
EMG and motor script together, Not fully working yet,.
Dependencies: Encoder MODSERIAL QEI biquadFilter mbed
Fork of Code_MotorEMG by
Diff: main.cpp
- Revision:
- 22:cdaa5c1208a4
- Parent:
- 21:3fdd135a3dfd
- Child:
- 23:91a67476fc2b
--- a/main.cpp Wed Nov 01 16:21:57 2017 +0000 +++ b/main.cpp Wed Nov 01 16:50:57 2017 +0000 @@ -4,19 +4,19 @@ #include "QEI.h" #include "BiQuad.h" #include "MODSERIAL.h" - + MODSERIAL pc(USBTX, USBRX); - + //Defining all in- and outputs //EMG input AnalogIn emgBR( A0 ); //Right Biceps AnalogIn emgBL( A1 ); //Left Biceps - + //Output motor 1 and reading Encoder motor 1 DigitalOut motor1DirectionPin(D4); PwmOut motor1MagnitudePin(D5); QEI Encoder1(D12,D13,NC,32); - + //Output motor 2 and reading Encoder motor 2 DigitalOut motor2DirectionPin(D7); PwmOut motor2MagnitudePin(D6); @@ -26,141 +26,138 @@ DigitalOut motor3DirectionPin(D8); PwmOut motor3MagnitudePin(D9); QEI Encoder3(D2,D3,NC,32); - + //LED output, needed for feedback DigitalOut led_R(LED_RED); DigitalOut led_G(LED_GREEN); DigitalOut led_B(LED_BLUE); - + //Setting Tickers for sampling EMG and determing if the threshold is met Ticker sample_timer; Ticker threshold_timerR; Ticker threshold_timerL; - + Timer t_thresholdR; Timer t_thresholdL; - + float currentTimeTR; float currentTimeTL; - + InterruptIn button(SW2); // Wordt uiteindelijk vervangen door EMG - + Timer t; float speedfactor; // = 0.01; snelheid in, zonder potmeter gebruik <- waarom is dit zo? - + // Defining variables delta (the difference between position and desired position) <- Is dit zo? int delta1; -int delta2; +int delta2; int delta3; -// Boolean needed to know if new input coordinates have to be given +// Boolean needed to know if new input coordinates have to be given bool Move_done = false; bool Input_done = true; -bool Tiller= false; - + /* Defining all the different BiQuad filters, which contain a Notch filter, High-pass filter and Low-pass filter. The Notch filter cancels all frequencies between 49 and 51 Hz, the High-pass filter cancels all frequencies below 20 Hz and the Low-pass filter cancels out all frequencies below 4 Hz. The filters are declared four times, so that they can be used for sampling of right and left biceps, during measurements and calibration. */ - + /* Defining all the normalized values of b and a in the Notch filter for the creation of the Notch BiQuad */ - + BiQuad bqNotch1( 0.9876, -1.5981, 0.9876, -1.5981, 0.9752 ); BiQuad bqNotch2( 0.9876, -1.5981, 0.9876, -1.5981, 0.9752 ); - + BiQuad bqNotchTR( 0.9876, -1.5981, 0.9876, -1.5981, 0.9752 ); BiQuad bqNotchTL( 0.9876, -1.5981, 0.9876, -1.5981, 0.9752 ); - + /* Defining all the normalized values of b and a in the High-pass filter for the creation of the High-pass BiQuad */ - + BiQuad bqHigh1( 0.8371, -1.6742, 0.8371, -1.6475, 0.7009 ); BiQuad bqHigh2( 0.8371, -1.6742, 0.8371, -1.6475, 0.7009 ); - + BiQuad bqHighTR( 0.8371, -1.6742, 0.8371, -1.6475, 0.7009 ); BiQuad bqHighTL( 0.8371, -1.6742, 0.8371, -1.6475, 0.7009 ); - + /* Defining all the normalized values of b and a in the Low-pass filter for the creation of the Low-pass BiQuad */ - + BiQuad bqLow1( 6.0985e-4, 0.0012, 6.0985e-4, -1.9289, 0.9314 ); BiQuad bqLow2( 6.0985e-4, 0.0012, 6.0985e-4, -1.9289, 0.9314 ); - + BiQuad bqLowTR( 6.0985e-4, 0.0012, 6.0985e-4, -1.9289, 0.9314 ); BiQuad bqLowTL( 6.0985e-4, 0.0012, 6.0985e-4, -1.9289, 0.9314 ); - + // Creating a variable needed for the creation of the