double u2)
+{
+    if(encoder2<12600 && encoder2>-1)                              //limits translation in counts
+    {
+         pwmpin2 = fabs(u2);                                       //u_total moet nog geschaald worden om in de motor gevoerd te worden!!!
+         directionpin2.write(u2 < 0.0f);
+    }
+    else
+    {
+        pwmpin2 = 0;
+    }
+}  
+
+void engine_control2()                                             //Engine 2 is translational engine, connected with right side wires
+{
+    encoder_radians2 = encoder2*(2*PI)/8400;
+    double err2 = q2ref - encoder_radians2;
+    double u2 = PID_controller2(err2);                             //PID controller function call
+    start_your_engines2(u2);                                       //Call start_your_engines function
+}
+
+//------------------ Start main function --------------------------//
+
+
 int main()
 {         
         pc.baud(115200);
-        pc.printf("Hello World!\r\n");                                                          //Serial communication only works if hidscope is turned off.
-        pwmpin1.period_us(60);                      //60 microseconds PWM period, 16.7 kHz 
+        pc.printf("Hello World!\r\n");                            //Serial communication only works if hidscope is turned off.
+        pwmpin1.period_us(60);                                    //60 microseconds PWM period, 16.7 kHz 
 
         emg0filter.add( &emg0band1 ).add( &emg0band2 ).add( &emg0band3 ).add( &notch1 );        //attach biquad elements to chain
         emg1filter.add( &emg1band1 ).add( &emg1band2 ).add( &emg1band3 ).add( &notch2 );
@@ -337,20 +573,20 @@
         
     while(true)
     {
-        ticker.attach(&emg_filtered,T);         //EMG signals filtered every T sec.
-        ticker.attach(&MovAg,T);                //Moving average calculation every T sec.
-        ticker.attach(&v_des_calculate_qref,T);                //v_des determined every T
+        ticker.attach(&emg_filtered,T);                         //EMG signals filtered every T sec.
+        ticker.attach(&MovAg,T);                                //Moving average calculation every T sec.
+        ticker.attach(&v_des_calculate_qref,T);                 //v_des determined every T
               
-       // HIDScope_tick.attach(&HIDScope_sample,T);   //EMG signals raw + filtered to HIDScope every T sec.
+       // HIDScope_tick.attach(&HIDScope_sample,T);             //EMG signals raw + filtered to HIDScope every T sec.
         
-    button1.rise(switch_to_calibrate);          //Switch state of calibration (which muscle)
-    wait(0.2f);                                 //Wait to avoid bouncing of button
-    button2.rise(calibrate);                    //Calibrate threshold for 3 muscles
-    wait(0.2f);                                 //Wait to avoid bouncing of button
+        button1.rise(switch_to_calibrate);                      //Switch state of calibration (which muscle)
+        wait(0.2f);                                             //Wait to avoid bouncing of button
+        button2.rise(calibrate);                                //Calibrate threshold for 3 muscles
+        wait(0.2f);                                             //Wait to avoid bouncing of button
     
-    pc.printf("x is %i\n\r",x);
-    pc.printf("Movag0 = %f , Movag1 = %f, Movag2 = %f \n\r",movAg0, movAg1, movAg2);
-    pc.printf("Thresh0 = %f , Thresh1 = %f, Thresh2 = %f \n\r",Threshold0, Threshold1, Threshold2);
-    //wait(2.0f);    
+        pc.printf("x is %i\n\r",x);
+        pc.printf("Movag0 = %f , Movag1 = %f, Movag2 = %f \n\r",movAg0, movAg1, movAg2);
+        pc.printf("Thresh0 = %f , Thresh1 = %f, Thresh2 = %f \n\r",Threshold0, Threshold1, Threshold2);
+        //wait(2.0f);    
     }      
 }