Sungwoo Kim
/
HydraulicControlBoard_Rainbow_v1_2_
rainbow
CAN/function_CAN.cpp
- Committer:
- Lightvalve
- Date:
- 2022-06-17
- Revision:
- 244:e9c5ec04e378
- Parent:
- 243:30896263bd8b
- Child:
- 247:bfdf0f479a38
File content as of revision 244:e9c5ec04e378:
#include "function_CAN.h" #include "setting.h" #include "function_utilities.h" #include "SPI_EEP_ENC.h" #include "stm32f4xx_flash.h" #include "FlashWriter.h" // CAN ID Setting Variables int CID_RX_CMD = 100; int CID_RX_REF_POSITION = 200; int CID_RX_REF_OPENLOOP = 300; int CID_RX_REF_PWM = 400; int CID_TX_INFO = 1100; int CID_TX_POS_VEL_TORQ = 1200; int CID_TX_PWM = 1300; int CID_TX_SOMETHING = 1400; int CID_TX_CURRENT = 1400; int CID_TX_VOUT = 1500; int CID_TX_VALVE_POSITION = 1600; // variables uint8_t can_index = 0; extern DigitalOut LED; int can_test = 0; /******************************************************************************* * State Class functions ******************************************************************************/ void State::UpdateSen(float sen_new, float Freq_update, float f_cut) { if(f_cut<=0.0f) f_cut=0.001f; this->sen_diff = (sen_new-this->sen)*Freq_update; float alpha_update = 1.0f / (1.0f + Freq_update / (2.0f * 3.14f * f_cut)); // f_cutoff : 100Hz this->sen = (1.0f - alpha_update) * this->sen + alpha_update * sen_new; } void State::UpdateRef(float ref_new) { this->ref = ref_new; } void State::Reset() { this->sen = 0.0f; this->sen_diff = 0.0f; this->ref = 0.0f; this->err = 0.0f; this->err_int = 0.0f; this->err_old = 0.0f; this->err_diff = 0.0f; } /******************************************************************************* * CAN functions ******************************************************************************/ void CAN_ID_INIT(void) { CID_RX_CMD = (int) (BNO + INIT_CID_RX_CMD); CID_RX_REF_POSITION = (int) (BNO + INIT_CID_RX_REF_POSITION); CID_RX_REF_OPENLOOP = (int) (BNO + INIT_CID_RX_REF_OPENLOOP); CID_RX_REF_PWM = (int) (BNO + INIT_CID_RX_REF_PWM); CID_TX_INFO = (int) (BNO + INIT_CID_TX_INFO); CID_TX_POS_VEL_TORQ = (int) (BNO + INIT_CID_TX_POS_VEL_TORQ); CID_TX_PWM = (int) (BNO + INIT_CID_TX_PWM); CID_TX_CURRENT = (int) (BNO + INIT_CID_TX_CURRENT); CID_TX_VOUT = (int) (BNO + INIT_CID_TX_VOUT); CID_TX_VALVE_POSITION = (int) (BNO + INIT_CID_TX_VALVE_POSITION); CID_TX_SOMETHING = (int) (BNO + INIT_CID_TX_SOMETHING); } void ReadCMD(int16_t CMD) { switch(CMD) { case CRX_ASK_INFO: { CAN_TX_INFO(); break; } case CRX_ASK_BNO: { CAN_TX_BNO(); break; } case CRX_SET_BNO: { BNO = (int16_t) msg.data[1]; spi_eeprom_write(RID_BNO, (int16_t) BNO); CAN_ID_INIT(); // can id init break; } case CRX_ASK_OPERATING_MODE: { CAN_TX_OPERATING_MODE(); break; } case CRX_SET_OPERATING_MODE: { OPERATING_MODE = (uint8_t) msg.data[1]; SENSING_MODE = (uint8_t) msg.data[2]; CURRENT_CONTROL_MODE = (uint8_t) msg.data[3]; FLAG_VALVE_DEADZONE = (uint8_t) msg.data[4]; spi_eeprom_write(RID_OPERATING_MODE, (int16_t) OPERATING_MODE); spi_eeprom_write(RID_SENSING_MODE, (int16_t) SENSING_MODE); spi_eeprom_write(RID_CURRENT_CONTROL_MODE, (int16_t) CURRENT_CONTROL_MODE); spi_eeprom_write(RID_FLAG_VALVE_DEADZONE, (int16_t) FLAG_VALVE_DEADZONE); break; } case CRX_SET_ENC_ZERO: { ENC_SET_ZERO(); break; } case CRX_SET_FET_ON: { break; } case CRX_SET_POS_TORQ_TRANS: { MODE_POS_FT_TRANS = (int16_t) msg.data[1]; /* MODE_POS_FT_TRANS == 0 : Position Control MODE_POS_FT_TRANS == 1 : Trasition(Position->Torque) MODE_POS_FT_TRANS == 2 : Torque Control (Convert to 2 automatically 3sec after transition) MODE_POS_FT_TRANS == 3 : Transition(Toque->Position) */ break; } case CRX_ASK_CAN_FREQ: { CAN_TX_CAN_FREQ(); break; } case CRX_SET_CAN_FREQ: { CAN_FREQ = (int16_t) (msg.data[1] | msg.data[2] << 8); spi_eeprom_write(RID_CAN_FREQ, (int16_t) CAN_FREQ); break; } case CRX_ASK_CONTROL_MODE: { CAN_TX_CONTROL_MODE(); break; } case CRX_SET_CONTROL_MODE: { CONTROL_UTILITY_MODE = (int16_t) (msg.data[1]); if (CONTROL_MODE == 22) { //MODE_FIND_HOME FLAG_FIND_HOME = true; FINDHOME_STAGE = FINDHOME_INIT; } break; } case CRX_SET_DATA_REQUEST: { int request_type = msg.data[2]; flag_data_request[request_type] = msg.data[1]; // if (flag_data_request[1] == HIGH) SPI_VREF_DAC_WRITE(PRES_A_VREF, PRES_B_VREF, TORQUE_VREF, 0); // set DAC //if (flag_data_request[1] == HIGH) dac_1 = PRES_A_VREF/3.3; // if (flag_data_request[2] == HIGH) SPI_VREF_DAC_WRITE(PRES_A_VREF, PRES_B_VREF, TORQUE_VREF, 0); // set DAC //if (flag_data_request[2] == HIGH) dac_2 = PRES_B_VREF/3.3; break; } case CRX_ASK_JOINT_ENC_DIR: { CAN_TX_JOINT_ENC_DIR(); break; } case CRX_SET_JOINT_ENC_DIR: { DIR_JOINT_ENC = (int16_t) (msg.data[1] | msg.data[2] << 8); if (DIR_JOINT_ENC >= 0) DIR_JOINT_ENC = 1; else DIR_JOINT_ENC = -1; spi_eeprom_write(RID_JOINT_ENC_DIR, (int16_t) DIR_JOINT_ENC); break; } case CRX_ASK_VALVE_DIR: { CAN_TX_VALVE_DIR(); break; } case CRX_SET_VALVE_DIR: { DIR_VALVE = (int16_t) (msg.data[1] | msg.data[2] << 8); if (DIR_VALVE >= 0) DIR_VALVE = 1; else DIR_VALVE = -1; spi_eeprom_write(RID_VALVE_DIR, (int16_t) DIR_VALVE); break; } case CRX_ASK_VALVE_ENC_DIR: { CAN_TX_VALVE_ENC_DIR(); break; } case CRX_SET_VALVE_ENC_DIR: { DIR_VALVE_ENC = (int16_t) (msg.data[1] | msg.data[2] << 8); if (DIR_VALVE_ENC >= 0) DIR_VALVE_ENC = 1; else DIR_VALVE_ENC = -1; spi_eeprom_write(RID_VALVE_ENC_DIR, (int16_t) DIR_VALVE_ENC); break; } case CRX_ASK_VOLTAGE_SUPPLY: { CAN_TX_VOLTAGE_SUPPLY(); break; } case CRX_SET_VOLTAGE_SUPPLY: { SUPPLY_VOLTAGE = (double) ((int16_t) (msg.data[1] | msg.data[2] << 8)) / 10.0f; spi_eeprom_write(RID_VOLATGE_SUPPLY, (int16_t) (SUPPLY_VOLTAGE * 10.0f)); break; } case CRX_ASK_VOLTAGE_VALVE: { CAN_TX_VOLTAGE_VALVE(); break; } case CRX_SET_VOLTAGE_VALVE: { VALVE_VOLTAGE_LIMIT = (double) ((int16_t) (msg.data[1] | msg.data[2] << 8)) / 10.0f; spi_eeprom_write(RID_VOLTAGE_VALVE, (int16_t) (VALVE_VOLTAGE_LIMIT * 10.0f)); break; } case CRX_SET_HOMEPOS: { CONTROL_UTILITY_MODE = 22; break; } case CRX_ASK_VARIABLE_SUPPLY: { CAN_TX_VARIABLE_SUPPLY_ONOFF(); break; } case CRX_SET_VARIABLE_SUPPLY: { SUPPLY_PRESSURE_UPDATE = msg.data[1]; break; } case CRX_ASK_PID_GAIN: { CAN_TX_PID_GAIN(msg.data[1]); break; } case CRX_SET_PID_GAIN: { if (msg.data[1] == 0) { P_GAIN_VALVE_POSITION = (int16_t) (msg.data[2] | msg.data[3] << 8); I_GAIN_VALVE_POSITION = (int16_t) (msg.data[4] | msg.data[5] << 8); D_GAIN_VALVE_POSITION = (int16_t) (msg.data[6] | msg.data[7] << 8); spi_eeprom_write(RID_P_GAIN_VALVE_POSITION, (int16_t) P_GAIN_VALVE_POSITION); spi_eeprom_write(RID_I_GAIN_VALVE_POSITION, (int16_t) I_GAIN_VALVE_POSITION); spi_eeprom_write(RID_D_GAIN_VALVE_POSITION, (int16_t) D_GAIN_VALVE_POSITION); } else if (msg.data[1] == 1) { P_GAIN_JOINT_POSITION = (int16_t) (msg.data[2] | msg.data[3] << 8); I_GAIN_JOINT_POSITION = (int16_t) (msg.data[4] | msg.data[5] << 8); D_GAIN_JOINT_POSITION = (int16_t) (msg.data[6] | msg.data[7] << 8); spi_eeprom_write(RID_P_GAIN_JOINT_POSITION, (int16_t) P_GAIN_JOINT_POSITION); spi_eeprom_write(RID_I_GAIN_JOINT_POSITION, (int16_t) I_GAIN_JOINT_POSITION); spi_eeprom_write(RID_D_GAIN_JOINT_POSITION, (int16_t) D_GAIN_JOINT_POSITION); } else if (msg.data[1] == 2) { P_GAIN_JOINT_TORQUE = (int16_t) (msg.data[2] | msg.data[3] << 8); I_GAIN_JOINT_TORQUE = (int16_t) (msg.data[4] | msg.data[5] << 8); D_GAIN_JOINT_TORQUE = (int16_t) (msg.data[6] | msg.data[7] << 8); spi_eeprom_write(RID_P_GAIN_JOINT_TORQUE, (int16_t) P_GAIN_JOINT_TORQUE); spi_eeprom_write(RID_I_GAIN_JOINT_TORQUE, (int16_t) I_GAIN_JOINT_TORQUE); spi_eeprom_write(RID_D_GAIN_JOINT_TORQUE, (int16_t) D_GAIN_JOINT_TORQUE); } else if (msg.data[1] == 3) { K_SPRING = (float) (((float) ((int16_t) (msg.data[2] | msg.data[3] << 8))) * 0.1f); D_DAMPER = (float) (((float) ((int16_t) (msg.data[4] | msg.data[5] << 8))) * 0.01f); // spi_eeprom_write(RID_K_SPRING, (int16_t) K_SPRING); // spi_eeprom_write(RID_D_DAMPER, (int16_t) D_DAMPER); } else if (msg.data[1] == 4) { P_GAIN_JOINT_TORQUE_FF = (int16_t) (msg.data[2] | msg.data[3] << 8); I_GAIN_JOINT_TORQUE_FF = (int16_t) (msg.data[4] | msg.data[5] << 8); D_GAIN_JOINT_TORQUE_FF = (int16_t) (msg.data[6] | msg.data[7] << 8); } break; } case CRX_ASK_VALVE_DEADZONE: { CAN_TX_VALVE_DEADZONE(); break; } case CRX_SET_VALVE_DEADZONE: { VALVE_CENTER = (int16_t) (msg.data[1] | msg.data[2] << 8); VALVE_DEADZONE_PLUS = (int16_t)(msg.data[3] | msg.data[4] << 8); VALVE_DEADZONE_MINUS = (int16_t)(msg.data[5] | msg.data[6] << 8); spi_eeprom_write(RID_VALVE_CNETER, VALVE_CENTER); spi_eeprom_write(RID_VALVE_DEADZONE_PLUS, VALVE_DEADZONE_PLUS); spi_eeprom_write(RID_VALVE_DEADZONE_MINUS, VALVE_DEADZONE_MINUS); break; } case CRX_ASK_VELOCITY_COMP_GAIN: { CAN_TX_VELOCITY_COMP_GAIN(); break; } case CRX_SET_VELOCITY_COMP_GAIN: { VELOCITY_COMP_GAIN = (int16_t) (msg.data[1] | msg.data[2] << 8); spi_eeprom_write(RID_VELOCITY_COMP_GAIN, (int16_t) VELOCITY_COMP_GAIN); break; } case CRX_ASK_VALVE_ELECTRIC_CENTER: { CAN_TX_VALVE_ELECTRIC_CENTER(); break; } case CRX_SET_VALVE_ELECTRIC_CENTER: { VALVE_ELECTRIC_CENTER = (int16_t) (msg.data[1] | msg.data[2] << 8); spi_eeprom_write(RID_VALVE_ELECTRIC_CENTER, (int16_t) VALVE_ELECTRIC_CENTER); break; } case CRX_ASK_VALVE_FF: { CAN_TX_VALVE_FF(); break; } case CRX_SET_VALVE_FF: { VALVE_FF = (int16_t) (msg.data[1] | msg.data[2] << 8); spi_eeprom_write(RID_VALVE_FF, (int16_t) VALVE_FF); break; } case