BiQuadChain BiQuadChain bqChain1; BiQuadChain bqChain2; - + BiQuadChain bqChainTR; BiQuadChain bqChainTL; - + //Declaring all floats needed in the filtering process float emgBRfiltered; //Right biceps Notch+High pass filter float emgBRrectified; //Right biceps rectified float emgBRcomplete; //Right biceps low-pass filter, filtering complete - + float emgBLfiltered; //Left biceps Notch+High pass filter float emgBLrectified; //Left biceps rectified float emgBLcomplete; //Left biceps low-pass filter, filtering complete -// Declaring all variables needed for getting the Threshold value +// Declaring all variables needed for getting the Threshold value float numsamples = 500; float emgBRsum = 0; float emgBRmeanMVC; float thresholdBR; - + float emgBLsum = 0; float emgBLmeanMVC; float thresholdBL; - -/* Function to sample the EMG of the Right Biceps and get a Threshold value + +/* Function to sample the EMG of the Right Biceps and get a Threshold value from it, which can be used throughout the process */ - -void Threshold_samplingBR() -{ + +void Threshold_samplingBR() { t_thresholdR.start(); currentTimeTR = t_thresholdR.read(); - + if (currentTimeTR <= 1) { - + emgBRfiltered = bqChainTR.step( emgBR.read() ); //Notch+High-pass emgBRrectified = fabs(emgBRfiltered); //Rectification emgBRcomplete = bqLowTR.step(emgBRrectified); //Low-pass - + emgBRsum = emgBRsum + emgBRcomplete; - } - emgBRmeanMVC = emgBRsum/numsamples; + } + emgBRmeanMVC = emgBRsum/numsamples; thresholdBR = emgBRmeanMVC * 0.20; - + //pc.printf("ThresholdBR = %f \n", thresholdBR); } -/* Function to sample the EMG of the Left Biceps and get a Threshold value +/* Function to sample the EMG of the Left Biceps and get a Threshold value from it, which can be used throughout the process */ -void Threshold_samplingBL() -{ - t_thresholdL.start(); +void Threshold_samplingBL() { + t_thresholdL.start(); currentTimeTL = t_thresholdL.read(); - + if (currentTimeTL <= 1) { - + emgBLfiltered = bqChain2.step( emgBL.read() ); //Notch+High-pass emgBLrectified = fabs( emgBLfiltered ); //Rectification emgBLcomplete = bqLow2.step( emgBLrectified ); //Low-pass - + emgBLsum = emgBLsum + emgBLcomplete; - } - + } + emgBLmeanMVC = emgBLsum/numsamples; thresholdBL = emgBLmeanMVC * 0.20; - + } - + // EMG sampling and filtering void EMG_sample() @@ -169,31 +166,30 @@ emgBRfiltered = bqChain1.step( emgBR.read() ); //Notch+High-pass emgBRrectified = fabs(emgBRfiltered); //Rectification emgBRcomplete = bqLow1.step(emgBRrectified); //Low-pass - + //Filtering steps for the Left Biceps EMG emgBLfiltered = bqChain2.step( emgBL.read() ); //Notch+High-pass emgBLrectified = fabs( emgBLfiltered ); //Rectification emgBLcomplete = bqLow2.step( emgBLrectified ); //Low-pass - + } -// Function to make the BiQuadChain for the Notch and High pass filter for all three filters +// Function to make the BiQuadChain for the Notch and High pass filter for all three filters void getbqChain() { bqChain1.add(&bqNotch1).add(&bqHigh1); //Making the BiQuadChain bqChain2.add(&bqNotch2).add(&bqHigh2); - + bqChainTR.add(&bqNotchTR).add(&bqHighTR); bqChainTL.add(&bqNotchTR).add(&bqHighTL); } - -// Initial input value for couting the X-values -int Xin=0; -int Xin_new; + +// Initial input value for couting the X-values +int Xin=0; +int Xin_new; float huidigetijdX; - + // Feedback system for counting values of X -void ledtX() -{ +void ledtX(){ t.reset(); Xin++; pc.printf("Xin is %i\n",Xin); @@ -203,45 +199,43 @@ led_G=1; led_R=0; wait(0.5); -} - +} + // Couting system for values of X -int tellerX() -{ +int tellerX(){ if (Move_done == true) { t.reset(); - led_G=1; + led_G=1; led_B=1; led_R=0; - while(true) { - button.fall(ledtX); - /*if (emgBRcomplete > thresholdBR) { - ledtX(); - } */ - t.start(); - huidigetijdX=t.read(); - if (huidigetijdX>2) { - led_R=1; //Go to the next program (counting values for Y) - Xin_new = Xin; - Xin = 0; - - return Xin_new; + while(true){ + button.fall(ledtX); + /*if (emgBRcomplete > thresholdBR) { + ledtX(); + } */ + t.start(); + huidigetijdX=t.read(); + if (huidigetijdX>2){ + led_R=1; //Go to the next program (counting values for Y) + Xin_new = Xin; + Xin = 0; + + return Xin_new; } - - } - - } - return 0; -} - -// Initial values needed for Y (see comments at X function) + + } + + } + return 0; +} + +// Initial values needed for Y (see comments at X function) int Yin=0; int Yin_new; float huidigetijdY; - + //Feedback system for couting values of Y -void ledtY() -{ +void ledtY(){ t.reset(); Yin++; pc.printf("Yin is %i\n",Yin); @@ -251,39 +245,37 @@ led_G=1; led_B=0; wait(0.5); -} - +} + // Couting system for values of Y -int tellerY() -{ +int tellerY(){ if (Move_done == true) { - t.reset(); - led_G=1; - led_B=0; - led_R=1; - while(true) { - button.fall(ledtY); - /*if (emgBRcomplete > thresholdBR) { - ledtY(); - }*/ - t.start(); - huidigetijdY=t.read(); - if (huidigetijdY>2) { - led_B=1; - Yin_new = Yin; - Yin = 0; - Input_done = true; - Move_done = false; - Tiller= true; - return Yin_new; - - } + t.reset(); + led_G=1; + led_B=0; + led_R=1; + while(true){ + button.fall(ledtY); + /*if (emgBRcomplete > thresholdBR) { + ledtY(); + }*/ + t.start(); + huidigetijdY=t.read(); + if (huidigetijdY>2){ + led_B=1; + Yin_new = Yin; + Yin = 0; + Input_done = true; + Move_done = false; + return Yin_new; + } } - return 0; // ga door naar het volgende programma + } + return 0; // ga door naar het volgende programma } - -// Declaring all variables needed for calculating rope lengths, + +// Declaring all variables needed for calculating rope lengths, float Pox = 0; float Poy = 0; float Pbx = 0; @@ -301,7 +293,7 @@ float dLod; float dLbd; float dLrd; - + // Declaring variables needed for calculating motor counts float roto; float rotb; @@ -322,7 +314,7 @@ float dcountb; float hcountr; float dcountr; - + // Declaring variables neeeded for calculating motor movements to get to a certain point <- klopt dit? float Psx; float Psy; @@ -338,267 +330,140 @@ float kpo = 0.1; float kpb = 0.1; float kpr = 0.1; - + float speedfactor1; float speedfactor2; float speedfactor3; + + +//Deel om motor(en) aan te sturen-------------------------------------------- +float referenceVelocity1; +float motorValue1; + +float referenceVelocity2; +float motorValue2; + +float referenceVelocity3; +float motorValue3; -//Deel om motor(en) aan te sturen-------------------------------------------- -float referenceVelocity1; -float motorValue1; - -float referenceVelocity2; -float motorValue2; - -float referenceVelocity3; -float motorValue3; - - - + Ticker controlmotor1; // één ticker van maken? Ticker controlmotor2; // één ticker van maken? Ticker controlmotor3; // één ticker van maken? -float P1(int erroro, float kpo) -{ - return erroro*kpo; -} +float P1(int erroro, float kpo) { + return erroro*kpo; + } void MotorController1() { int reference_o = (int) (counto-hcounto); int position_o = Encoder1.getPulses(); - + int error_o = reference_o - position_o; - + //pc.printf("Position_o = %i reference_o=%i Error_o=%i\n\r" ,position_o,reference_o,error_o); - - if (abs(error_o)<100) { + + if (-100<error_o && error_o<100){ motorValue1 = 0; - } else { - motorValue1 = 0.05*P1(error_o, kpo); + } + else { + motorValue1 = 0.05*P1(error_o, kpo); + } + + + + if (motorValue1 >=0) motor1DirectionPin=0; + else motor1DirectionPin=1; + if (fabs(motorValue1)>1) motor1MagnitudePin = 1; + else motor1MagnitudePin = fabs(motorValue1); } - + - if (motorValue1 >=0) { - motor1DirectionPin=0; - } else { - motor1DirectionPin=1; - } - - motor1MagnitudePin = fabs(motorValue1); - - - if (fabs(motorValue1)>1) { - motor1MagnitudePin = 1; - } -} - - - -float P2(int error_b, float kpb) -{ - return error_b*kpb; -} +float P2(int error_b, float kpb) { + return error_b*kpb; + } void MotorController2() { - + int reference_b = (int) (-(countb-hcountb)); int position_b = Encoder2.getPulses(); int error_b = reference_b - position_b; - + //pc.printf("Position_b = %i reference_b=%i Error_b=%i " ,position_b,reference_b,error_b); - - if (-100<error_b && error_b<100) { + + if (-100<error_b && error_b<100){ motorValue2 = 0; - } else { - motorValue2 = 0.05*P2(error_b, kpb); + } + else { + motorValue2 = 0.05*P2(error_b, kpb); + } + + + if (motorValue2 <=0) motor2DirectionPin=0; + else motor2DirectionPin=1; + if (fabs(motorValue2)>1) motor2MagnitudePin = 1; + else motor2MagnitudePin = fabs(motorValue2); } + - if (motorValue2 <=0) motor2DirectionPin=0; - else motor2DirectionPin=1; - if (fabs(motorValue2)>1) motor2MagnitudePin = 1; - else motor2MagnitudePin = fabs(motorValue2); -} - - - -float P3(int error_r, float kpr) -{ - return error_r*kpr; -} +float P3(int error_r, float kpr) { + return error_r*kpr; + } void MotorController3() { int reference_r = (int) (-(countr-hcountr)); int position_r = Encoder3.getPulses(); - + int error_r = reference_r - position_r; - + pc.printf("Position_r = %i reference_r=%i Error_r=%i\n\r" ,position_r,reference_r,error_r); - - - if (-100<error_r && error_r<100) { + + + if (-100<error_r && error_r<100){ motorValue3 = 0; - - } else { - motorValue3 = 0.05*P3(error_r, kpr); - } - + + } + else { + motorValue3 = 0.05*P3(error_r, kpr); + } + if (motorValue3 <=0) motor3DirectionPin=0; - else motor3DirectionPin=1; + else motor3DirectionPin=1; if (fabs(motorValue3)>1) motor3MagnitudePin = 1; - else motor3MagnitudePin = fabs(motorValue3); -} - - - - - - - - - - - - - - - - - - - - - -void MotorController1t() -{ - int reference_o = -9087; - int position_o = Encoder1.getPulses(); - - int error_o = reference_o - position_o; - - //pc.printf("Position_o = %i reference_o=%i Error_o=%i\n\r" ,position_o,reference_o,error_o); - - if (abs(error_o)<100) { - motorValue1 = 0; - } else { - motorValue1 = 0.05*P1(error_o, kpo); - } - - if (motorValue1 >=0) { - motor1DirectionPin=0; - } else { - motor1DirectionPin=1; - } - - motor1MagnitudePin = fabs(motorValue1); - - - if (fabs(motorValue1)>1) { - motor1MagnitudePin = 1; - } -} - -void MotorController2t() -{ - - int reference_b = 7148; - int position_b = Encoder2.getPulses(); - - int error_b = reference_b - position_b; - - //pc.printf("Position_b = %i reference_b=%i Error_b=%i " ,position_b,reference_b,error_b); - - if (-100<error_b && error_b<100) { - motorValue2 = 0; - } else { - motorValue2 = 0.05*P2(error_b, kpb); - } - - - if (motorValue2 <=0) motor2DirectionPin=0; - else