RKI aangepast 10:02
Dependencies: HIDScope MODSERIAL QEI biquadFilter mbed
Fork of Project_script_union by
main.cpp
- Committer:
- MarijkeZondag
- Date:
- 2018-10-31
- Revision:
- 26:ac5656aa35c7
- Parent:
- 25:bbef09ff226b
- Child:
- 27:fa493551be99
File content as of revision 26:ac5656aa35c7:
#include "mbed.h" #include "MODSERIAL.h" #include "BiQuad.h" #include "HIDScope.h" #include <math.h> //ATTENTION: set mBed to version 151 // set QEI to version 0, (gebruiken wij (nog) niet, is voor encoder) // set MODSERIAL to version 44 // set HIDScope to version 7 // set biquadFilter to version 7 AnalogIn emg0_in (A0); //First raw EMG signal input AnalogIn emg1_in (A1); //Second raw EMG signal input AnalogIn emg2_in (A2); //Third raw EMG signal input InterruptIn encoderA1 (D9); InterruptIn encoderB1 (D8); InterruptIn encoderA2 (D12); InterruptIn encoderB2 (D13); InterruptIn button1 (D10); InterruptIn button2 (D11); DigitalOut directionpin1 (D7); DigitalOut directionpin2 (D4); PwmOut pwmpin1 (D6); PwmOut pwmpin2 (D5); DigitalOut ledr (LED_RED); DigitalOut ledb (LED_BLUE); DigitalOut ledg (LED_GREEN); MODSERIAL pc(USBTX, USBRX); //Serial communication to see if the code works step by step, turn on if hidscope is off //HIDScope scope( 6 ); //HIDScope set to 3x2 channels for 3 muscles, raw data + filtered //Tickers Ticker ticker; //Global variables const float T = 0.002f; //Ticker period //EMG filter double emg0_filt, emg1_filt, emg2_filt; //Variables for filtered EMG data channel 0, 1 and 2 double emg0_raw, emg1_raw, emg2_raw; double emg0_filt_x, emg1_filt_x, emg2_filt_x; const int windowsize = 150; //Size of the array over which the moving average (MovAg) is calculated. (random number) double sum, sum1, sum2, sum3; //variables used to sum elements in array double StoreArray0[windowsize], StoreArray1[windowsize], StoreArray2[windowsize]; //Empty arrays to calculate MoveAg double movAg0, movAg1, movAg2; //outcome of MovAg (moet dit een array zijn??) //Calibration variables int x = -1; //Start switch, colour LED is blue. int emg_cal = 0; //if emg_cal is set to 1, motors can begin to work in this code (!!) const int sizeCal = 1500; //size of the dataset used for calibration, eerst 2000 double StoreCal0[sizeCal], StoreCal1[sizeCal], StoreCal2[sizeCal]; //arrays to put the dataset of the calibration in double Mean0,Mean1,Mean2; //average of maximum tightening double Threshold0, Threshold1, Threshold2; //Biquad //Variables for the biquad band filters (alle 3 dezelfde maar je kan niet 3x 'emg0band' aanroepen ofzo) BiQuadChain emg0filter; BiQuad emg0band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 ); BiQuad emg0band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 ); BiQuad emg0band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 ); BiQuad notch1( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 ); //Notch filter biquad coefficients BiQuadChain emg1filter; BiQuad emg1band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 ); BiQuad emg1band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 ); BiQuad emg1band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 ); BiQuad notch2( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 ); //Notch filter BiQuadChain emg2filter; BiQuad emg2band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 ); BiQuad emg2band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 ); BiQuad emg2band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 ); BiQuad notch3( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 ); //Notch filter // Inverse Kinematica variables const double L1 = 0.208; // Hoogte van tafel tot joint 1 const double L2 = 0.288; // Hoogte van tafel tot joint 2 const double L3 = 0.212; // Lengte van de arm const double L4 = 0.089; // Afstand van achterkant base tot joint 1 const double L5 = 0.030; // Afstand van joint 1 naar joint 2 const double r_trans = 0.035; // Kan gebruikt worden om om te rekenen van translation naar shaft