added prescaler for 16 bit pwm in LPC1347 target

Fork of mbed-dev by mbed official

Revision:
144:ef7eb2e8f9f7
diff -r 423e1876dc07 -r ef7eb2e8f9f7 targets/hal/TARGET_Freescale/TARGET_KSDK2_MCUS/TARGET_K66F/drivers/fsl_uart.c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/targets/hal/TARGET_Freescale/TARGET_KSDK2_MCUS/TARGET_K66F/drivers/fsl_uart.c	Fri Sep 02 15:07:44 2016 +0100
@@ -0,0 +1,1032 @@
+/*
+ * Copyright (c) 2015, Freescale Semiconductor, Inc.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ *
+ * o Redistributions of source code must retain the above copyright notice, this list
+ *   of conditions and the following disclaimer.
+ *
+ * o Redistributions in binary form must reproduce the above copyright notice, this
+ *   list of conditions and the following disclaimer in the documentation and/or
+ *   other materials provided with the distribution.
+ *
+ * o Neither the name of Freescale Semiconductor, Inc. nor the names of its
+ *   contributors may be used to endorse or promote products derived from this
+ *   software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
+ * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "fsl_uart.h"
+
+/*******************************************************************************
+ * Definitions
+ ******************************************************************************/
+
+/* UART transfer state. */
+enum _uart_tansfer_states
+{
+    kUART_TxIdle, /* TX idle. */
+    kUART_TxBusy, /* TX busy. */
+    kUART_RxIdle, /* RX idle. */
+    kUART_RxBusy  /* RX busy. */
+};
+
+/* Typedef for interrupt handler. */
+typedef void (*uart_isr_t)(UART_Type *base, uart_handle_t *handle);
+
+/*******************************************************************************
+ * Prototypes
+ ******************************************************************************/
+
+/*!
+ * @brief Get the UART instance from peripheral base address.
+ *
+ * @param base UART peripheral base address.
+ * @return UART instance.
+ */
+uint32_t UART_GetInstance(UART_Type *base);
+
+/*!
+ * @brief Get the length of received data in RX ring buffer.
+ *
+ * @param handle UART handle pointer.
+ * @return Length of received data in RX ring buffer.
+ */
+static size_t UART_TransferGetRxRingBufferLength(uart_handle_t *handle);
+
+/*!
+ * @brief Check whether the RX ring buffer is full.
+ *
+ * @param handle UART handle pointer.
+ * @retval true  RX ring buffer is full.
+ * @retval false RX ring buffer is not full.
+ */
+static bool UART_TransferIsRxRingBufferFull(uart_handle_t *handle);
+
+/*!
+ * @brief Read RX register using non-blocking method.
+ *
+ * This function reads data from the TX register directly, upper layer must make
+ * sure the RX register is full or TX FIFO has data before calling this function.
+ *
+ * @param base UART peripheral base address.
+ * @param data Start addresss of the buffer to store the received data.
+ * @param length Size of the buffer.
+ */
+static void UART_ReadNonBlocking(UART_Type *base, uint8_t *data, size_t length);
+
+/*!
+ * @brief Write to TX register using non-blocking method.
+ *
+ * This function writes data to the TX register directly, upper layer must make
+ * sure the TX register is empty or TX FIFO has empty room before calling this function.
+ *
+ * @note This function does not check whether all the data has been sent out to bus,
+ * so before disable TX, check kUART_TransmissionCompleteFlag to ensure the TX is
+ * finished.
+ *
+ * @param base UART peripheral base address.
+ * @param data Start addresss of the data to write.
+ * @param length Size of the buffer to be sent.
+ */
+static void UART_WriteNonBlocking(UART_Type *base, const uint8_t *data, size_t length);
+
+/*******************************************************************************
+ * Variables
+ ******************************************************************************/
+/* Array of UART handle. */
+#if (defined(UART5))
+#define UART_HANDLE_ARRAY_SIZE 6
+#else /* UART5 */
+#if (defined(UART4))
+#define UART_HANDLE_ARRAY_SIZE 5
+#else /* UART4 */
+#if (defined(UART3))
+#define UART_HANDLE_ARRAY_SIZE 4
+#else /* UART3 */
+#if (defined(UART2))
+#define UART_HANDLE_ARRAY_SIZE 3
+#else /* UART2 */
+#if (defined(UART1))
+#define UART_HANDLE_ARRAY_SIZE 2
+#else /* UART1 */
+#if (defined(UART0))
+#define UART_HANDLE_ARRAY_SIZE 1
+#else /* UART0 */
+#error No UART instance.