motor2DirectionPin=1; - if (fabs(motorValue2)>1) motor2MagnitudePin = 1; - else motor2MagnitudePin = fabs(motorValue2); -} - - -void MotorController3t() -{ - int reference_r = 6386; - int position_r = Encoder3.getPulses(); - - int error_r = reference_r - position_r; - - pc.printf("Position_r = %i reference_r=%i Error_r=%i\n\r" ,position_r,reference_r,error_r); - - - if (-100<error_r && error_r<100) { - motorValue3 = 0; - - } else { - motorValue3 = 0.05*P3(error_r, kpr); - } - - if (motorValue3 <=0) motor3DirectionPin=0; - else motor3DirectionPin=1; - if (fabs(motorValue3)>1) motor3MagnitudePin = 1; - else motor3MagnitudePin = fabs(motorValue3); -} - - - - - - - - - - - - - - - - - - - - - - + else motor3MagnitudePin = fabs(motorValue3); + } + // einde deel motor------------------------------------------------------------------------------------ - + Ticker loop; - -/*Calculates ropelengths that are needed to get to new positions, based on the + +/*Calculates ropelengths that are needed to get to new positions, based on the set coordinates and the position of the poles */ -float touwlengtes() -{ - Lou=sqrt(pow((Pstx-Pox),2)+pow((Psty-Poy),2)); +float touwlengtes(){ + Lou=sqrt(pow((Pstx-Pox),2)+pow((Psty-Poy),2)); Lbu=sqrt(pow((Pstx-Pbx),2)+pow((Psty-Pby),2)); Lru=sqrt(pow((Pstx-Prx),2)+pow((Psty-Pry),2)); return 0; } - -/* Calculates rotations (and associated counts) of the motor to get to the + +/* Calculates rotations (and associated counts) of the motor to get to the desired new position*/ -float turns() -{ - - roto=Lou/omtrekklosje; - rotb=Lbu/omtrekklosje; - rotr=Lru/omtrekklosje; - counto=roto*4200; +float turns(){ + + roto=Lou/omtrekklosje; + rotb=Lbu/omtrekklosje; + rotr=Lru/omtrekklosje; + counto=roto*4200; dcounto=counto-hcounto; //pc.printf("counto = %f \n\r", counto); //pc.printf("hcounto = %f \n\r", hcounto); @@ -608,129 +473,115 @@ //pc.printf("dcountb = %f \n\r",dcountb); countr=rotr*4200; dcountr=countr-hcountr; - + return 0; } - -// Waar komen Pstx en Psty vandaan en waar staan ze voor? En is dit maar voor een paal? -float Pst() -{ + +// Waar komen Pstx en Psty vandaan en waar staan ze voor? En is dit maar voor een paal? +float Pst(){ Pstx=Pex+Vex*T; Psty=Pey+Vey*T; touwlengtes(); - Pex=Pstx; + Pex=Pstx; Pey=Psty; //pc.printf("een stappie verder\n\r x=%.2f\n\r y=%.2f\n\r",Pstx,Psty); //pc.printf("met lengtes:\n\r Lo=%.2f Lb=%.2f Lr=%.2f\n\r",Lou,Lbu,Lru); turns(); - //pc.printf("rotatie per motor:\n\r o=%.2f b=%.2f r=%.2f\n\r",roto,rotb,rotr); + //pc.printf("rotatie per motor:\n\r o=%.2f b=%.2f r=%.2f\n\r",roto,rotb,rotr); //pc.printf("counts per motor:\n\r o=%.2f b=%.2f r=%.2f\n\r",counto,countb,countr); /*float R; R=Vex/Vey; // met dit stukje kan je zien dat de verhouding tussen Vex en Vey constant is en de end efector dus een rechte lijn maakt pc.printf("\n\r R=%f",R);*/ return 0; -} - +} + //Calculating desired end position based on the EMG input <- Waarom maar voor een paal? -float Ps() -{ +float Ps(){ Psx=(Xin_new)*30+91; - Psy=(Yin_new)*30+278; -// pc.printf("x=%.2f \n\r y=%.2f \n\r",Psx,Psy); + Psy=(Yin_new)*30+278; + // pc.printf("x=%.2f \n\r y=%.2f \n\r",Psx,Psy); return 0; } - + // Rekent dit de snelheid uit waarmee de motoren bewegen? -void Ve() -{ +void Ve(){ Vex=0.2*(Psx-Pex); Vey=0.2*(Psy-Pey); - /* modVe=sqrt(pow(Vex,2)+pow(Vey,2)); - if(modVe>Vmax){ - Vex=(Vex/modVe)*Vmax; - Vey=(Vey/modVe)*Vmax; - }*/ +/* modVe=sqrt(pow(Vex,2)+pow(Vey,2)); + if(modVe>Vmax){ + Vex=(Vex/modVe)*Vmax; + Vey=(Vey/modVe)*Vmax; + }*/ Pst(); -// pc.printf("Vex=%.2f \r\n Vey=%.2f \r\n",Vex,Vey); - if((fabs(Vex)<0.01f)&&(fabs(Vey)<0.01f)) { + // pc.printf("Vex=%.2f \r\n Vey=%.2f \r\n",Vex,Vey); + if((fabs(Vex)<0.01f)&&(fabs(Vey)<0.01f)){ Move_done=true; loop.detach(); - } + } } - + // Calculating the desired position, so that the motors can go here -int calculator() -{ - if(Tiller==true){ +int calculator(){ Ps(); if (Move_done == false) { - loop.attach(&Ve,0.02); + loop.attach(&Ve,0.02); } return 0; } -} - + // Function which makes it possible to lower the end-effector to pick up a piece -void zakker() -{ - while(1) { +void zakker(){ + while(1){ wait(1); - if(Move_done==true) { //misschien moet je hier als voorwaarden een delta is 1 zetten // hierdoor wacht dit programma totdat de beweging klaar is - Lou=sqrt(pow((Pstx-Pox),2)+pow((Psty-Poy),2)); - Lbu=sqrt(pow((Pstx-Pbx),2)+pow((Psty-Pby),2)); - Lru=sqrt(pow((Pstx-Prx),2)+pow((Psty-Pry),2)); - dLod=sqrt(pow(Lou,2)+pow(397.85,2))-Lou; //dit is wat je motoren moeten doen om te zakken - dLbd=sqrt(pow(Lbu,2)+pow(397.85,2))-Lbu; - dLrd=sqrt(pow(Lru,2)+pow(397.85,2))-Lru; - rotzo=dLod/omtrekklosje; - rotzb=dLbd/omtrekklosje; - rotzr=dLrd/omtrekklosje; - countzo=rotzo*4200; - countzb=rotzb*4200; - countzr=rotzr*4200; - - //pc.printf("o=%.2fb=%.2fr=%.2f",countzo,countzb,countzr); // hier moet komen te staan hoe het zakken gaat - } + if(Move_done==true){ //misschien moet je hier als voorwaarden een delta is 1 zetten // hierdoor wacht dit programma totdat de beweging klaar is + dLod=sqrt(pow(Lou,2)+pow(397.85,2))-Lou; //dit is wat je motoren moeten doen om te zakken + dLbd=sqrt(pow(Lbu,2)+pow(397.85,2))-Lbu; + dLrd=sqrt(pow(Lru,2)+pow(397.85,2))-Lru; + rotzo=dLod/omtrekklosje; + rotzb=dLbd/omtrekklosje; + rotzr=dLrd/omtrekklosje; + countzo=rotzo*4200; + countzb=rotzb*4200; + countzr=rotzr*4200; + + //pc.printf("o=%.2fb=%.2fr=%.2f",countzo,countzb,countzr); // hier moet komen te staan hoe het zakken gaat + } } } -void tiller() -{ +void tiller(){ + int reference_o = hcounto-12487; + int reference_b = hcountb-8148; + int reference_r = hcountr-7386; pc.printf("Tiller"); - /* Vex = 20; - Vey = 20;*/ - controlmotor1.attach(&MotorController1t, 0.01); - controlmotor2.attach(&MotorController2t, 0.01); - controlmotor3.attach(&MotorController3t, 0.01); +/* Vex = 20; + Vey = 20;*/ + controlmotor1.attach(&MotorController1, 0.01); + controlmotor2.attach(&MotorController2, 0.01); + controlmotor3.attach(&MotorController3, 0.01); + } -} - -void setcurrentposition() -{ - if(Input_done==true) { +void setcurrentposition(){ + if(Input_done==true){ hcounto=4200*((sqrt(pow((Pex-Pox),2)+pow((Pey-Poy),2)))/omtrekklosje); hcountb=4200*((sqrt(pow((Pex-Pbx),2)+pow((Pey-Pby),2)))/omtrekklosje); hcountr=4200*((sqrt(pow((Pex-Prx),2)+pow((Pey-Pry),2)))/omtrekklosje); pc.printf("ik reset hcounts"); Input_done=false; + } } -} - + int main() { pc.baud(115200); wait(1.0f); + //tiller(); getbqChain(); threshold_timerR.attach(&Threshold_samplingBR, 0.002); threshold_timerL.attach(&Threshold_samplingBL, 0.002); setcurrentposition(); - tiller(); - wait(10); - int reference_o=0; - int reference_b=0; - int reference_r=0; - while(true) { + while(true){ sample_timer.attach(&EMG_sample, 0.002); wait(2.5f); tellerX(); @@ -741,6 +592,7 @@ controlmotor3.attach(&MotorController3, 0.01); //zakker(); wait(5.0f); - } + } } + \ No newline at end of file