RKI aangepast 10:02
Dependencies: HIDScope MODSERIAL QEI biquadFilter mbed
Fork of Project_script_union by
Diff: main.cpp
- Revision:
- 22:5d956c93b3ae
- Parent:
- 21:1da43fdbd254
- Child:
- 23:97a976a8f0fc
--- a/main.cpp Mon Oct 22 13:44:40 2018 +0000 +++ b/main.cpp Mon Oct 29 14:58:25 2018 +0000 @@ -4,155 +4,84 @@ #include "HIDScope.h" #include <math.h> -AnalogIn emg0_in (A0); -AnalogIn emg1_in (A1); -AnalogIn emg2_in (A2); +//ATTENTION: set mBed to version 151 +// set QEI to version 0, (gebruiken wij (nog) niet, is voor encoder) +// set MODSERIAL to version 44 +// set HIDScope to version 7 +// set biquadFilter to version 7 -InterruptIn button1 (D10); //Let op, is deze niet bezet? En 11? Even checken, als er een error komt, kan het hier zitten. +AnalogIn emg0_in (A0); //First raw EMG signal input +AnalogIn emg1_in (A1); //Second raw EMG signal input +AnalogIn emg2_in (A2); //Third raw EMG signal input + +InterruptIn button1 (D10); //Is this one available? We need to make a map of which pins are used for what. InterruptIn button2 (D11); -InterruptIn encoderA (D9); -InterruptIn encoderB (D8); -DigitalOut directionpin1 (D4); +DigitalOut directionpin1 (D4); //Motor direction pin DigitalOut directionpin2 (D7); + DigitalOut ledr (LED_RED); DigitalOut ledb (LED_BLUE); DigitalOut ledg (LED_GREEN); -PwmOut pwmpin1 (D5); +PwmOut pwmpin1 (D5); //Pulse width modulation --> speed motor PwmOut pwmpin2 (D6); +//MODSERIAL pc(USBTX, USBRX); //Serial communication to see if the code works step by step, turn on if hidscope is off -MODSERIAL pc(USBTX, USBRX); +HIDScope scope( 6 ); //HIDScope set to 3x2 channels for 3 muscles, raw data + filtered -//HIDscope -Ticker sample_timer; -HIDScope scope( 3 ); +//Tickers +Ticker HIDScope_tick; //Ticker for HIDScope +Ticker filter_tick; //Ticker for EMG filter +Ticker MovAg_tick; //Ticker to calculate Moving Average //Global variables -int encoder = 0; //Starting point encoder -const float T = 0.001f; //Ticker period +const float T = 0.002f; //Ticker period //EMG filter -double emgfilter0, emgfilter1, emgfilter2; //Filtered EMG data 0, 1 and 2 -const int windowsize = 150; //Size of the array over which the moving average (MovAg) is calculated +double emg0_filt, emg1_filt, emg2_filt; //Variables for filtered EMG data channel 0, 1 and 2 +double emg0_raw, emg1_raw, emg2_raw; +double emg0_filt_x, emg1_filt_x, emg2_filt_x; +const int windowsize = 150; //Size of the array over which the moving average (MovAg) is calculated. (random number) double sum, sum1, sum2, sum3; //variables used to sum elements in array -double StoreArray0[windowsize], StoreArray1[windowsize], StoreArray2[windowsize]; //Empty arrays to calculate MoveAg -double movAg0,movAg1,movAg2; //outcome of MovAg +double StoreArray0[windowsize], StoreArray1[windowsize], StoreArray2[windowsize]; //Empty arrays to calculate MoveAg +double movAg0, movAg1, movAg2; //outcome of MovAg (moet dit een array zijn??) -//calibration -int x = -1; -int emg_cal = 0; -const int sizeCal = 2000; -double StoreCal0[sizeCal], StoreCal1[sizeCal], StoreCal2[sizeCal]; -double Mean0,Mean1,Mean2; -double Threshold0 = 1, Threshold1 = 1, Threshold2 = 1; +//Calibration variables +int x = -1; //Start switch, colour LED is blue. +int emg_cal = 0; //if emg_cal is set to 1, motors can begin to work in this code (!!) +const int sizeCal = 1500; //size of the dataset used for calibration, eerst 2000 +double StoreCal0[sizeCal], StoreCal1[sizeCal], StoreCal2[sizeCal]; //arrays to put the dataset of the calibration in +double Mean0,Mean1,Mean2; //average of maximum tightening +double Threshold0, Threshold1, Threshold2; - -//Biquad -BiQuadChain emg0band; +//Biquad //Variables for the biquad band filters (alle 3 dezelfde maar je kan niet 3x 'emg0band' aanroepen ofzo) +BiQuadChain emg0filter; BiQuad emg0band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 ); BiQuad emg0band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 ); BiQuad emg0band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 ); +BiQuad notch1( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 ); //Notch filter biquad coefficients -BiQuadChain emg1band; +BiQuadChain emg1filter; BiQuad emg1band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 ); BiQuad emg1band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 ); BiQuad emg1band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 ); +BiQuad notch2( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 ); //Notch filter -BiQuadChain emg2band; +BiQuadChain emg2filter; BiQuad emg2band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 ); BiQuad emg2band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 ); BiQuad emg2band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 ); - -BiQuad notch1( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 ); //Notch filter -BiQuad notch2( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 ); //Notch filter BiQuad notch3( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 ); //Notch filter - -//Tickers -Ticker filter_tick; -Ticker MovAg_tick; - //Functions -void sample() -{ - /* Set the sampled emg values in channel 0 (the first channel) and 1 (the second channel) in the 'HIDScope' instance named 'scope' */ - scope.set(0, emg0_in.read() ); - scope.set(1, emg1_in.read() ); - scope.set(2, emg2_in.read() ); - /* Repeat the step above if required for more channels of required (channel 0 up to 5 = 6 channels) - * Ensure that enough channels are available (HIDScope scope( 2 )) - * Finally, send all channels to the PC at once */ - scope.send(); - /* To indicate that the function is working, the LED is toggled */ -} - -void EMGFilter0() -{ - double emg0 = emg0_in.read(); - double bandpass0 = emg0band.step(emg0); - double absolute0 = fabs(bandpass0); - double emgfilter0 = notch1.step(absolute0); -} - -void EMGFilter1() -{ - double emg1 = emg1_in.read(); - double bandpass1 = emg1band.step(emg1); - double absolute1 = fabs(bandpass1); - double emgfilter1 = notch2.step(absolute1); -} - -void EMGFilter2() -{ - double emg2 = emg2_in.read(); - double bandpass2 = emg2band.step(emg2); - double absolute2 = fabs(bandpass2); - double emgfilter2 = notch3.step(absolute2); -} - -void MovAg() //Calculate moving average (MovAg) -{ - for (int i = windowsize-1; i>=0; i--) //Make array of the last datapoints of the filtered signal - { - StoreArray0[i] = StoreArray0[i-1]; - StoreArray1[i] = StoreArray1[i-1]; - StoreArray2[i] = StoreArray2[i-1]; - } - - StoreArray0[0] = emgfilter0; //Stores the latest datapoint in the first element of the array - StoreArray1[0] = emgfilter1; - StoreArray2[0] = emgfilter2; - - sum1 = 0.0; - sum2 = 0.0; - sum3 = 0.0; - - for(int a = 0; a<= windowsize-1; a++) //Sum the elements in the array - { - sum1 += StoreArray0[a]; - sum2 += StoreArray1[a]; - sum3 += StoreArray2[a]; - } - - movAg0 = sum1/windowsize; //calculates an average in the array - movAg1 = sum2/windowsize; - movAg2 = sum3/windowsize; -} - -void emg_filtered() //Call all filter functions -{ - EMGFilter0(); - EMGFilter1(); - EMGFilter2(); - MovAg(); -} void switch_to_calibrate() { - x++; - + x++; //Every time function gets called, x increases. Every button press --> new calibration state. + //Starts with x = -1. So when function gets called 1 time, x = 0. In the end, x = 4 will reset to -1. + if(x==0) //If x = 0, led is red { ledr = 0; @@ -165,20 +94,20 @@ ledb = 0; ledg = 1; } - else if (x == 2) //If x = 2, led is green + else if (x==2) //If x = 2, led is green { ledr = 1; ledb = 1; ledg = 0; } - else //If x = 3, led is white + else //If x = 3 or 4, led is white { ledr = 0; ledb = 0; ledg = 0; } - if(x==4) //Reset back to x = 0 + if(x==4) //Reset back to x = -1 { x = -1; } @@ -189,25 +118,25 @@ { switch(x) { - case 0: + case 0: //If calibration state 0: { sum = 0.0; - for(int j = 0; j<=sizeCal-1; j++) + for(int j = 0; j<=sizeCal-1; j++) //Array filled with datapoints from the EMGfilter signal of muscle 0 { - StoreCal0[j] = emgfilter0; + StoreCal0[j] = emg0_filt; sum+=StoreCal0[j]; - wait(0.001f); + wait(0.001f); //Does there need to be a wait? } - Mean0 = sum/sizeCal; - Threshold0 = Mean0/2; - break; + Mean0 = sum/sizeCal; //Calculate mean of the datapoints in the calibration set (2000 samples) + Threshold0 = Mean0/2; //Threshold calculation = 0.5*mean + break; //Stop. Threshold is calculated, we will use this further in the code } - case 1: + case 1: //If calibration state 1: { - sum = 0.0; - for(int j = 0; j<=sizeCal-1; j++) + sum = 0.0; + for(int j = 0; j<=sizeCal-1; j++) //Array filled with datapoints from the EMGfilter signal of muscle 1 { - StoreCal1[j] = emgfilter1; + StoreCal1[j] = emg1_filt; sum+=StoreCal1[j]; wait(0.001f); } @@ -215,12 +144,12 @@ Threshold1 = Mean1/2; break; } - case 2: + case 2: //If calibration state 2: { sum = 0.0; - for(int j = 0; j<=sizeCal-1; j++) + for(int j = 0; j<=sizeCal-1; j++) //Array filled with datapoints from the EMGfilter signal of muscle 2 { - StoreCal1[j] = emgfilter2; + StoreCal1[j] = emg2_filt; sum+=StoreCal2[j]; wait(0.001f); } @@ -228,148 +157,179 @@ Threshold2 = Mean2/2; break; } - case 3: //EMG is calibrated, robot can be set to Home position. + case 3: //EMG is calibrated, robot can be set to Home position. { - emg_cal = 1; + emg_cal = 1; //This is the setting for which the motors can begin turning in this code (!!) wait(0.001f); break; } - default: //Ensures nothing happens if x is not 0,1 or 2. + default: //Ensures nothing happens if x is not 0,1 or 2. { break; } } } - -void encoderA_rise() + +void HIDScope_sample() +{ + /* Set the sampled emg values in channel 0 (the first channel) and 1 (the second channel) in the 'HIDScope' instance named 'scope' */ + scope.set(0,emg0_raw); + //scope.set(1,emg0_filt); + scope.set(1,movAg0); //als moving average werkt + scope.set(2,emg1_raw); + //scope.set(3,emg1_filt); + scope.set(3,movAg1); //als moving average werkt + scope.set(4,emg2_raw); + //scope.set(5,emg2_filt); + scope.set(5,movAg2); //als moving average werkt + + scope.send(); //Send data to HIDScope server +} + +void EMGFilter0() +{ + emg0_raw = emg0_in.read(); //give name to raw EMG0 data + emg0_filt_x = emg0filter.step(emg0_raw); //Use biquad chain to filter raw EMG data + emg0_filt = abs(emg0_filt_x); //rectifier. LET OP: volgorde filter: band-notch-rectifier. Eerst band-rect-notch, stel er komt iets raars uit, dan Notch uit de biquad chain halen en aparte chain voor aanmaken. +} + +void EMGFilter1() { - if(encoderB==false) - { - encoder++; - } - else - { - encoder--; - } + emg1_raw = emg1_in.read(); //give name to raw EMG1 data + emg1_filt_x = emg1filter.step(emg1_raw); //Use biquad chain to filter raw EMG data + emg1_filt = abs(emg1_filt_x); //rectifier. LET OP: volgorde filter: band-notch-rectifier. Eerst band-rect-notch. } -void encoderA_fall() +void EMGFilter2() { - if(encoderB==true) + emg2_raw = emg2_in.read(); //Give name to raw EMG1 data + emg2_filt_x = emg2filter.step(emg2_raw); //Use biquad chain to filter raw EMG data + emg2_filt = abs(emg2_filt_x); //Rectifier. LET OP: volgorde filter: band-notch-rectifier. +} + +void MovAg() //Calculate moving average (MovAg), klopt nog niet!! +{ + for (int i = windowsize-1; i>=0; i--) //Make arrays for the last datapoints of the filtered signals { - encoder++; + StoreArray0[i] = StoreArray0[i-1]; //Shifts the i'th element one place to the right, this makes it "rolling or moving" average. + StoreArray1[i] = StoreArray1[i-1]; + StoreArray2[i] = StoreArray2[i-1]; } - else + + StoreArray0[0] = emg0_filt; //Stores the latest datapoint of the filtered signal in the first element of the array + StoreArray1[0] = emg1_filt; + StoreArray2[0] = emg2_filt; + + sum1 = 0.0; + sum2 = 0.0; + sum3 = 0.0; + + for(int a = 0; a<= windowsize-1; a++) //Sums the elements in the arrays { - encoder--; + sum1 += StoreArray0[a]; + sum2 += StoreArray1[a]; + sum3 += StoreArray2[a]; } + + movAg0 = sum1/windowsize; //calculates an average in the array + movAg1 = sum2/windowsize; + movAg2 = sum3/windowsize; + //serial getallen sturen, als het 1 getal is gaat hier wat fout, als het een reeks is dan gaat er bij de input naar HIDscope wat fout. } -void encoderB_rise() +void emg_filtered() //Call all filter functions { - if(encoderA==true) - { - encoder++; - } - else - { - encoder--; - } -} - -void encoderB_fall() -{ - if(encoderA==false) - { - encoder++; - } - else - { - encoder--; - } + EMGFilter0(); + EMGFilter1(); + EMGFilter2(); } -// Main function start. +int main() +{ + //pc.baud(115200); + //pc.printf("Hello World!