rotation // Variërende variabelen inverse kinematics: double q1ref = 0; // Huidige motorhoek van joint 1 zoals bepaald uit referentiesignaal --> checken of het goede type is double q2ref = 0; // Huidige motorhoek van joint 2 zoals bepaald uit referentiesignaal --> checken of het goede type is double v_x; // Desired velocity end effector in x direction --> Determined by EMG signals double v_y; // Desired velocity end effector in y direction --> Determined by EMG signals double Lq1; // Translatieafstand als gevolg van motor rotation joint 1 double Cq2; // Joint angle of the system (corrected for gear ratio 1:5) double q1_dot; // Benodigde hoeksnelheid van motor 1 om v_des te bereiken double q2_dot; // Benodigde hoeksnelheid van motor 2 om v_des te bereiken double q1_ii; // Reference signal for motorangle q1ref double q2_ii; // Reference signal for motorangle q2ref //Variables PID controller double PI = 3.14159; double Kp1 = 17.5; //Motor 1 double Ki1 = 1.02; double Kd1 = 23.2; double encoder1 = 0; double encoder_radians1=0; double Kp2 = 17.5; //Motor 2 double Ki2 = 1.02; double Kd2 = 23.2; double encoder2 = 0; double encoder_radians2=0; //--------------Functions----------------------------------------------------------------------------------------------------------------------------// //------------------ Encoder motor 1 --------------------------------// void encoderA1_rise() { if(encoderB1==false) { encoder1++; } else { encoder1--; } } void encoderA1_fall() { if(encoderB1==true) { encoder1++; } else { encoder1--; } } void encoderB1_rise() { if(encoderA1==true) { encoder1++; } else { encoder1--; } } void encoderB1_fall() { if(encoderA1==false) { encoder1++; } else { encoder1--; } } void encoder_count1() { encoderA1.rise(&encoderA1_rise); encoderA1.fall(&encoderA1_fall); encoderB1.rise(&encoderB1_rise); encoderB1.fall(&encoderB1_fall); } //------------------ Encoder motor 2 --------------------------------// void encoderA2_rise() { if(encoderB2==false) { encoder2++; } else { encoder2--; } } void encoderA2_fall() { if(encoderB2==true) { encoder2++; } else { encoder2--; } } void encoderB2_rise() { if(encoderA2==true) { encoder2++; } else { encoder2--; } } void encoderB2_fall() { if(encoderA2==false) { encoder2++; } else { encoder2--; } } void encoder_count2() { encoderA2.rise(&encoderA2_rise); encoderA2.fall(&encoderA2_fall); encoderB2.rise(&encoderB2_rise); encoderB2.fall(&encoderB2_fall); } //------------------ Filter EMG + Calibration EMG --------------------------------// void EMGFilter0() { emg0_raw = emg0_in.read(); //give name to raw EMG0 data calve emg0_filt_x = emg0filter.step(emg0_raw); //Use biquad chain to filter raw EMG data emg0_filt = abs(emg0_filt_x); //rectifier. LET OP: volgorde filter: band-notch-rectifier. Eerst band-rect-notch, stel er komt iets raars uit, dan Notch uit de biquad chain halen en aparte chain voor aanmaken. } void EMGFilter1() { emg1_raw = emg1_in.read(); //give name to raw EMG1 data bicep 1 emg1_filt_x = emg1filter.step(emg1_raw); //Use biquad chain to filter raw EMG data emg1_filt = abs(emg1_filt_x); //rectifier. LET OP: volgorde filter: band-notch-rectifier. Eerst band-rect-notch. } void EMGFilter2() { emg2_raw = emg2_in.read(); //Give name to raw EMG1 data bicep 2 emg2_filt_x = emg2filter.step(emg2_raw); //Use biquad chain to filter raw EMG data emg2_filt = abs(emg2_filt_x); //Rectifier. LET OP: volgorde filter: band-notch-rectifier. } void MovAg() //Calculate moving average (MovAg) { for (int i = windowsize-1; i>=0; i--) //Make arrays for the last datapoints of the filtered signals { StoreArray0[i] = StoreArray0[i-1]; //Shifts the i'th element one place to the right, this makes it "rolling or moving" average. StoreArray1[i] = StoreArray1[i-1]; StoreArray2[i] = StoreArray2[i-1]; } StoreArray0[0] = emg0_filt; //Stores the latest datapoint of the filtered signal in the first element of the array