+#endif /* UART 0 */
+#endif /* UART 1 */
+#endif /* UART 2 */
+#endif /* UART 3 */
+#endif /* UART 4 */
+#endif /* UART 5 */
+static uart_handle_t *s_uartHandle[UART_HANDLE_ARRAY_SIZE];
+/* Array of UART peripheral base address. */
+static UART_Type *const s_uartBases[] = UART_BASE_PTRS;
+
+/* Array of UART IRQ number. */
+static const IRQn_Type s_uartIRQ[] = UART_RX_TX_IRQS;
+/* Array of UART clock name. */
+static const clock_ip_name_t s_uartClock[] = UART_CLOCKS;
+
+/* UART ISR for transactional APIs. */
+static uart_isr_t s_uartIsr;
+
+/*******************************************************************************
+ * Code
+ ******************************************************************************/
+
+uint32_t UART_GetInstance(UART_Type *base)
+{
+    uint32_t instance;
+    uint32_t uartArrayCount = (sizeof(s_uartBases) / sizeof(s_uartBases[0]));
+
+    /* Find the instance index from base address mappings. */
+    for (instance = 0; instance < uartArrayCount; instance++)
+    {
+        if (s_uartBases[instance] == base)
+        {
+            break;
+        }
+    }
+
+    assert(instance < uartArrayCount);
+
+    return instance;
+}
+
+static size_t UART_TransferGetRxRingBufferLength(uart_handle_t *handle)
+{
+    size_t size;
+
+    if (handle->rxRingBufferTail > handle->rxRingBufferHead)
+    {
+        size = (size_t)(handle->rxRingBufferHead + handle->rxRingBufferSize - handle->rxRingBufferTail);
+    }
+    else
+    {
+        size = (size_t)(handle->rxRingBufferHead - handle->rxRingBufferTail);
+    }
+
+    return size;
+}
+
+static bool UART_TransferIsRxRingBufferFull(uart_handle_t *handle)
+{
+    bool full;
+
+    if (UART_TransferGetRxRingBufferLength(handle) == (handle->rxRingBufferSize - 1U))
+    {
+        full = true;
+    }
+    else
+    {
+        full = false;
+    }
+
+    return full;
+}
+
+void UART_Init(UART_Type *base, const uart_config_t *config, uint32_t srcClock_Hz)
+{
+    assert(config);
+#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
+    assert(FSL_FEATURE_UART_FIFO_SIZEn(base) >= config->txFifoWatermark);
+    assert(FSL_FEATURE_UART_FIFO_SIZEn(base) >= config->rxFifoWatermark);
+#endif
+
+    uint16_t sbr;
+    uint8_t temp;
+
+    /* Enable uart clock */
+    CLOCK_EnableClock(s_uartClock[UART_GetInstance(base)]);
+
+    /* Disable UART TX RX before setting. */
+    base->C2 &= ~(UART_C2_TE_MASK | UART_C2_RE_MASK);
+
+    /* Calculate the baud rate modulo divisor, sbr*/
+    sbr = srcClock_Hz / (config->baudRate_Bps * 16);
+
+    /* Write the sbr value to the BDH and BDL registers*/
+    base->BDH = (base->BDH & ~UART_BDH_SBR_MASK) | (uint8_t)(sbr >> 8);
+    base->BDL = (uint8_t)sbr;
+
+#if defined(FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT) && FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT
+    /* Determine if a fractional divider is needed to fine tune closer to the
+     * desired baud, each value of brfa is in 1/32 increments,
+     * hence the multiply-by-32. */
+    uint16_t brfa = (32 * srcClock_Hz / (config->baudRate_Bps * 16)) - 32 * sbr;
+
+    /* Write the brfa value to the register*/
+    base->C4 = (base->C4 & ~UART_C4_BRFA_MASK) | (brfa & UART_C4_BRFA_MASK);
+#endif
+
+    /* Set bit count and parity mode. */
+    temp = base->C1 & ~(UART_C1_PE_MASK | UART_C1_PT_MASK | UART_C1_M_MASK);
+
+    if (kUART_ParityDisabled != config->parityMode)
+    {
+        temp |= (UART_C1_M_MASK | (uint8_t)config->parityMode);
+    }
+
+    base->C1 = temp;
+
+#if defined(FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT) && FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT
+    /* Set stop bit per char */
+    base->BDH = (base->BDH & ~UART_BDH_SBNS_MASK) | UART_BDH_SBNS((uint8_t)config->stopBitCount);
+#endif
+
+#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