CRX_ASK_BULK_MODULUS: { CAN_TX_BULK_MODULUS(); break; } case CRX_SET_BULK_MODULUS: { BULK_MODULUS = (int16_t) (msg.data[1] | msg.data[2] << 8); spi_eeprom_write(RID_BULK_MODULUS, (int16_t) BULK_MODULUS); break; } case CRX_ASK_CHAMBER_VOLUME: { CAN_TX_CHAMBER_VOLUME(); break; } case CRX_SET_CHAMBER_VOLUME: { CHAMBER_VOLUME_A = (int16_t) (msg.data[1] | msg.data[2] << 8); CHAMBER_VOLUME_B = (int16_t) (msg.data[3] | msg.data[4] << 8); spi_eeprom_write(RID_CHAMBER_VOLUME_A, (int16_t) CHAMBER_VOLUME_A); spi_eeprom_write(RID_CHAMBER_VOLUME_B, (int16_t) CHAMBER_VOLUME_B); break; } case CRX_ASK_PISTON_AREA: { CAN_TX_PISTON_AREA(); break; } case CRX_SET_PISTON_AREA: { PISTON_AREA_A = (int16_t) (msg.data[1] | msg.data[2] << 8); PISTON_AREA_B = (int16_t) (msg.data[3] | msg.data[4] << 8); PISTON_AREA_alpha = (double)PISTON_AREA_A/(double)PISTON_AREA_B; alpha3 = PISTON_AREA_alpha * PISTON_AREA_alpha*PISTON_AREA_alpha; spi_eeprom_write(RID_PISTON_AREA_A, (int16_t) PISTON_AREA_A); spi_eeprom_write(RID_PISTON_AREA_B, (int16_t) PISTON_AREA_B); break; } case CRX_ASK_SUP_PRES: { CAN_TX_SUP_PRES(); break; } case CRX_SET_SUP_PRES: { int16_t temp = (int16_t) (msg.data[1] | msg.data[2] << 8); spi_eeprom_write(RID_PRES_SUPPLY, temp); PRES_SUPPLY_NOM = (float)temp; PRES_SUPPLY = PRES_SUPPLY_NOM; break; } case CRX_ASK_ENC_LIMIT: { CAN_TX_ENC_LIMIT(); break; } case CRX_SET_ENC_LIMIT: { ENC_LIMIT_MINUS = (int16_t) (msg.data[1] | msg.data[2] << 8); ENC_LIMIT_PLUS = (int16_t) (msg.data[3] | msg.data[4] << 8); spi_eeprom_write(RID_ENC_LIMIT_MINUS, (int16_t) ENC_LIMIT_MINUS); spi_eeprom_write(RID_ENC_LIMIT_PLUS, (int16_t) ENC_LIMIT_PLUS); break; } case CRX_ASK_STROKE: { CAN_TX_STROKE(); break; } case CRX_SET_STROKE: { STROKE = (int16_t) (msg.data[1] | msg.data[2] << 8); spi_eeprom_write(RID_STROKE, (int16_t) STROKE); break; } case CRX_ASK_VALVE_LIMIT: { CAN_TX_VALVE_LIMIT(); break; } case CRX_SET_VALVE_LIMIT: { VALVE_MIN_POS = (int16_t) (msg.data[1] | msg.data[2] << 8); VALVE_MAX_POS = (int16_t) (msg.data[3] | msg.data[4] << 8); spi_eeprom_write(RID_VALVE_MAX_POS, (int16_t) VALVE_MAX_POS); spi_eeprom_write(RID_VALVE_MIN_POS, (int16_t) VALVE_MIN_POS); break; } case CRX_ASK_ENC_PULSE_PER_POSITION: { CAN_TX_ENC_PULSE_PER_POSITION(); break; } case CRX_SET_ENC_PULSE_PER_POSITION: { ENC_PULSE_PER_POSITION = (int16_t) (msg.data[1] | msg.data[2] << 8); spi_eeprom_write(RID_ENC_PULSE_PER_POSITION, (int16_t) (ENC_PULSE_PER_POSITION)); break; } case CRX_ASK_TORQUE_SENSOR_PULSE_PER_TORQUE: { CAN_TX_TORQUE_SENSOR_PULSE_PER_TORQUE(); break; } case CRX_SET_TORQUE_SENSOR_PULSE_PER_TORQUE: { // TORQUE_SENSOR_PULSE_PER_TORQUE = (float) ((int16_t) (msg.data[1] | msg.data[2] << 8) * 0.01f); TORQUE_SENSOR_PULSE_PER_TORQUE = ((float) ((int16_t) (msg.data[1] | msg.data[2] << 8)))*0.001f; spi_eeprom_write(RID_TORQUE_SENSOR_PULSE_PER_TORQUE, (int16_t) (TORQUE_SENSOR_PULSE_PER_TORQUE*1000.0f)); break; } case CRX_ASK_PRES_SENSOR_PULSE_PER_PRES: { CAN_TX_PRES_SENSOR_PULSE_PER_PRES(); break; } case CRX_SET_PRES_SENSOR_PULSE_PER_PRES: { PRES_SENSOR_A_PULSE_PER_BAR = (double) ((int16_t) (msg.data[1] | msg.data[2] << 8)) * 0.01f; PRES_SENSOR_B_PULSE_PER_BAR = (double) ((int16_t) (msg.data[3] | msg.data[4] << 8)) * 0.01f; spi_eeprom_write(RID_PRES_SENSOR_A_PULSE_PER_BAR, (int16_t) (PRES_SENSOR_A_PULSE_PER_BAR * 100.0f)); spi_eeprom_write(RID_PRES_SENSOR_B_PULSE_PER_BAR, (int16_t) (PRES_SENSOR_B_PULSE_PER_BAR * 100.0f)); break; } case CRX_ASK_FRICTION: { CAN_TX_FRICTION(); break; } case CRX_SET_FRICTION: { FRICTION = (double) ((int16_t) (msg.data[1] | msg.data[2] << 8)) / 10.0f; spi_eeprom_write(RID_FRICTION, (int16_t) (FRICTION * 10.0f)); break; } case CRX_ASK_VALVE_GAIN_PLUS: { CAN_TX_VALVE_GAIN_PLUS(); break; } case CRX_SET_VALVE_GAIN_PLUS: { VALVE_GAIN_LPM_PER_V[0] = (double) msg.data[1] / 50.0f; VALVE_GAIN_LPM_PER_V[2] = (double) msg.data[2] / 50.0f; VALVE_GAIN_LPM_PER_V[4] = (double) msg.data[3] / 50.0f; VALVE_GAIN_LPM_PER_V[6] = (double) msg.data[4] / 50.0f; VALVE_GAIN_LPM_PER_V[8] = (double) msg.data[5] / 50.0f; spi_eeprom_write(RID_VALVE_GAIN_PLUS_1, (int16_t) (VALVE_GAIN_LPM_PER_V[0] * 100.0f)); spi_eeprom_write(RID_VALVE_GAIN_PLUS_2, (int16_t) (VALVE_GAIN_LPM_PER_V[2] * 100.0f)); spi_eeprom_write(RID_VALVE_GAIN_PLUS_3, (int16_t) (VALVE_GAIN_LPM_PER_V[4] * 100.0f)); spi_eeprom_write(RID_VALVE_GAIN_PLUS_4, (int16_t) (VALVE_GAIN_LPM_PER_V[6] * 100.0f)); spi_eeprom_write(RID_VALVE_GAIN_PLUS_5, (int16_t) (VALVE_GAIN_LPM_PER_V[8] * 100.0f)); break; } case CRX_ASK_VALVE_GAIN_MINUS: { CAN_TX_VALVE_GAIN_MINUS(); break; } case CRX_SET_VALVE_GAIN_MINUS: { VALVE_GAIN_LPM_PER_V[1] = (double) msg.data[1] / 