Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: cc3000_hello_world_demo cc3000_simple_socket_demo cc3000_ntp_demo cc3000_ping_demo ... more
cc3000.cpp
- Committer:
- SolderSplashLabs
- Date:
- 2013-10-02
- Revision:
- 18:7e22775eadb9
- Parent:
- 16:f3676ae62f96
- Child:
- 19:9fdf8b4e41bf
- Child:
- 23:fed7f64dd520
File content as of revision 18:7e22775eadb9:
/*****************************************************************************
*
* C++ interface/implementation created by Martin Kojtal (0xc0170). Thanks to
* Jim Carver and Frank Vannieuwkerke for their inital cc3000 mbed port and
* provided help.
*
* This version of "host driver" uses CC3000 Host Driver Implementation. Thus
* read the following copyright:
*
* Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution.
*
* Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#include "cc3000.h"
#include "cc3000_event.h"
namespace mbed_cc3000 {
/* TODO this prefix remove? verify */
static uint8_t cc3000_prefix[] = {'T', 'T', 'T'};
cc3000 *cc3000::_inst;
cc3000::cc3000(PinName cc3000_irq, PinName cc3000_en, PinName cc3000_cs, SPI cc3000_spi, IRQn_Type irq_port)
: _event(_simple_link, _hci, _spi, *this), _socket(_simple_link, _hci, _event), _spi(cc3000_irq, cc3000_en, cc3000_cs, cc3000_spi, irq_port, _event, _simple_link), _hci(_spi),
_nvmem(_hci, _event, _simple_link), _netapp(_simple_link, _nvmem, _hci, _event), _wlan(_simple_link, _event, _spi, _hci) {
/* TODO - pIRQ riorities ?? */
_simple_link.set_tx_complete_signal(1);
_status.dhcp = 0;
_status.connected = 0;
_status.socket = 0;
_status.dhcp_configured = 0;
_status.smart_config_complete = 0;
_status.stop_smart_config = 0;
_status.ok_to_shut_down = 0;
_inst = this;
}
cc3000::~cc3000() {
}
void cc3000::usync_callback(int32_t event_type, uint8_t * data, uint8_t length) {
if (event_type == HCI_EVNT_WLAN_ASYNC_SIMPLE_CONFIG_DONE)
{
_status.smart_config_complete = 1;
_status.stop_smart_config = 1;
}
if (event_type == HCI_EVNT_WLAN_UNSOL_CONNECT)
{
_status.connected = 1;
}
if (event_type == HCI_EVNT_WLAN_UNSOL_DISCONNECT)
{
_status.connected = 0;
_status.dhcp = 0;
_status.dhcp_configured = 0;
}
if (event_type == HCI_EVNT_WLAN_UNSOL_DHCP)
{
if ( *(data + NETAPP_IPCONFIG_MAC_OFFSET) == 0) {
_status.dhcp = 1;
} else {
_status.dhcp = 0;
}
}
if (event_type == HCI_EVENT_CC3000_CAN_SHUT_DOWN)
{
_status.ok_to_shut_down = 1;
}
if (event_type == HCI_EVNT_WLAN_ASYNC_PING_REPORT)
{
memcpy(&_ping_report, data, length);
}
if (event_type == HCI_EVNT_BSD_TCP_CLOSE_WAIT) {
uint8_t socketnum;
socketnum = data[0];
if (socketnum < MAX_SOCKETS) {
_closed_sockets[socketnum] = true; /* clients socket is closed */
}
}
}
void cc3000::start_smart_config(const uint8_t *smart_config_key) {
// Reset all the previous configuration
_wlan.ioctl_set_connection_policy(0, 0, 0);
_wlan.ioctl_del_profile(255);
//Wait until CC3000 is disconected
while (_status.connected == 1)
{
wait_us(5);
_event.hci_unsolicited_event_handler();
}
// Trigger the Smart Config process
_wlan.smart_config_set_prefix(cc3000_prefix);
// Start the Smart Config process with AES disabled
_wlan.smart_config_start(0);
DBG_CC("Waiting for smartconfig to be completed");
// Wait for Smart config finished
while (_status.smart_config_complete == 0)
{
wait_ms(100);
}
DBG_CC("Smartconfig finished");
#ifndef CC3000_UNENCRYPTED_SMART_CONFIG
// create new entry for AES encryption key
_nvmem.create_entry(NVMEM_AES128_KEY_FILEID, 16);
// write AES key to NVMEM
_security.aes_write_key((uint8_t *)(&smart_config_key[0]));
// Decrypt configuration information and add profile
_wlan.smart_config_process();
#endif
// Configure to connect automatically to the AP retrieved in the