StoreArray1[0] = emg1_filt; StoreArray2[0] = emg2_filt; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; for(int a = 0; a<= windowsize-1; a++) //Sums the elements in the arrays { sum1 += StoreArray0[a]; sum2 += StoreArray1[a]; sum3 += StoreArray2[a]; } movAg0 = sum1/windowsize; //calculates an average in the array movAg1 = sum2/windowsize; movAg2 = sum3/windowsize; //serial getallen sturen, als het 1 getal is gaat hier wat fout, als het een reeks is dan gaat er bij de input naar HIDscope wat fout. } void emg_filtered() //Call all filter functions { EMGFilter0(); EMGFilter1(); EMGFilter2(); } void switch_to_calibrate() { x++; //Every time function gets called, x increases. Every button press --> new calibration state. //Starts with x = -1. So when function gets called 1 time, x = 0. In the end, x = 4 will reset to -1. if(x==0) //If x = 0, led is red { ledr = 0; ledb = 1; ledg = 1; } else if (x==1) //If x = 1, led is blue { ledr = 1; ledb = 0; ledg = 1; } else if (x==2) //If x = 2, led is green { ledr = 1; ledb = 1; ledg = 0; } else //If x = 3 or 4, led is white { ledr = 0; ledb = 0; ledg = 0; } if(x==4) //Reset back to x = -1 { x = -1; emg_cal=0; //reset, motors off } } void calibrate(void) { switch(x) { case 0: //If calibration state 0: { sum = 0.0; for(int j = 0; j<=sizeCal-1; j++) //Array filled with datapoints from the EMGfilter signal of muscle 0 { StoreCal0[j] = emg0_filt; sum+=StoreCal0[j]; wait(0.001f); //Does there need to be a wait? } Mean0 = sum/sizeCal; //Calculate mean of the datapoints in the calibration set (2000 samples) Threshold0 = Mean0/2; //Threshold calculation = 0.5*mean break; //Stop. Threshold is calculated, we will use this further in the code } case 1: //If calibration state 1: { sum = 0.0; for(int j = 0; j<=sizeCal-1; j++) //Array filled with datapoints from the EMGfilter signal of muscle 1 { StoreCal1[j] = emg1_filt; sum+=StoreCal1[j]; wait(0.001f); } Mean1 = sum/sizeCal; Threshold1 = Mean1/2; break; } case 2: //If calibration state 2: { sum = 0.0; for(int j = 0; j<=sizeCal-1; j++) //Array filled with datapoints from the EMGfilter signal of muscle 2 { StoreCal2[j] = emg2_filt; sum+=StoreCal2[j]; wait(0.001f); } Mean2 = sum/sizeCal; Threshold2 = Mean2/2; break; } case 3: //EMG is calibrated, robot can be set to Home position. { emg_cal = 1; //This is the setting for which the motors can begin turning in this code (!!) wait(0.001f); break; } default: //Ensures nothing happens if x is not 0,1 or 2. { break; } } } /* void HIDScope_sample() { scope.set(0,emg0_raw); scope.set(1,emg0_filt); scope.set(1,movAg0); //als moving average werkt scope.set(2,emg1_raw); scope.set(3,emg1_filt); scope.set(3,movAg1); //als moving average werkt scope.set(4,emg2_raw); scope.set(5,emg2_filt); scope.set(5,movAg2); //als moving average werkt scope.send(); //Send data to HIDScope server } */ //------------------ Inversed Kinematics --------------------------------// void inverse_kinematics() { Lq1 = q1ref*r_trans; Cq2 = q2ref/5.0; q1_dot = v_x + (v_y*(L1 + L3*sin(Cq2)))/(L4 + Lq1 + L3*cos(Cq2)); q2_dot = v_y/(L4 + Lq1 + L3*cos(Cq2)); q1_ii = q1ref + q1_dot*T; q2_ii = q2ref + q2_dot*T; q1ref = q1_ii; q2ref = q2_ii; } void v_des_calculate_qref() { while(emg_cal==1) //After calibration is finished, emg_cal will be 1. Otherwise 0. { if(movAg1>Threshold1) //If the filtered EMG signal of muscle 1 is higher than the threshold, motor 1 will turn { v_x = 1.0; //beweging in +x direction ledr = 0; //red ledb = 1; ledg = 1; } else if(movAg2>Threshold2) //If the filtered EMG signal of muscle 2 is higher than the threshold, motor 1 and 2 will turn { v_y = 1.0; //beweging in +y direction ledr = 1; //green ledb = 1; ledg = 0; } else if(movAg0>Threshold0) //If the filtered EMG signal of muscle 0 is higher than the threshold, motor1 will turn in 1 direction { v_x = -v_x; v_y = -v_y; ledr = 1; //Blue ledb = 0; ledg = 1; } else //If not higher than the threshold, motors will not turn at all { v_x = 0; v_y = 0; ledr = 0; //white ledb = 0; ledg = 