+    /* Set tx/rx FIFO watermark */
+    base->TWFIFO = config->txFifoWatermark;
+    base->RWFIFO = config->rxFifoWatermark;
+
+    /* Enable tx/rx FIFO */
+    base->PFIFO |= (UART_PFIFO_TXFE_MASK | UART_PFIFO_RXFE_MASK);
+
+    /* Flush FIFO */
+    base->CFIFO |= (UART_CFIFO_TXFLUSH_MASK | UART_CFIFO_RXFLUSH_MASK);
+#endif
+
+    /* Enable TX/RX base on configure structure. */
+    temp = base->C2;
+
+    if (config->enableTx)
+    {
+        temp |= UART_C2_TE_MASK;
+    }
+
+    if (config->enableRx)
+    {
+        temp |= UART_C2_RE_MASK;
+    }
+
+    base->C2 = temp;
+}
+
+void UART_Deinit(UART_Type *base)
+{
+#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
+    /* Wait tx FIFO send out*/
+    while (0 != base->TCFIFO)
+    {
+    }
+#endif
+    /* Wait last char shoft out */
+    while (0 == (base->S1 & UART_S1_TC_MASK))
+    {
+    }
+
+    /* Disable the module. */
+    base->C2 = 0;
+
+    /* Disable uart clock */
+    CLOCK_DisableClock(s_uartClock[UART_GetInstance(base)]);
+}
+
+void UART_GetDefaultConfig(uart_config_t *config)
+{
+    assert(config);
+
+    config->baudRate_Bps = 115200U;
+    config->parityMode = kUART_ParityDisabled;
+#if defined(FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT) && FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT
+    config->stopBitCount = kUART_OneStopBit;
+#endif
+#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
+    config->txFifoWatermark = 0;
+    config->rxFifoWatermark = 1;
+#endif
+    config->enableTx = false;
+    config->enableRx = false;
+}
+
+void UART_SetBaudRate(UART_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
+{
+    uint16_t sbr;
+    uint8_t oldCtrl;
+
+    /* Store C2 before disable Tx and Rx */
+    oldCtrl = base->C2;
+
+    /* Disable UART TX RX before setting. */
+    base->C2 &= ~(UART_C2_TE_MASK | UART_C2_RE_MASK);
+
+    /* Calculate the baud rate modulo divisor, sbr*/
+    sbr = srcClock_Hz / (baudRate_Bps * 16);
+
+    /* Write the sbr value to the BDH and BDL registers*/
+    base->BDH = (base->BDH & ~UART_BDH_SBR_MASK) | (uint8_t)(sbr >> 8);
+    base->BDL = (uint8_t)sbr;
+
+#if defined(FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT) && FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT
+    /* Determine if a fractional divider is needed to fine tune closer to the
+     * desired baud, each value of brfa is in 1/32 increments,
+     * hence the multiply-by-32. */
+    uint16_t brfa = (32 * srcClock_Hz / (baudRate_Bps * 16)) - 32 * sbr;
+
+    /* Write the brfa value to the register*/
+    base->C4 = (base->C4 & ~UART_C4_BRFA_MASK) | (brfa & UART_C4_BRFA_MASK);
+#endif
+
+    /* Restore C2. */
+    base->C2 = oldCtrl;
+}
+
+void UART_EnableInterrupts(UART_Type *base, uint32_t mask)
+{
+    /* The interrupt mask is combined by control bits from several register: ((CFIFO<<24) | (C3<<16) | (C2<<8) |(BDH))
+     */
+    base->BDH |= (mask & 0xFF);
+    base->C2 |= ((mask >> 8) & 0xFF);
+    base->C3 |= ((mask >> 16) & 0xFF);
+
+#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
+    base->CFIFO |= ((mask >> 24) & 0xFF);
+#endif
+}
+
+void UART_DisableInterrupts(UART_Type *base, uint32_t mask)
+{
+    /* The interrupt mask is combined by control bits from several register: ((CFIFO<<24) | (C3<<16) | (C2<<8) |(BDH))
+     */
+    base->BDH &= ~(mask & 0xFF);
+    base->C2 &= ~((mask >> 8) & 0xFF);
+    base->C3 &= ~((mask >> 16) & 0xFF);
+
+#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
+    base->CFIFO &= ~((mask >> 24) & 0xFF);
+#endif
+}
+
+uint32_t UART_GetEnabledInterrupts(UART_Type *base)
+{
+    uint32_t temp;
+
+    temp = base->BDH | ((uint32_t)(base->C2) << 8) | ((uint32_t)(base->C3) << 16);
+
+#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
+    temp |= ((uint32_t)(base->CFIFO) << 24);
+#endif
+
+    return temp;
+}
+