\r\n"); //Serial communication only works if hidscope is turned off. + + emg0filter.add( &emg0band1 ).add( &emg0band2 ).add( &emg0band3 ).add( ¬ch1 ); //attach biquad elements to chain + emg1filter.add( &emg1band1 ).add( &emg1band2 ).add( &emg1band3 ).add( ¬ch2 ); + emg2filter.add( &emg2band1 ).add( &emg2band2 ).add( &emg2band3 ).add( ¬ch3 ); -int main() -{ - //pc.baud(115200); - //pc.printf("hello\n\r"); + filter_tick.attach(&emg_filtered,T); //EMG signals filtered every T sec. + MovAg_tick.attach(&MovAg,T); //Moving average calculation every T sec. + HIDScope_tick.attach(&HIDScope_sample,T); //EMG signals raw + filtered to HIDScope every T sec. - ledr = 0; //Begin led = red, first state of calibration - ledb = 1; + ledr = 1; //Begin led = blue, press button for first state of calibration --> led will turn red + ledb = 0; ledg = 1; - - sample_timer.attach(&sample, 0.002); //HIDscope - - filter_tick.attach(&emg_filtered,T); //EMG signals filtered + moving average every T sec. + button1.rise(switch_to_calibrate); //Switch state of calibration (which muscle) wait(0.2f); - button2.rise(calibrate); //calibrate threshold for 3 muscles + button2.rise(calibrate); //Calibrate threshold for 3 muscles wait(0.2f); pwmpin1.period_us(60); //60 microseconds PWM period, 16.7 kHz - - encoderA.rise(&encoderA_rise); - encoderA.fall(&encoderA_fall); - encoderB.rise(&encoderB_rise); - encoderB.fall(&encoderB_fall); - if(emg_cal==1) + if(emg_cal==1) //After calibration is finished, emg_cal will be 1. Otherwise 0. { - while (true) - { - //Motor aansturen en encoder uitlezen - //float u1 = potmetervalue1; - //float u2 = potmetervalue2; - - //float m1 = ((u1*2.0f)-1.0f); - //float m2 = ((u2*2.0f)-1.0f); - - //pwmpin1 = fabs(m1*0.6f)+0.4f; //pwm duty cycle can only be positive, floating, 0.4f is "inefficiënt", dit tellen we erbij op, en keer 0.6 om te corrigeren voor de helling. - - if(emgfilter0>Threshold0) + //while (true) + // { + + if(movAg0>Threshold0) //If the filtered EMG signal of muscle 0 is higher than the threshold, motor1 will turn in 1 direction { pwmpin1 = 1; directionpin1.write(1); + + ledr = 1; //Blue + ledb = 0; + ledg = 1; + } - else + else //If it is not higher than the threshold, the motor will not turn at all. { pwmpin1 = 0; + ledr = 0; //white + ledb = 0; + ledg = 0; } - if(emgfilter1>Threshold1) + if(movAg1>Threshold1) //If the filtered EMG signal of muscle 1 is higher than the threshold, motor2 will turn in 1 direction { pwmpin2 = 1; directionpin2.write(1); + ledr = 0; //red + ledb = 1; + ledg = 1; } - else + else //If not higher than the threshold, motor will not turn at all { pwmpin2 = 0; + ledr = 0; //white + ledb = 0; + ledg = 0; } - if(emgfilter2>Threshold2) + if(movAg2>Threshold2) //If the filtered EMG signal of muscle 2 is higher than the threshold, motor 1 and 2 will turn { pwmpin1 = 1; pwmpin2 = 2; directionpin1.write(1); directionpin2.write(1); + + ledr = 1; //green + ledb = 1; + ledg = 0; } - else + else //If not higher than the threshold, motors will not turn at all { pwmpin1 = 0; pwmpin2 = 0; + + ledr = 0; //white + ledb = 0; + ledg = 0; } - //Indien waar, motor draait rechtsom. Indien niet waar, motor draait linksom. - //wait(0.01f); //zodat de code niet oneindig doorgaat. - //pwmpin2 = fabs(m2*0.6f)+0.4f; - //directionpin2.write(m2>0); - - //float encoderDegrees = float(encoder)*(360.0/8400.0); - - //pc.printf("Encoder count: %f \n\r",encoderDegrees); + - } + //} + } } -}