// Smart config process
_wlan.ioctl_set_connection_policy(0, 1, 1);
// reset the CC3000
_wlan.stop();
wait(2);
_wlan.start(0);
wait(2);
// Mask out all non-required events
_wlan.set_event_mask(HCI_EVNT_WLAN_KEEPALIVE|HCI_EVNT_WLAN_UNSOL_INIT|HCI_EVNT_WLAN_ASYNC_PING_REPORT);
}
bool cc3000::connect_secure(const uint8_t *ssid, const uint8_t *key, int32_t security_mode) {
uint32_t ret;
_wlan.disconnect();
wait_ms(3);
ret = _wlan.connect(security_mode, ssid, strlen((const char *)ssid), 0, (uint8_t *)key, strlen((const char *)key));
if (ret == 0) { /* TODO static internal cc3000 state 0 to TRUE */
ret = true;
} else {
ret = false;
}
return ret;
}
bool cc3000::connect_to_AP(const uint8_t *ssid, const uint8_t *key, int32_t security_mode) {
Timer t; /* TODO static? */
bool ret = true;
t.start();
while (is_connected() == false) {
if (key == 0) {
if (connect_open(ssid)) {
break;
}
} else {
#ifndef CC3000_TINY_DRIVER
if (connect_secure(ssid,key,security_mode)) {
break;
}
#else
return false; /* secure connection not supported with TINY_DRIVER */
#endif
}
/* timeout 10 seconds */
if (t.read_ms() > 10000){
ret = false;
DBG_CC("Connection to AP failed");
break;
}
}
return ret;
}
void cc3000::start(uint8_t patch) {
_wlan.start(patch);
_wlan.set_event_mask(HCI_EVNT_WLAN_UNSOL_INIT | HCI_EVNT_WLAN_KEEPALIVE);
}
void cc3000::stop(void) {
_wlan.stop();
}
void cc3000::restart(uint8_t patch) {
_wlan.stop();
wait_ms(500);
_wlan.start(patch);
}
bool cc3000::connect_open(const uint8_t *ssid) {
uint32_t ret;
_wlan.disconnect();
wait_ms(3);
#ifndef CC3000_TINY_DRIVER
ret = _wlan.connect(0,ssid, strlen((const char *)ssid), 0, 0, 0);
#else
ret = _wlan.connect(ssid, strlen((const char *)ssid));
#endif
if (ret == 0) {
ret = true;
} else {
ret = false;
}
return ret;
}
bool cc3000::is_connected() {
return _status.connected;
}
bool cc3000::is_dhcp_configured() {
return _status.dhcp;
}
bool cc3000::is_smart_confing_completed() {
return _status.smart_config_complete;
}
void cc3000::get_mac_address(uint8_t address[6]) {
_nvmem.get_mac_address(address);
}
void cc3000::set_mac_address(uint8_t address[6]) {
_nvmem.set_mac_address(address);
}
void cc3000::get_user_file_info(uint8_t *info_file, size_t size) {
_nvmem.read( NVMEM_USER_FILE_1_FILEID, size, 0, info_file);
}
#ifndef CC3000_TINY_DRIVER
bool cc3000::get_ip_config(tNetappIpconfigRetArgs *ip_config) {
if ((_status.dhcp == false) || (_status.connected == false)) {
return false;
}
_netapp.ipconfig(ip_config);
return true;
}
#endif
cc3000_client cc3000::create_tcp_client(uint32_t ip_address, uint16_t port) {
sockaddr socket_address = {0};
int32_t tcp_socket;
tcp_socket = _socket.socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (tcp_socket == -1) {
DBG_CC("Failed to create new socket (tcp)");
return cc3000_client(*this);
}
socket_address.family = AF_INET;
socket_address.data[0] = (port & 0xFF00) >> 8;
socket_address.data[1] = (port & 0x00FF);
socket_address.data[2] = ip_address >> 24;
socket_address.data[3] = ip_address >> 16;
socket_address.data[4] = ip_address >> 8;
socket_address.data[5] = ip_address;
if (_socket.connect(tcp_socket, &socket_address, sizeof(socket_address)) == -1) {
DBG_CC("Failed to connect (tcp)");
_socket.closesocket(tcp_socket);
return cc3000_client(*this);
}
return cc3000_client(*this, tcp_socket);
}
cc3000_client cc3000::create_udp_client(uint32_t ip_address, uint16_t port) {
sockaddr socket_address = {0};
int32_t udp_socket;
udp_socket = _socket.socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (udp_socket == -1) {
DBG_CC("Failed to create new socket (udp)");
return cc3000_client(*this);
}