+uint32_t UART_GetStatusFlags(UART_Type *base)
+{
+    uint32_t status_flag;
+
+    status_flag = base->S1 | ((uint32_t)(base->S2) << 8);
+
+#if defined(FSL_FEATURE_UART_HAS_EXTENDED_DATA_REGISTER_FLAGS) && FSL_FEATURE_UART_HAS_EXTENDED_DATA_REGISTER_FLAGS
+    status_flag |= ((uint32_t)(base->ED) << 16);
+#endif
+
+#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
+    status_flag |= ((uint32_t)(base->SFIFO) << 24);
+#endif
+
+    return status_flag;
+}
+
+status_t UART_ClearStatusFlags(UART_Type *base, uint32_t mask)
+{
+    uint8_t reg = base->S2;
+    status_t status;
+
+#if defined(FSL_FEATURE_UART_HAS_LIN_BREAK_DETECT) && FSL_FEATURE_UART_HAS_LIN_BREAK_DETECT
+    reg &= ~(UART_S2_RXEDGIF_MASK | UART_S2_LBKDIF_MASK);
+#else
+    reg &= ~UART_S2_RXEDGIF_MASK;
+#endif
+
+    base->S2 = reg | (uint8_t)(mask >> 8);
+
+#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
+    base->SFIFO = (uint8_t)(mask >> 24);
+#endif
+
+    if (mask & (kUART_IdleLineFlag | kUART_RxOverrunFlag | kUART_NoiseErrorFlag | kUART_FramingErrorFlag |
+                kUART_ParityErrorFlag))
+    {
+        /* Read base->D to clear the flags. */
+        (void)base->S1;
+        (void)base->D;
+    }
+
+    /* If some flags still pending. */
+    if (mask & UART_GetStatusFlags(base))
+    {
+        /* Some flags can only clear or set by the hardware itself, these flags are: kUART_TxDataRegEmptyFlag,
+        kUART_TransmissionCompleteFlag, kUART_RxDataRegFullFlag, kUART_RxActiveFlag, kUART_NoiseErrorInRxDataRegFlag,
+        kUART_ParityErrorInRxDataRegFlag, kUART_TxFifoEmptyFlag, kUART_RxFifoEmptyFlag. */
+        status = kStatus_UART_FlagCannotClearManually;
+    }
+    else
+    {
+        status = kStatus_Success;
+    }
+
+    return status;
+}
+
+void UART_WriteBlocking(UART_Type *base, const uint8_t *data, size_t length)
+{
+    /* This API can only ensure that the data is written into the data buffer but can't
+    ensure all data in the data buffer are sent into the transmit shift buffer. */
+    while (length--)
+    {
+        while (!(base->S1 & UART_S1_TDRE_MASK))
+        {
+        }
+        base->D = *(data++);
+    }
+}
+
+static void UART_WriteNonBlocking(UART_Type *base, const uint8_t *data, size_t length)
+{
+    size_t i;
+
+    /* The Non Blocking write data API assume user have ensured there is enough space in
+    peripheral to write. */
+    for (i = 0; i < length; i++)
+    {
+        base->D = data[i];
+    }
+}
+
+status_t UART_ReadBlocking(UART_Type *base, uint8_t *data, size_t length)
+{
+    uint32_t statusFlag;
+
+    while (length--)
+    {
+#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
+        while (!base->RCFIFO)
+#else
+        while (!(base->S1 & UART_S1_RDRF_MASK))
+#endif
+        {
+            statusFlag = UART_GetStatusFlags(base);
+
+            if (statusFlag & kUART_RxOverrunFlag)
+            {
+                return kStatus_UART_RxHardwareOverrun;
+            }
+
+            if (statusFlag & kUART_NoiseErrorFlag)
+            {
+                return kStatus_UART_NoiseError;
+            }
+
+            if (statusFlag & kUART_FramingErrorFlag)
+            {
+                return kStatus_UART_FramingError;
+            }
+
+            if (statusFlag & kUART_ParityErrorFlag)
+            {
+                return kStatus_UART_ParityError;
+            }
+        }
+        *(data++) = base->D;
+    }
+
+    return kStatus_Success;
+}
+
+static void UART_ReadNonBlocking(UART_Type *base, uint8_t *data, size_t length)
+{
+    size_t i;
+
+    /* The Non Blocking read data API assume user have ensured there is enough space in
+    peripheral to write. */
+    for (i = 0; i < length; i++)
+    {
+        data[i] = base->D;
+    }
+}
+
+void UART_TransferCreateHandle(UART_Type *base,
+                               uart_handle_t *handle,
