added prescaler for 16 bit pwm in LPC1347 target

Fork of mbed-dev by mbed official

Committer:
JojoS
Date:
Sat Sep 10 15:32:04 2016 +0000
Revision:
147:ba84b7dc41a7
Parent:
144:ef7eb2e8f9f7
added prescaler for 16 bit timers (solution as in LPC11xx), default prescaler 31 for max 28 ms period time

Who changed what in which revision?

UserRevisionLine numberNew contents of line
<> 144:ef7eb2e8f9f7 1 /*
<> 144:ef7eb2e8f9f7 2 * Copyright (c) 2015, Freescale Semiconductor, Inc.
<> 144:ef7eb2e8f9f7 3 * All rights reserved.
<> 144:ef7eb2e8f9f7 4 *
<> 144:ef7eb2e8f9f7 5 * Redistribution and use in source and binary forms, with or without modification,
<> 144:ef7eb2e8f9f7 6 * are permitted provided that the following conditions are met:
<> 144:ef7eb2e8f9f7 7 *
<> 144:ef7eb2e8f9f7 8 * o Redistributions of source code must retain the above copyright notice, this list
<> 144:ef7eb2e8f9f7 9 * of conditions and the following disclaimer.
<> 144:ef7eb2e8f9f7 10 *
<> 144:ef7eb2e8f9f7 11 * o Redistributions in binary form must reproduce the above copyright notice, this
<> 144:ef7eb2e8f9f7 12 * list of conditions and the following disclaimer in the documentation and/or
<> 144:ef7eb2e8f9f7 13 * other materials provided with the distribution.
<> 144:ef7eb2e8f9f7 14 *
<> 144:ef7eb2e8f9f7 15 * o Neither the name of Freescale Semiconductor, Inc. nor the names of its
<> 144:ef7eb2e8f9f7 16 * contributors may be used to endorse or promote products derived from this
<> 144:ef7eb2e8f9f7 17 * software without specific prior written permission.
<> 144:ef7eb2e8f9f7 18 *
<> 144:ef7eb2e8f9f7 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
<> 144:ef7eb2e8f9f7 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
<> 144:ef7eb2e8f9f7 21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
<> 144:ef7eb2e8f9f7 22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
<> 144:ef7eb2e8f9f7 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
<> 144:ef7eb2e8f9f7 24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
<> 144:ef7eb2e8f9f7 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
<> 144:ef7eb2e8f9f7 26 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
<> 144:ef7eb2e8f9f7 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
<> 144:ef7eb2e8f9f7 28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
<> 144:ef7eb2e8f9f7 29 */
<> 144:ef7eb2e8f9f7 30
<> 144:ef7eb2e8f9f7 31 #include "fsl_common.h"
<> 144:ef7eb2e8f9f7 32 #include "fsl_clock.h"
<> 144:ef7eb2e8f9f7 33
<> 144:ef7eb2e8f9f7 34 /*******************************************************************************
<> 144:ef7eb2e8f9f7 35 * Definitions
<> 144:ef7eb2e8f9f7 36 ******************************************************************************/
<> 144:ef7eb2e8f9f7 37
<> 144:ef7eb2e8f9f7 38 #if (defined(OSC) && !(defined(OSC0)))
<> 144:ef7eb2e8f9f7 39 #define OSC0 OSC