socket_address.family = AF_INET;
socket_address.data[0] = (port & 0xFF00) >> 8;
socket_address.data[1] = (port & 0x00FF);
socket_address.data[2] = ip_address >> 24;
socket_address.data[3] = ip_address >> 16;
socket_address.data[4] = ip_address >> 8;
socket_address.data[5] = ip_address;
if (_socket.connect(udp_socket, &socket_address, sizeof(socket_address)) == -1) {
DBG_CC("Failed to connect (udp)");
_socket.closesocket(udp_socket);
return cc3000_client(*this);
}
return cc3000_client(*this, udp_socket);
}
cc3000_server cc3000::create_tcp_server(uint32_t ip_address, uint16_t port) {
sockaddr socket_address = {0};
int32_t tcp_socket;
tcp_socket = _socket.socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (tcp_socket == -1) {
DBG_CC("Failed to create new socket.");
return cc3000_server(*this, socket_address);
}
socket_address.family = AF_INET;
socket_address.data[0] = (port & 0xFF00) >> 8;
socket_address.data[1] = (port & 0x00FF);
socket_address.data[2] = ip_address >> 24;
socket_address.data[3] = ip_address >> 16;
socket_address.data[4] = ip_address >> 8;
socket_address.data[5] = ip_address;
if (_socket.bind(tcp_socket, &socket_address, sizeof(socket_address)) != 0) {
DBG_CC("Failed to bind the new socket");
return cc3000_server(*this, socket_address);
}
if (_socket.listen(tcp_socket, 1) != 0) { /* 1 client */
DBG_CC("Failed to listen on the new socket");
return cc3000_server(*this, socket_address);
}
return cc3000_server(*this, socket_address, tcp_socket);
}
void cc3000::delete_profiles(void) {
tUserFS user_info;
_wlan.ioctl_set_connection_policy(0, 0, 0);
_wlan.ioctl_del_profile(255);
get_user_file_info((uint8_t *)&user_info, sizeof(user_info));
user_info.FTC = 0;
set_user_file_info((uint8_t *)&user_info, sizeof(user_info));
}
void cc3000::set_user_file_info(uint8_t *info_file, size_t size) {
_nvmem.write( NVMEM_USER_FILE_1_FILEID, size, 0, info_file);
}
bool cc3000::disconnect(void){
if (_wlan.disconnect()) {
return false;
} else {
return true;
}
}
uint32_t cc3000::ping(uint32_t ip, uint8_t attempts, uint16_t timeout, uint8_t size) {
uint32_t reversed_ip = (ip >> 24) | (ip >> 8) & 0xFF00 | (ip << 8) & 0xFF0000 | (ip << 24);
_ping_report.packets_received = 0;
if (_netapp.ping_send(&reversed_ip, attempts, size, timeout) == -1) {
DBG_CC("Failed to send ping");
return 0;
}
wait_ms(timeout*attempts*2);
/* known issue of cc3000 - sent number is send + received */
// TODO : Remove the Sent/recv'd counts until ti fix the firmware issue?
DBG_CC("Sent: %d",_ping_report.packets_sent);
DBG_CC("Received: %d",_ping_report.packets_received);
DBG_CC("Min time: %d",_ping_report.min_round_time);
DBG_CC("Max time: %d",_ping_report.max_round_time);
DBG_CC("Avg time: %d",_ping_report.avg_round_time);
return _ping_report.packets_received;
}
/* Conversion between uint types and C strings */
uint8_t* UINT32_TO_STREAM_f (uint8_t *p, uint32_t u32)
{
*(p)++ = (uint8_t)(u32);
*(p)++ = (uint8_t)((u32) >> 8);
*(p)++ = (uint8_t)((u32) >> 16);
*(p)++ = (uint8_t)((u32) >> 24);
return p;
}
uint8_t* UINT16_TO_STREAM_f (uint8_t *p, uint16_t u16)
{
*(p)++ = (uint8_t)(u16);
*(p)++ = (uint8_t)((u16) >> 8);
return p;
}
uint16_t STREAM_TO_UINT16_f(uint8_t *p, uint16_t offset)
{
return (uint16_t)((uint16_t)((uint16_t)
(*(p + offset + 1)) << 8) + (uint16_t)(*(p + offset)));
}
uint32_t STREAM_TO_UINT32_f(uint8_t *p, uint16_t offset)
{
return (uint32_t)((uint32_t)((uint32_t)
(*(p + offset + 3)) << 24) + (uint32_t)((uint32_t)
(*(p + offset + 2)) << 16) + (uint32_t)((uint32_t)
(*(p + offset + 1)) << 8) + (uint32_t)(*(p + offset)));
}
} /* end of mbed_cc3000 namespace */
SimpleLink Wi-Fi CC3000
Avnet Wi-Go System