+                               uart_transfer_callback_t callback,
+                               void *userData)
+{
+    assert(handle);
+
+    uint32_t instance;
+
+    /* Zero the handle. */
+    memset(handle, 0, sizeof(*handle));
+
+    /* Set the TX/RX state. */
+    handle->rxState = kUART_RxIdle;
+    handle->txState = kUART_TxIdle;
+
+    /* Set the callback and user data. */
+    handle->callback = callback;
+    handle->userData = userData;
+
+#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
+    /* Note:
+       Take care of the RX FIFO, RX interrupt request only assert when received bytes
+       equal or more than RX water mark, there is potential issue if RX water
+       mark larger than 1.
+       For example, if RX FIFO water mark is 2, upper layer needs 5 bytes and
+       5 bytes are received. the last byte will be saved in FIFO but not trigger
+       RX interrupt because the water mark is 2.
+     */
+    base->RWFIFO = 1U;
+#endif
+
+    /* Get instance from peripheral base address. */
+    instance = UART_GetInstance(base);
+
+    /* Save the handle in global variables to support the double weak mechanism. */
+    s_uartHandle[instance] = handle;
+
+    s_uartIsr = UART_TransferHandleIRQ;
+
+    /* Enable interrupt in NVIC. */
+    EnableIRQ(s_uartIRQ[instance]);
+}
+
+void UART_TransferStartRingBuffer(UART_Type *base, uart_handle_t *handle, uint8_t *ringBuffer, size_t ringBufferSize)
+{
+    assert(handle);
+
+    /* Setup the ringbuffer address */
+    if (ringBuffer)
+    {
+        handle->rxRingBuffer = ringBuffer;
+        handle->rxRingBufferSize = ringBufferSize;
+        handle->rxRingBufferHead = 0U;
+        handle->rxRingBufferTail = 0U;
+
+        /* Enable the interrupt to accept the data when user need the ring buffer. */
+        UART_EnableInterrupts(base, kUART_RxDataRegFullInterruptEnable | kUART_RxOverrunInterruptEnable);
+    }
+}
+
+void UART_TransferStopRingBuffer(UART_Type *base, uart_handle_t *handle)
+{
+    assert(handle);
+
+    if (handle->rxState == kUART_RxIdle)
+    {
+        UART_DisableInterrupts(base, kUART_RxDataRegFullInterruptEnable | kUART_RxOverrunInterruptEnable);
+    }
+
+    handle->rxRingBuffer = NULL;
+    handle->rxRingBufferSize = 0U;
+    handle->rxRingBufferHead = 0U;
+    handle->rxRingBufferTail = 0U;
+}
+
+status_t UART_TransferSendNonBlocking(UART_Type *base, uart_handle_t *handle, uart_transfer_t *xfer)
+{
+    status_t status;
+
+    /* Return error if xfer invalid. */
+    if ((0U == xfer->dataSize) || (NULL == xfer->data))
+    {
+        return kStatus_InvalidArgument;
+    }
+
+    /* Return error if current TX busy. */
+    if (kUART_TxBusy == handle->txState)
+    {
+        status = kStatus_UART_TxBusy;
+    }
+    else
+    {
+        handle->txData = xfer->data;
+        handle->txDataSize = xfer->dataSize;
+        handle->txDataSizeAll = xfer->dataSize;
+        handle->txState = kUART_TxBusy;
+
+        /* Enable transmiter interrupt. */
+        UART_EnableInterrupts(base, kUART_TxDataRegEmptyInterruptEnable);
+
+        status = kStatus_Success;
+    }
+
+    return status;
+}
+
+void UART_TransferAbortSend(UART_Type *base, uart_handle_t *handle)
+{
+    UART_DisableInterrupts(base, kUART_TxDataRegEmptyInterruptEnable | kUART_TransmissionCompleteInterruptEnable);
+
+    handle->txDataSize = 0;
+    handle->txState = kUART_TxIdle;
+}
+
+status_t UART_TransferGetSendCount(UART_Type *base, uart_handle_t *handle, uint32_t *count)
+{
+    if (kUART_TxIdle == handle->txState)
+    {
+        return kStatus_NoTransferInProgress;
+    }
+
+    if (!count)
+    {
+        return kStatus_InvalidArgument;
+    }
+
+    *count = handle->txDataSizeAll - handle->txDataSize;
+
+    return kStatus_Success;
+}
+
+status_t UART_TransferReceiveNonBlocking(UART_Type *base,