50.0f; VALVE_GAIN_LPM_PER_V[3] = (double) msg.data[2] / 50.0f; VALVE_GAIN_LPM_PER_V[5] = (double) msg.data[3] / 50.0f; VALVE_GAIN_LPM_PER_V[7] = (double) msg.data[4] / 50.0f; VALVE_GAIN_LPM_PER_V[9] = (double) msg.data[5] / 50.0f; spi_eeprom_write(RID_VALVE_GAIN_MINUS_1, (int16_t) (VALVE_GAIN_LPM_PER_V[1] * 100.0f)); spi_eeprom_write(RID_VALVE_GAIN_MINUS_2, (int16_t) (VALVE_GAIN_LPM_PER_V[3] * 100.0f)); spi_eeprom_write(RID_VALVE_GAIN_MINUS_3, (int16_t) (VALVE_GAIN_LPM_PER_V[5] * 100.0f)); spi_eeprom_write(RID_VALVE_GAIN_MINUS_4, (int16_t) (VALVE_GAIN_LPM_PER_V[7] * 100.0f)); spi_eeprom_write(RID_VALVE_GAIN_MINUS_5, (int16_t) (VALVE_GAIN_LPM_PER_V[9] * 100.0f)); break; } case CRX_LOW_REF: { REFERENCE_MODE = msg.data[1]; REF_NUM = msg.data[2]; REF_PERIOD = (double) ((int16_t) (msg.data[3] | msg.data[4] << 8)) / 100.0f; if (REF_PERIOD <= 0.0f) REF_MOVE_TIME_5k = TMR_FREQ_5k / CAN_FREQ; else REF_MOVE_TIME_5k = (int) (REF_PERIOD * (double) TMR_FREQ_5k); REF_MAG = (double) ((int16_t) (msg.data[5] | msg.data[6] << 8)) / 100.0f; break; } case CRX_JUMP_STATUS: { MODE_JUMP_STATUS = msg.data[1]; break; } case CRX_SET_ERR_CLEAR: { for (int i = 0; i < num_err; i++) { flag_err[i] = FALSE; flag_err_old[i] = FALSE; } flag_err_rt = FALSE; break; } case CRX_ASK_HOMEPOS_OFFSET: { CAN_TX_HOMEPOS_OFFSET(); break; } case CRX_SET_HOMEPOS_OFFSET: { HOMEPOS_OFFSET = (int16_t)(msg.data[1] | msg.data[2] << 8); spi_eeprom_write(RID_HOMEPOS_OFFSET, (int16_t) HOMEPOS_OFFSET); break; } case CRX_ASK_HOMEPOS_VALVE_OPENING: { CAN_TX_HOMPOS_VALVE_OPENING(); break; } case CRX_SET_HOMEPOS_VALVE_OPENING: { HOMEPOS_VALVE_OPENING = (int16_t) (msg.data[1] | msg.data[2] << 8); spi_eeprom_write(RID_HOMEPOS_VALVE_OPENING, (int16_t) HOMEPOS_VALVE_OPENING); break; } case CRX_ASK_VALVE_PWM_VS_VALVE_POS: { can_index = (int16_t) msg.data[1]; CAN_TX_VALVE_PWM_VS_VALVE_POS(can_index); break; } case CRX_ASK_VALVE_POS_VS_FLOWRATE: { can_index = (int16_t) msg.data[1]; CAN_TX_VALVE_POS_VS_FLOWRATE(can_index); break; } case CRX_ASK_VALVE_POS_NUM: { CAN_TX_VALVE_POS_NUM(); break; } case CRX_SET_ROM: { break; } case CRX_ASK_BUFFER: { cnt_buffer = (int16_t) (msg.data[1] | msg.data[2] << 8); CAN_TX_BUFFER(cnt_buffer); break; } case CRX_SET_STEP_TEST: { cnt_step_test = 0; CONTROL_UTILITY_MODE = 37; break; } case CRX_SET_FREQ_TEST: { cnt_freq_test = 0; CONTROL_UTILITY_MODE = 34; break; } default: break; } } void CAN_RX_HANDLER() { can.read(msg); unsigned int address = msg.id; if(address==CID_RX_CMD) { unsigned int CMD = msg.data[0]; ReadCMD(CMD); } else if(address==CID_RX_REF_POSITION) { int16_t temp_pos = (int16_t) (msg.data[0] | msg.data[1] << 8); int16_t temp_vel = (int16_t) (msg.data[2] | msg.data[3] << 8); int16_t temp_torq = (int16_t) (msg.data[4] | msg.data[5] << 8); if((OPERATING_MODE&0b001)==0) { // Rotary Actuator REF_POSITION = (float)temp_pos / 200.0f; REF_VELOCITY = (float)temp_vel / 20.0f; REF_TORQUE = (float)temp_torq * 0.1f / TORQUE_SENSOR_PULSE_PER_TORQUE; // pulse >> Nm } else { //Linear Actuator REF_POSITION = (float)temp_pos / 200.0f; REF_VELOCITY = (float)temp_vel / 20.0f; REF_FORCE = (float)temp_torq * 0.1f / TORQUE_SENSOR_PULSE_PER_TORQUE; // pulse >> N } if(SUPPLY_PRESSURE_UPDATE == 1) { int16_t temp_REF_Ps = (int16_t) (msg.data[6] | msg.data[7] << 8); PRES_SUPPLY = ((float)temp_REF_Ps) / 100.0f; if(PRES_SUPPLY<35.0f) PRES_SUPPLY = 35.0f; else if(PRES_SUPPLY>210.0f) PRES_SUPPLY = 210.0f; } else { PRES_SUPPLY = PRES_SUPPLY_NOM; } if(CAN_FREQ == -1) { // Position, Velocity, and Torque (ID:1200) if (flag_data_request[0] == HIGH) { if ((OPERATING_MODE & 0b01) == 0) { // Rotary Actuator CAN_TX_POSITION_FT((int16_t) (pos.sen*200.0f), (int16_t) (vel.sen*20.0f), (int16_t) (torq.sen*TORQUE_SENSOR_PULSE_PER_TORQUE*10.0f)); } else if ((OPERATING_MODE & 0b01) == 1) { // Linear Actuator CAN_TX_POSITION_FT((int16_t) (pos.sen*200.0f), (int16_t) (vel.sen*20.0f), (int16_t) (force.sen*TORQUE_SENSOR_PULSE_PER_TORQUE*10.0f)); } } // Valve Position (ID:1300) if (flag_data_request[1] == HIGH) { CAN_TX_PWM((int16_t)(cur.sen/mA_PER_pulse)); } // Others : Pressure A, B, Supply Pressure, etc. (for Debugging) (ID:1400) if (flag_data_request[2] == HIGH) { CAN_TX_SOMETHING((int16_t)(pres_A.sen*100.0f), (int16_t)(pres_B.sen*100.0f), (int16_t) (0), (int16_t) (0)); } } } else if(address==CID_RX_REF_OPENLOOP) { int16_t temp_ref_valve_pos = (int16_t) (msg.data[0] | msg.data[1] << 8); if (((OPERATING_MODE&0b110)>>1) == 0) { //Moog Valve valve_pos.ref = (double) temp_ref_valve_pos; // Unit : pulse (0~10000) } else if (((OPERATING_MODE&0b110)>>1) == 1) { //KNR Valve valve_pos.ref = (double) temp_ref_valve_pos; // Unit : pulse (0~30000) } else { //SW Valve if(temp_ref_valve_pos >= 0) { // valve_pos.ref = (double)VALVE_ELECTRIC_CENTER + (double)temp_ref_valve_pos * ((double)VALVE_MAX_POS-(double)VALVE_ELECTRIC_CENTER)/10000.0f; valve_pos.ref = (double)temp_ref_valve_pos; // -10000~10000 } else { // valve_pos.ref = (double)VALVE_ELECTRIC_CENTER - (double)temp_ref_valve_pos * ((double)VALVE_MIN_POS-(double)VALVE_ELECTRIC_CENTER)/10000.0f; valve_pos.ref = (double)temp_ref_valve_pos; // -10000~10000 } } } else if(address==CID_RX_REF_PWM) { int temp_ref_pwm = (int16_t) (msg.data[0] | msg.data[1] << 8); Vout.ref = (double) temp_ref_pwm; } } /****************************************************************************** Information Transmission Functions *******************************************************************************/ void CAN_TX_INFO(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 7; temp_msg.data[0] = (uint8_t) CTX_SEND_INFO; temp_msg.data[1] = (uint8_t) BNO; temp_msg.data[2] = (uint8_t) CAN_FREQ; temp_msg.data[3] = (uint8_t) (CAN_FREQ >> 8); temp_msg.data[4] = (uint8_t) (flag_err[7] << 7 | flag_err[6] << 6 | flag_err[5] << 5 | flag_err[4] << 4 | flag_err[3] << 3 | flag_err[2] << 2 | flag_err[1] << 1 | flag_err[0]); temp_msg.data[5] = (uint8_t) CONTROL_UTILITY_MODE; temp_msg.data[6] = (uint8_t) OPERATING_MODE; can.write(temp_msg); } void CAN_TX_BNO(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; //temp_msg.len = 2; temp_msg.len = 2; temp_msg.data[0] = (uint8_t) CTX_SEND_BNO; temp_msg.data[1] = (uint8_t) BNO; can.write(temp_msg); } void CAN_TX_OPERATING_MODE(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 5; temp_msg.data[0] = (uint8_t) CTX_SEND_OPERATING_MODE; temp_msg.data[1] = (uint8_t) OPERATING_MODE; temp_msg.data[2] = (uint8_t) SENSING_MODE; temp_msg.data[3] = (uint8_t) CURRENT_CONTROL_MODE; temp_msg.data[4] = (uint8_t) FLAG_VALVE_DEADZONE; can.write(temp_msg); } void CAN_TX_CAN_FREQ(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_CAN_FREQ; temp_msg.data[1] = (uint8_t) CAN_FREQ; temp_msg.data[2] = (uint8_t) (CAN_FREQ >> 8); can.write(temp_msg); } void CAN_TX_CONTROL_MODE(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 2; temp_msg.data[0] = (uint8_t) CTX_SEND_CONTROL_MODE; temp_msg.data[1] = (uint8_t) CONTROL_UTILITY_MODE; can.write(temp_msg); } void CAN_TX_JOINT_ENC_DIR(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_JOINT_ENC_DIR; temp_msg.data[1] = (uint8_t) DIR_JOINT_ENC; temp_msg.data[2] = (uint8_t) (DIR_JOINT_ENC >> 8); can.write(temp_msg); } void CAN_TX_VALVE_DIR(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_DIR; temp_msg.data[1] = (uint8_t) DIR_VALVE; temp_msg.data[2] = (uint8_t) (DIR_VALVE >> 8); can.write(temp_msg); } void CAN_TX_VALVE_ENC_DIR(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_ENC_DIR; temp_msg.data[1] = (uint8_t) DIR_VALVE_ENC; temp_msg.data[2] = (uint8_t) (DIR_VALVE_ENC >> 8); can.write(temp_msg); } void CAN_TX_VOLTAGE_SUPPLY(void) { int16_t send_voltage_supply = (int16_t) (SUPPLY_VOLTAGE * 10.0f); CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_VOLTAGE_SUPPLY; temp_msg.data[1] = (uint8_t) (send_voltage_supply); temp_msg.data[2] = (uint8_t) (send_voltage_supply >> 8); can.write(temp_msg); } void CAN_TX_VOLTAGE_VALVE(void) { int16_t send_voltage_valve = (int16_t) (VALVE_VOLTAGE_LIMIT * 10.0f); CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_VOLTAGE_VALVE; temp_msg.data[1] = (uint8_t) send_voltage_valve; temp_msg.data[2] = (uint8_t) (send_voltage_valve >> 8); can.write(temp_msg); } void CAN_TX_VARIABLE_SUPPLY_ONOFF(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 2; temp_msg.data[0] = (uint8_t) CTX_SEND_VARIABLE_SUPPLY; temp_msg.data[1] = (uint8_t) SUPPLY_PRESSURE_UPDATE; can.write(temp_msg); } void CAN_TX_PID_GAIN(int t_type) { // t_type = 0 : valve position control gain // t_type = 1 : joint position control gain // t_type = 2 : joint torque control gain int16_t sendPgain=0, sendIgain=0, sendDgain=0; if (t_type == 0) { sendPgain = (int16_t) (P_GAIN_VALVE_POSITION); sendIgain = (int16_t) (I_GAIN_VALVE_POSITION); sendDgain = (int16_t) (D_GAIN_VALVE_POSITION); } else if (t_type == 1) { sendPgain = (int16_t) (P_GAIN_JOINT_POSITION); sendIgain = (int16_t) (I_GAIN_JOINT_POSITION); sendDgain = (int16_t) (D_GAIN_JOINT_POSITION); } else if (t_type == 2) { sendPgain = (int16_t) (P_GAIN_JOINT_TORQUE); sendIgain = (int16_t) (I_GAIN_JOINT_TORQUE); sendDgain = (int16_t) (D_GAIN_JOINT_TORQUE); } else if (t_type == 3) { sendPgain = (int16_t) (K_SPRING * 10.0f); sendIgain = (int16_t) (D_DAMPER * 100.0f); } CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 