0; } break; } inverse_kinematics(); //Call inverse kinematics function } //---------PID controller motor 1 + start motor 1 -----------------------------------------------------------// double PID_controller1(double err1) { static double err_integral1 = 0; static double err_prev1 = err1; // initialization with this value only done once! static BiQuad LowPassFilter1(0.0640, 0.1279, 0.0640, -1.1683, 0.4241); // Proportional part: double u_k1 = Kp1 * err1; // Integral part err_integral1 = err_integral1 + err1 * T; double u_i1 = Ki1 * err_integral1; // Derivative part double err_derivative1 = (err1 - err_prev1)/T; double filtered_err_derivative1 = LowPassFilter1.step(err_derivative1); double u_d1 = Kd1 * filtered_err_derivative1; err_prev1 = err1; // Sum all parts and return it return u_k1 + u_i1 + u_d1; } void start_your_engines1(double u1) { if(encoder1<5250 && encoder1>-5250) //limits rotation, in counts { pwmpin1 = fabs(u1); //u_total moet nog geschaald worden om in de motor gevoerd te worden!!! directionpin1.write(u1 < 0.0f); } else { pwmpin1 = 0; } } void engine_control1() //Engine 1 is rotational engine, connected with left side pins { encoder_radians1 = encoder1*(2*PI)/8400; double err1 = q1ref - encoder_radians1; double u1 = PID_controller1(err1); //PID controller function call start_your_engines1(u1); //Call start_your_engines function } //---------PID controller motor 1 + start motor 1 -----------------------------------------------------------// double PID_controller2(double err2) { static double err_integral2 = 0; static double err_prev2 = err2; // initialization with this value only done once! static BiQuad LowPassFilter2(0.0640, 0.1279, 0.0640, -1.1683, 0.4241); // Proportional part: double u_k2 = Kp2 * err2; // Integral part err_integral2 = err_integral2 + err2 * T; double u_i2 = Ki2 * err_integral2; // Derivative part double err_derivative2 = (err2 - err_prev2)/T; double filtered_err_derivative2 = LowPassFilter2.step(err_derivative2); double u_d2 = Kd2 * filtered_err_derivative2; err_prev2 = err2; // Sum all parts and return it return u_k2 + u_i2 + u_d2; } void start_your_engines2(double u2) { if(encoder2<12600 && encoder2>-1) //limits translation in counts { pwmpin2 = fabs(u2); //u_total moet nog geschaald worden om in de motor gevoerd te worden!!! directionpin2.write(u2 < 0.0f); } else { pwmpin2 = 0; } } void engine_control2() //Engine 2 is translational engine, connected with right side wires { encoder_radians2 = encoder2*(2*PI)/8400; double err2 = q2ref - encoder_radians2; double u2 = PID_controller2(err2); //PID controller function call start_your_engines2(u2); //Call start_your_engines function } //------------------ Start main function --------------------------// int main() { pc.baud(115200); pc.printf("Hello World!\r\n"); //Serial communication only works if hidscope is turned off. pwmpin1.period_us(60); //60 microseconds PWM period, 16.7 kHz emg0filter.add( &emg0band1 ).add( &emg0band2 ).add( &emg0band3 ).add( ¬ch1 ); //attach biquad elements to chain emg1filter.add( &emg1band1 ).add( &emg1band2 ).add( &emg1band3 ).add( ¬ch2 ); emg2filter.add( &emg2band1 ).add( &emg2band2 ).add( &emg2band3 ).add( ¬ch3 ); while(true) { ticker.attach(&emg_filtered,T); //EMG signals filtered every T sec. ticker.attach(&MovAg,T); //Moving average calculation every T sec. ticker.attach(&v_des_calculate_qref,T); //v_des determined every T // HIDScope_tick.attach(&HIDScope_sample,T); //EMG signals raw + filtered to HIDScope every T sec. button1.rise(switch_to_calibrate); //Switch state of calibration (which muscle) wait(0.2f); //Wait to avoid bouncing of button button2.rise(calibrate); //Calibrate threshold for 3 muscles wait(0.2f); //Wait to avoid bouncing of button pc.printf("x is %i\n\r",x); pc.printf("Movag0 = %f , Movag1 = %f, Movag2 = %f \n\r",movAg0, movAg1, movAg2); pc.printf("Thresh0 = %f , Thresh1 = %f, Thresh2 = %f \n\r",Threshold0, Threshold1, Threshold2); //wait(2.0f); } }