+                                         uart_handle_t *handle,
+                                         uart_transfer_t *xfer,
+                                         size_t *receivedBytes)
+{
+    uint32_t i;
+    status_t status;
+    /* How many bytes to copy from ring buffer to user memory. */
+    size_t bytesToCopy = 0U;
+    /* How many bytes to receive. */
+    size_t bytesToReceive;
+    /* How many bytes currently have received. */
+    size_t bytesCurrentReceived;
+    uint32_t regPrimask = 0U;
+
+    /* Return error if xfer invalid. */
+    if ((0U == xfer->dataSize) || (NULL == xfer->data))
+    {
+        return kStatus_InvalidArgument;
+    }
+
+    /* How to get data:
+       1. If RX ring buffer is not enabled, then save xfer->data and xfer->dataSize
+          to uart handle, enable interrupt to store received data to xfer->data. When
+          all data received, trigger callback.
+       2. If RX ring buffer is enabled and not empty, get data from ring buffer first.
+          If there are enough data in ring buffer, copy them to xfer->data and return.
+          If there are not enough data in ring buffer, copy all of them to xfer->data,
+          save the xfer->data remained empty space to uart handle, receive data
+          to this empty space and trigger callback when finished. */
+
+    if (kUART_RxBusy == handle->rxState)
+    {
+        status = kStatus_UART_RxBusy;
+    }
+    else
+    {
+        bytesToReceive = xfer->dataSize;
+        bytesCurrentReceived = 0U;
+
+        /* If RX ring buffer is used. */
+        if (handle->rxRingBuffer)
+        {
+            /* Disable IRQ, protect ring buffer. */
+            regPrimask = DisableGlobalIRQ();
+
+            /* How many bytes in RX ring buffer currently. */
+            bytesToCopy = UART_TransferGetRxRingBufferLength(handle);
+
+            if (bytesToCopy)
+            {
+                bytesToCopy = MIN(bytesToReceive, bytesToCopy);
+
+                bytesToReceive -= bytesToCopy;
+
+                /* Copy data from ring buffer to user memory. */
+                for (i = 0U; i < bytesToCopy; i++)
+                {
+                    xfer->data[bytesCurrentReceived++] = handle->rxRingBuffer[handle->rxRingBufferTail];
+
+                    /* Wrap to 0. Not use modulo (%) because it might be large and slow. */
+                    if (handle->rxRingBufferTail + 1U == handle->rxRingBufferSize)
+                    {
+                        handle->rxRingBufferTail = 0U;
+                    }
+                    else
+                    {
+                        handle->rxRingBufferTail++;
+                    }
+                }
+            }
+
+            /* If ring buffer does not have enough data, still need to read more data. */
+            if (bytesToReceive)
+            {
+                /* No data in ring buffer, save the request to UART handle. */
+                handle->rxData = xfer->data + bytesCurrentReceived;
+                handle->rxDataSize = bytesToReceive;
+                handle->rxDataSizeAll = bytesToReceive;
+                handle->rxState = kUART_RxBusy;
+            }
+
+            /* Enable IRQ if previously enabled. */
+            EnableGlobalIRQ(regPrimask);
+
+            /* Call user callback since all data are received. */
+            if (0 == bytesToReceive)
+            {
+                if (handle->callback)
+                {
+                    handle->callback(base, handle, kStatus_UART_RxIdle, handle->userData);
+                }
+            }
+        }
+        /* Ring buffer not used. */
+        else
+        {
+            handle->rxData = xfer->data + bytesCurrentReceived;
+            handle->rxDataSize = bytesToReceive;
+            handle->rxDataSizeAll = bytesToReceive;
+            handle->rxState = kUART_RxBusy;