8; temp_msg.data[0] = (uint8_t) CTX_SEND_PID_GAIN; temp_msg.data[1] = (uint8_t) t_type; temp_msg.data[2] = (uint8_t) sendPgain; temp_msg.data[3] = (uint8_t) (sendPgain >> 8); temp_msg.data[4] = (uint8_t) sendIgain; temp_msg.data[5] = (uint8_t) (sendIgain >> 8); temp_msg.data[6] = (uint8_t) sendDgain; temp_msg.data[7] = (uint8_t) (sendDgain >> 8); can.write(temp_msg); } void CAN_TX_VALVE_DEADZONE(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 7; temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_DEADZONE; temp_msg.data[1] = (uint8_t) VALVE_CENTER; temp_msg.data[2] = (uint8_t) (VALVE_CENTER >> 8); temp_msg.data[3] = (uint8_t) VALVE_DEADZONE_PLUS; temp_msg.data[4] = (uint8_t) (VALVE_DEADZONE_PLUS >> 8); temp_msg.data[5] = (uint8_t) VALVE_DEADZONE_MINUS; temp_msg.data[6] = (uint8_t) (VALVE_DEADZONE_MINUS >> 8); can.write(temp_msg); } void CAN_TX_VELOCITY_COMP_GAIN(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_VELOCITY_COMP_GAIN; temp_msg.data[1] = (uint8_t) VELOCITY_COMP_GAIN; temp_msg.data[2] = (uint8_t) (VELOCITY_COMP_GAIN >> 8); can.write(temp_msg); } void CAN_TX_VALVE_ELECTRIC_CENTER(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_ELECTRIC_CENTER; temp_msg.data[1] = (uint8_t) VALVE_ELECTRIC_CENTER; temp_msg.data[2] = (uint8_t) (VALVE_ELECTRIC_CENTER >> 8); can.write(temp_msg); } void CAN_TX_VALVE_FF(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_FF; temp_msg.data[1] = (uint8_t) VALVE_FF; temp_msg.data[2] = (uint8_t) (VALVE_FF >> 8); can.write(temp_msg); } void CAN_TX_BULK_MODULUS(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_BULK_MODULUS; temp_msg.data[1] = (uint8_t) BULK_MODULUS; temp_msg.data[2] = (uint8_t) (BULK_MODULUS >> 8); can.write(temp_msg); } void CAN_TX_CHAMBER_VOLUME(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 5; temp_msg.data[0] = (uint8_t) CTX_SEND_CHAMBER_VOLUME; temp_msg.data[1] = (uint8_t) CHAMBER_VOLUME_A; temp_msg.data[2] = (uint8_t) (CHAMBER_VOLUME_A >> 8); temp_msg.data[3] = (uint8_t) CHAMBER_VOLUME_B; temp_msg.data[4] = (uint8_t) (CHAMBER_VOLUME_B >> 8); can.write(temp_msg); } void CAN_TX_PISTON_AREA(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 5; temp_msg.data[0] = (uint8_t) CTX_SEND_PISTON_AREA; temp_msg.data[1] = (uint8_t) PISTON_AREA_A; temp_msg.data[2] = (uint8_t) (PISTON_AREA_A >> 8); temp_msg.data[3] = (uint8_t) PISTON_AREA_B; temp_msg.data[4] = (uint8_t) (PISTON_AREA_B >> 8); can.write(temp_msg); } void CAN_TX_SUP_PRES(void) { CANMessage temp_msg; int16_t temp_PRES_SUPPLY = (int16_t) (PRES_SUPPLY); temp_msg.id = CID_TX_INFO; temp_msg.len = 5; temp_msg.data[0] = (uint8_t) CTX_SEND_SUP_PRES; temp_msg.data[1] = (uint8_t) temp_PRES_SUPPLY; temp_msg.data[2] = (uint8_t) (temp_PRES_SUPPLY >> 8); temp_msg.data[3] = 0; temp_msg.data[4] = 0; can.write(temp_msg); } void CAN_TX_ENC_LIMIT(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 5; temp_msg.data[0] = (uint8_t) CTX_SEND_ENC_LIMIT; temp_msg.data[1] = (uint8_t) ENC_LIMIT_MINUS; temp_msg.data[2] = (uint8_t) (ENC_LIMIT_MINUS >> 8); temp_msg.data[3] = (uint8_t) ENC_LIMIT_PLUS; temp_msg.data[4] = (uint8_t) (ENC_LIMIT_PLUS >> 8); can.write(temp_msg); } void CAN_TX_STROKE(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_STROKE; temp_msg.data[1] = (uint8_t) STROKE; temp_msg.data[2] = (uint8_t) (STROKE >> 8); can.write(temp_msg); } void CAN_TX_VALVE_LIMIT(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 5; temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_LIMIT; temp_msg.data[1] = (uint8_t) VALVE_MIN_POS; temp_msg.data[2] = (uint8_t) (VALVE_MIN_POS >> 8); temp_msg.data[3] = (uint8_t) VALVE_MAX_POS; temp_msg.data[4] = (uint8_t) (VALVE_MAX_POS >> 8); can.write(temp_msg); } void CAN_TX_ENC_PULSE_PER_POSITION(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_ENC_PULSE_PER_POSITION; int temp_enc_pulse_per_position = (int) (ENC_PULSE_PER_POSITION); temp_msg.data[1] = (uint8_t) temp_enc_pulse_per_position; temp_msg.data[2] = (uint8_t) (temp_enc_pulse_per_position >> 8); can.write(temp_msg); } void CAN_TX_TORQUE_SENSOR_PULSE_PER_TORQUE(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_TORQUE_SENSOR_PULSE_PER_TORQUE; int16_t temp_torque_sensor_pulse_per_torque = (int16_t) (TORQUE_SENSOR_PULSE_PER_TORQUE * 1000.0f); temp_msg.data[1] = (uint8_t) temp_torque_sensor_pulse_per_torque; temp_msg.data[2] = (uint8_t) (temp_torque_sensor_pulse_per_torque >> 8); can.write(temp_msg); } void CAN_TX_PRES_SENSOR_PULSE_PER_PRES(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 5; temp_msg.data[0] = (uint8_t) CTX_SEND_PRES_SENSOR_PULSE_PER_BAR; temp_msg.data[1] = (uint8_t) (int) (PRES_SENSOR_A_PULSE_PER_BAR * 