+
+            /* Enable RX interrupt. */
+            UART_EnableInterrupts(base, kUART_RxDataRegFullInterruptEnable | kUART_RxOverrunInterruptEnable);
+        }
+
+        /* Return the how many bytes have read. */
+        if (receivedBytes)
+        {
+            *receivedBytes = bytesCurrentReceived;
+        }
+
+        status = kStatus_Success;
+    }
+
+    return status;
+}
+
+void UART_TransferAbortReceive(UART_Type *base, uart_handle_t *handle)
+{
+    /* Only abort the receive to handle->rxData, the RX ring buffer is still working. */
+    if (!handle->rxRingBuffer)
+    {
+        /* Disable RX interrupt. */
+        UART_DisableInterrupts(base, kUART_RxDataRegFullInterruptEnable | kUART_RxOverrunInterruptEnable);
+    }
+
+    handle->rxDataSize = 0U;
+    handle->rxState = kUART_RxIdle;
+}
+
+status_t UART_TransferGetReceiveCount(UART_Type *base, uart_handle_t *handle, uint32_t *count)
+{
+    if (kUART_RxIdle == handle->rxState)
+    {
+        return kStatus_NoTransferInProgress;
+    }
+
+    if (!count)
+    {
+        return kStatus_InvalidArgument;
+    }
+
+    *count = handle->rxDataSizeAll - handle->rxDataSize;
+
+    return kStatus_Success;
+}
+
+void UART_TransferHandleIRQ(UART_Type *base, uart_handle_t *handle)
+{
+    uint8_t count;
+    uint8_t tempCount;
+
+    assert(handle);
+
+    /* If RX overrun. */
+    if (UART_S1_OR_MASK & base->S1)
+    {
+        /* Read base->D, otherwise the RX does not work. */
+        (void)base->D;
+
+        /* Trigger callback. */
+        if (handle->callback)
+        {
+            handle->callback(base, handle, kStatus_UART_RxHardwareOverrun, handle->userData);
+        }
+    }
+
+    /* Receive data register full */
+    if ((UART_S1_RDRF_MASK & base->S1) && (UART_C2_RIE_MASK & base->C2))
+    {
+/* Get the size that can be stored into buffer for this interrupt. */
+#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
+        count = base->RCFIFO;
+#else
+        count = 1;
+#endif
+
+        /* If handle->rxDataSize is not 0, first save data to handle->rxData. */
+        while ((count) && (handle->rxDataSize))
+        {
+#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
+            tempCount = MIN(handle->rxDataSize, count);
+#else
+            tempCount = 1;
+#endif
+
+            /* Using non block API to read the data from the registers. */
+            UART_ReadNonBlocking(base, handle->rxData, tempCount);
+            handle->rxData += tempCount;
+            handle->rxDataSize -= tempCount;
+            count -= tempCount;
+
+            /* If all the data required for upper layer is ready, trigger callback. */
+            if (!handle->rxDataSize)
+            {
+                handle->rxState = kUART_RxIdle;
+
+                if (handle->callback)
+                {
+                    handle->callback(base, handle, kStatus_UART_RxIdle, handle->userData);
+                }
+            }
+        }
+
+        /* If use RX ring buffer, receive data to ring buffer. */
+        if (handle->rxRingBuffer)
+        {
+            while (count--)
+            {
+                /* If RX ring buffer is full, trigger callback to notify over run. */
+                if (UART_TransferIsRxRingBufferFull(handle))
+                {
+                    if (handle->callback)
+                    {
+                        handle->callback(base, handle, kStatus_UART_RxRingBufferOverrun, handle->userData);
+                    }
+                }
+
+                /* If ring buffer is still full after callback function, the oldest data is overrided. */
+                if (UART_TransferIsRxRingBufferFull(handle))
+                {
+                    /* Increase handle->rxRingBufferTail to make room for new data. */
+                    if (handle->rxRingBufferTail + 1U == handle->rxRingBufferSize)