100.0f); temp_msg.data[2] = (uint8_t) ((int) (PRES_SENSOR_A_PULSE_PER_BAR * 100.0f) >> 8); temp_msg.data[3] = (uint8_t) (int) (PRES_SENSOR_B_PULSE_PER_BAR * 100.0f); temp_msg.data[4] = (uint8_t) ((int) (PRES_SENSOR_B_PULSE_PER_BAR * 100.0f) >> 8); can.write(temp_msg); } void CAN_TX_FRICTION(void) { CANMessage temp_msg; int16_t send_friction; send_friction = (int16_t) (FRICTION * 10.0f); temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_FRICTION; temp_msg.data[1] = (uint8_t) send_friction; temp_msg.data[2] = (uint8_t) (send_friction >> 8); can.write(temp_msg); } void CAN_TX_VALVE_GAIN_PLUS(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 6; temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_GAIN_PLUS; temp_msg.data[1] = (uint8_t) (VALVE_GAIN_LPM_PER_V[0] * 50.0f); temp_msg.data[2] = (uint8_t) (VALVE_GAIN_LPM_PER_V[2] * 50.0f); temp_msg.data[3] = (uint8_t) (VALVE_GAIN_LPM_PER_V[4] * 50.0f); temp_msg.data[4] = (uint8_t) (VALVE_GAIN_LPM_PER_V[6] * 50.0f); temp_msg.data[5] = (uint8_t) (VALVE_GAIN_LPM_PER_V[8] * 50.0f); can.write(temp_msg); } void CAN_TX_VALVE_GAIN_MINUS(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 6; temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_GAIN_MINUS; temp_msg.data[1] = (uint8_t) (VALVE_GAIN_LPM_PER_V[1] * 50.0f); temp_msg.data[2] = (uint8_t) (VALVE_GAIN_LPM_PER_V[3] * 50.0f); temp_msg.data[3] = (uint8_t) (VALVE_GAIN_LPM_PER_V[5] * 50.0f); temp_msg.data[4] = (uint8_t) (VALVE_GAIN_LPM_PER_V[7] * 50.0f); temp_msg.data[5] = (uint8_t) (VALVE_GAIN_LPM_PER_V[9] * 50.0f); can.write(temp_msg); } void CAN_TX_REFENCE_MODE(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 6; temp_msg.data[0] = (uint8_t) CTX_SEND_REFENCE_MODE; temp_msg.data[1] = (uint8_t) REFERENCE_MODE; temp_msg.data[2] = (uint8_t) (int) (REFERENCE_FREQ * 100.0f); temp_msg.data[3] = (uint8_t) ((int) (REFERENCE_FREQ * 100.0f) >> 8); temp_msg.data[4] = (uint8_t) (int) (REFERENCE_MAG * 100.0f); temp_msg.data[5] = (uint8_t) ((int) (REFERENCE_MAG * 100.0f) >> 8); can.write(temp_msg); } void CAN_TX_HOMEPOS_OFFSET(void) { CANMessage temp_msg; int16_t send_homepos_offset; send_homepos_offset = (int16_t)HOMEPOS_OFFSET; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_HOMEPOS_OFFSET; temp_msg.data[1] = (uint8_t) send_homepos_offset; temp_msg.data[2] = (uint8_t) (send_homepos_offset >> 8); can.write(temp_msg); } void CAN_TX_HOMPOS_VALVE_OPENING(void) { CANMessage temp_msg; int16_t send_homepos_valve_opening; send_homepos_valve_opening = (int16_t) (HOMEPOS_VALVE_OPENING); temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_HOMEPOS_VALVE_OPENING; temp_msg.data[1] = (uint8_t) send_homepos_valve_opening; temp_msg.data[2] = (uint8_t) (send_homepos_valve_opening >> 8); can.write(temp_msg); } void CAN_TX_VALVE_PWM_VS_VALVE_POS(int8_t canindex) { CANMessage temp_msg; int16_t valve_pos_vs_pwm; if(VALVE_POS_VS_PWM[canindex]>= (float) VALVE_ELECTRIC_CENTER) { valve_pos_vs_pwm = 10000.0f*((double)VALVE_POS_VS_PWM[canindex]-(double)VALVE_ELECTRIC_CENTER)/((double)VALVE_MAX_POS-(double)VALVE_ELECTRIC_CENTER); } else { valve_pos_vs_pwm = -10000.0f*((double)VALVE_POS_VS_PWM[canindex]-(double)VALVE_ELECTRIC_CENTER)/((double)VALVE_MIN_POS-(double)VALVE_ELECTRIC_CENTER); } int16_t PWM_VALVE_ID; PWM_VALVE_ID = ID_index_array[canindex] * 1000; temp_msg.id = CID_TX_INFO; temp_msg.len = 5; temp_msg.data[0] = (uint8_t) CTX_VALVE_PWM_VS_VALVE_POS; temp_msg.data[1] = (uint8_t) PWM_VALVE_ID; temp_msg.data[2] = (uint8_t) (PWM_VALVE_ID >> 8); temp_msg.data[3] = (uint8_t) valve_pos_vs_pwm; temp_msg.data[4] = (uint8_t) (valve_pos_vs_pwm >> 8); can.write(temp_msg); } void CAN_TX_VALVE_POS_VS_FLOWRATE(int8_t canindex) { CANMessage temp_msg; int32_t valve_pos_vs_flowrate; valve_pos_vs_flowrate = (int32_t) (JOINT_VEL[canindex]); int16_t VALVE_POS_VALVE_ID = ID_index_array[canindex] * 10 + VALVE_CENTER; int16_t temp_valve_pos = 0; if(VALVE_POS_VALVE_ID>=VALVE_CENTER) { temp_valve_pos = (int16_t) (10000.0f*((double)VALVE_POS_VALVE_ID-(double)VALVE_CENTER)/((double)VALVE_MAX_POS-(double)VALVE_CENTER)); } else { temp_valve_pos = (int16_t) (-10000.0f*((double)VALVE_POS_VALVE_ID-(double)VALVE_CENTER)/((double)VALVE_MIN_POS-(double)VALVE_CENTER)); } temp_msg.id = CID_TX_INFO; temp_msg.len = 7; temp_msg.data[0] = (uint8_t) CTX_VALVE_POS_VS_FLOWRATE; temp_msg.data[1] = (uint8_t) temp_valve_pos; temp_msg.data[2] = (uint8_t) (temp_valve_pos >> 8); temp_msg.data[3] = (uint8_t) valve_pos_vs_flowrate; temp_msg.data[4] = (uint8_t) (valve_pos_vs_flowrate >> 8); temp_msg.data[5] = (uint8_t) (valve_pos_vs_flowrate >> 16); temp_msg.data[6] = (uint8_t) (valve_pos_vs_flowrate >> 24); can.write(temp_msg); } void CAN_TX_VALVE_POS_NUM(void) { CANMessage temp_msg; int32_t valve_pos_num; valve_pos_num = (int16_t) VALVE_POS_NUM; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_VALVE_POS_NUM; temp_msg.data[1] = (uint8_t) valve_pos_num; temp_msg.data[2] = (uint8_t) (valve_pos_num >> 8); can.write(temp_msg); } void CAN_TX_DDV_VALVE_MAX_MIN_POS(void) { CANMessage temp_msg; float temp_valve_max_pos = 0.0f; float temp_valve_min_pos = 0.0f; float temp_ddv_center = 0.0f; temp_valve_max_pos = VALVE_MAX_POS; temp_valve_min_pos = VALVE_MIN_POS; temp_ddv_center = VALVE_CENTER; temp_msg.id = CID_TX_INFO; temp_msg.len = 7; temp_msg.data[0] = (uint8_t) CTX_VALVE_MAX_MIN_POS; temp_msg.data[1] = (uint8_t) temp_valve_max_pos; temp_msg.data[2] = (uint8_t) ((int) (temp_valve_max_pos) >> 8); temp_msg.data[3] = (uint8_t) (temp_valve_min_pos); temp_msg.data[4] = (uint8_t) ((int) (temp_valve_min_pos) >> 8); temp_msg.data[5] = (uint8_t) (temp_ddv_center); temp_msg.data[6] = (uint8_t) ((int) (temp_ddv_center) >> 8); can.write(temp_msg); } void CAN_TX_BUFFER(int16_t t_cnt_buffer) { CANMessage temp_msg; int16_t send_pos_array, send_ref_array; send_pos_array = (int16_t) (pos_array[t_cnt_buffer]); send_ref_array = (int16_t) (ref_array[t_cnt_buffer]); temp_msg.id = CID_TX_INFO; temp_msg.len = 5; temp_msg.data[0] = (uint8_t) CTX_SEND_BUFFER; temp_msg.data[1] = (uint8_t) send_pos_array; temp_msg.data[2] = (uint8_t) (send_pos_array >> 8); temp_msg.data[3] = (uint8_t) (send_ref_array); temp_msg.data[4] = (uint8_t) ((send_ref_array) >> 8); can.write(temp_msg); } /****************************************************************************** Sensor & State Transmission Functions *******************************************************************************/ void CAN_TX_POSITION_FT(int16_t t_pos, int16_t t_vel, int16_t t_torq) { CANMessage temp_msg; temp_msg.id = CID_TX_POS_VEL_TORQ; temp_msg.len = 6; temp_msg.data[0] = (uint8_t) t_pos; temp_msg.data[1] = (uint8_t) (t_pos >> 8); temp_msg.data[2] = (uint8_t) t_vel; temp_msg.data[3] = (uint8_t) (t_vel >> 8); temp_msg.data[4] = (uint8_t) t_torq; temp_msg.data[5] = (uint8_t) (t_torq >> 8); can.write(temp_msg); } void CAN_TX_POSITION_PRESSURE(int16_t t_pos, int16_t t_vel, int16_t t_pa, int16_t t_pb) { CANMessage temp_msg; temp_msg.id = CID_TX_POS_VEL_TORQ; temp_msg.len = 8; temp_msg.data[0] = (uint8_t) t_pos; temp_msg.data[1] = (uint8_t) (t_pos >> 8); temp_msg.data[2] = (uint8_t) t_vel; temp_msg.data[3] = (uint8_t) (t_vel >> 8); temp_msg.data[4] = (uint8_t) t_pa; temp_msg.data[5] = (uint8_t) (t_pa >> 8); temp_msg.data[6] = (uint8_t) t_pb; temp_msg.data[7] = (uint8_t) (t_pb >> 8); can.write(temp_msg); } void CAN_TX_CURRENT(int16_t t_pres_a, int16_t t_pres_b) { CANMessage temp_msg; temp_msg.id = CID_TX_CURRENT; temp_msg.len = 4; temp_msg.data[0] = (uint8_t) t_pres_a; temp_msg.data[1] = (uint8_t) (t_pres_a >> 8); temp_msg.data[2] = (uint8_t) t_pres_b; temp_msg.data[3] = (uint8_t) (t_pres_b >> 8); can.write(temp_msg); } void CAN_TX_TORQUE(int16_t t_valve_pos) { CANMessage temp_msg; temp_msg.id = CID_TX_PWM; temp_msg.len = 2; temp_msg.data[0] = (uint8_t) t_valve_pos; temp_msg.data[1] = (uint8_t) (t_valve_pos >> 8); can.write(temp_msg); } void CAN_TX_PWM(int16_t t_pwm) { CANMessage temp_msg; temp_msg.id = CID_TX_PWM; temp_msg.len = 2; temp_msg.data[0] = (uint8_t) t_pwm; temp_msg.data[1] = (uint8_t) (t_pwm >> 8); can.write(temp_msg); } void CAN_TX_VALVE_POSITION(int16_t t_valve_pos_1, int16_t t_valve_pos_2, int16_t t_ref_valve_pos, int16_t t_pwm) { CANMessage temp_msg; temp_msg.id = CID_TX_VALVE_POSITION; temp_msg.len = 8; temp_msg.data[0] = (uint8_t) t_valve_pos_1; temp_msg.data[1] = (uint8_t) (t_valve_pos_1 >> 8); temp_msg.data[2] = (uint8_t) t_valve_pos_2; temp_msg.data[3] = (uint8_t) (t_valve_pos_2 >> 8); temp_msg.data[4] = (uint8_t) t_ref_valve_pos; temp_msg.data[5] = (uint8_t) (t_ref_valve_pos >> 8); temp_msg.data[6] = (uint8_t) t_pwm; temp_msg.data[7] = (uint8_t) (t_pwm >> 8); can.write(temp_msg); } void CAN_TX_SOMETHING(int16_t t_a, int16_t t_b, int16_t t_c, int16_t t_d) { CANMessage temp_msg; temp_msg.id = CID_TX_SOMETHING; temp_msg.len = 8; temp_msg.data[0] = (uint8_t) t_a; temp_msg.data[1] = (uint8_t) (t_a >> 8); temp_msg.data[2] = (uint8_t) t_b; temp_msg.data[3] = (uint8_t) (t_b >> 8); temp_msg.data[4] = (uint8_t) t_c; temp_msg.data[5] = (uint8_t) (t_c >> 8); temp_msg.data[6] = (uint8_t) t_d; temp_msg.data[7] = (uint8_t) (t_d >> 8); can.write(temp_msg); } void CAN_TX_VOUT(int16_t t_vout) { CANMessage temp_msg; temp_msg.id = CID_TX_VOUT; temp_msg.len = 2; temp_msg.data[0] = (uint8_t) t_vout; temp_msg.data[1] = (uint8_t) (t_vout >> 8); can.write(temp_msg); }