+                    {
+                        handle->rxRingBufferTail = 0U;
+                    }
+                    else
+                    {
+                        handle->rxRingBufferTail++;
+                    }
+                }
+
+                /* Read data. */
+                handle->rxRingBuffer[handle->rxRingBufferHead] = base->D;
+
+                /* Increase handle->rxRingBufferHead. */
+                if (handle->rxRingBufferHead + 1U == handle->rxRingBufferSize)
+                {
+                    handle->rxRingBufferHead = 0U;
+                }
+                else
+                {
+                    handle->rxRingBufferHead++;
+                }
+            }
+        }
+        /* If no receive requst pending, stop RX interrupt. */
+        else if (!handle->rxDataSize)
+        {
+            UART_DisableInterrupts(base, kUART_RxDataRegFullInterruptEnable | kUART_RxOverrunInterruptEnable);
+        }
+        else
+        {
+        }
+    }
+
+    /* Send data register empty and the interrupt is enabled. */
+    if ((base->S1 & UART_S1_TDRE_MASK) && (base->C2 & UART_C2_TIE_MASK))
+    {
+/* Get the bytes that available at this moment. */
+#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
+        count = FSL_FEATURE_UART_FIFO_SIZEn(base) - base->TCFIFO;
+#else
+        count = 1;
+#endif
+
+        while ((count) && (handle->txDataSize))
+        {
+#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
+            tempCount = MIN(handle->txDataSize, count);
+#else
+            tempCount = 1;
+#endif
+
+            /* Using non block API to write the data to the registers. */
+            UART_WriteNonBlocking(base, handle->txData, tempCount);
+            handle->txData += tempCount;
+            handle->txDataSize -= tempCount;
+            count -= tempCount;
+
+            /* If all the data are written to data register, TX finished. */
+            if (!handle->txDataSize)
+            {
+                handle->txState = kUART_TxIdle;
+
+                /* Disable TX register empty interrupt. */
+                base->C2 = (base->C2 & ~UART_C2_TIE_MASK);
+
+                /* Trigger callback. */
+                if (handle->callback)
+                {
+                    handle->callback(base, handle, kStatus_UART_TxIdle, handle->userData);
+                }
+            }
+        }
+    }
+}
+
+void UART_TransferHandleErrorIRQ(UART_Type *base, uart_handle_t *handle)
+{
+    /* TODO: To be implemented. */
+}
+
+#if defined(UART0)
+#if ((!(defined(FSL_FEATURE_SOC_LPSCI_COUNT))) || \
+     ((defined(FSL_FEATURE_SOC_LPSCI_COUNT)) && (FSL_FEATURE_SOC_LPSCI_COUNT == 0)))
+void UART0_DriverIRQHandler(void)
+{
+    s_uartIsr(UART0, s_uartHandle[0]);
+}
+
+void UART0_RX_TX_DriverIRQHandler(void)
+{
+    UART0_DriverIRQHandler();
+}
+#endif
+#endif
+
+#if defined(UART1)
+void UART1_DriverIRQHandler(void)
+{
+    s_uartIsr(UART1, s_uartHandle[1]);
+}
+
+void UART1_RX_TX_DriverIRQHandler(void)
+{
+    UART1_DriverIRQHandler();
+}
+#endif
+
+#if defined(UART2)
+void UART2_DriverIRQHandler(void)
+{
+    s_uartIsr(UART2, s_uartHandle[2]);
+}
+
+void UART2_RX_TX_DriverIRQHandler(void)
+{
+    UART2_DriverIRQHandler();
+}
+
+#endif
+
+#if defined(UART3)
+void UART3_DriverIRQHandler(void)
+{
+    s_uartIsr(UART3, s_uartHandle[3]);
+}
+
+void UART3_RX_TX_DriverIRQHandler(void)
+{
+    UART3_DriverIRQHandler();
+}
+#endif
+
+#if defined(UART4)
+void UART4_DriverIRQHandler(void)
+{
+    s_uartIsr(UART4, s_uartHandle[4]);
+}
+
+void UART4_RX_TX_DriverIRQHandler(void)
+{
+    UART4_DriverIRQHandler();
+}
+#endif
+
+#if defined(UART5)
+void UART5_DriverIRQHandler(void)
+{
+    s_uartIsr(UART5, s_uartHandle[5]);
+}
+
+void UART5_RX_TX_DriverIRQHandler(void)
+{
+    UART5_DriverIRQHandler();
+}
+#endif