<> 144:ef7eb2e8f9f7 40 #endif
<> 144:ef7eb2e8f9f7 41
<> 144:ef7eb2e8f9f7 42 #define MCG_HIRC_FREQ (48000000U)
<> 144:ef7eb2e8f9f7 43 #define MCG_LIRC_FREQ1 (2000000U)
<> 144:ef7eb2e8f9f7 44 #define MCG_LIRC_FREQ2 (8000000U)
<> 144:ef7eb2e8f9f7 45
<> 144:ef7eb2e8f9f7 46 #define MCG_S_CLKST_VAL ((MCG->S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT)
<> 144:ef7eb2e8f9f7 47 #define MCG_SC_FCRDIV_VAL ((MCG->SC & MCG_SC_FCRDIV_MASK) >> MCG_SC_FCRDIV_SHIFT)
<> 144:ef7eb2e8f9f7 48 #define MCG_MC_LIRC_DIV2_VAL ((MCG->MC & MCG_MC_LIRC_DIV2_MASK) >> MCG_MC_LIRC_DIV2_SHIFT)
<> 144:ef7eb2e8f9f7 49 #define MCG_C2_IRCS_VAL ((MCG->C2 & MCG_C2_IRCS_MASK) >> MCG_C2_IRCS_SHIFT)
<> 144:ef7eb2e8f9f7 50
<> 144:ef7eb2e8f9f7 51 #define SIM_CLKDIV1_OUTDIV1_VAL ((SIM->CLKDIV1 & SIM_CLKDIV1_OUTDIV1_MASK) >> SIM_CLKDIV1_OUTDIV1_SHIFT)
<> 144:ef7eb2e8f9f7 52 #define SIM_CLKDIV1_OUTDIV4_VAL ((SIM->CLKDIV1 & SIM_CLKDIV1_OUTDIV4_MASK) >> SIM_CLKDIV1_OUTDIV4_SHIFT)
<> 144:ef7eb2e8f9f7 53 #define SIM_SOPT1_OSC32KSEL_VAL ((SIM->SOPT1 & SIM_SOPT1_OSC32KSEL_MASK) >> SIM_SOPT1_OSC32KSEL_SHIFT)
<> 144:ef7eb2e8f9f7 54
<> 144:ef7eb2e8f9f7 55 /*******************************************************************************
<> 144:ef7eb2e8f9f7 56 * Variables
<> 144:ef7eb2e8f9f7 57 ******************************************************************************/
<> 144:ef7eb2e8f9f7 58
<> 144:ef7eb2e8f9f7 59 /* External XTAL0 (OSC0) clock frequency. */
<> 144:ef7eb2e8f9f7 60 uint32_t g_xtal0Freq;
<> 144:ef7eb2e8f9f7 61
<> 144:ef7eb2e8f9f7 62 /* External XTAL32K clock frequency. */
<> 144:ef7eb2e8f9f7 63 uint32_t g_xtal32Freq;
<> 144:ef7eb2e8f9f7 64
<> 144:ef7eb2e8f9f7 65 /*******************************************************************************
<> 144:ef7eb2e8f9f7 66 * Prototypes
<> 144:ef7eb2e8f9f7 67 ******************************************************************************/
<> 144:ef7eb2e8f9f7 68
<> 144:ef7eb2e8f9f7 69 /*!
<> 144:ef7eb2e8f9f7 70 * @brief Get the current MCG_Lite LIRC_CLK frequency in Hz.
<> 144:ef7eb2e8f9f7 71 *
<> 144:ef7eb2e8f9f7 72 * This function will return the LIRC_CLK value in frequency(Hz) based
<> 144:ef7eb2e8f9f7 73 * on current MCG_Lite configurations and settings. It is an internal function.
<> 144:ef7eb2e8f9f7 74 *
<> 144:ef7eb2e8f9f7 75 * @return MCG_Lite LIRC_CLK frequency.
<> 144:ef7eb2e8f9f7 76 */
<> 144:ef7eb2e8f9f7 77 static uint32_t CLOCK_GetLircClkFreq(void);
<> 144:ef7eb2e8f9f7 78
<> 144:ef7eb2e8f9f7 79 /*!
<> 144:ef7eb2e8f9f7 80 * @brief Get RANGE value based on OSC frequency.
<> 144:ef7eb2e8f9f7 81 *
<> 144:ef7eb2e8f9f7 82 * To setup external crystal oscillator, must set the register bits RANGE base
<> 144:ef7eb2e8f9f7 83 * on the crystal frequency. This function returns the RANGE base on the input
<> 144:ef7eb2e8f9f7 84 * frequency. This is an internal function.
<> 144:ef7eb2e8f9f7 85 *
<> 144:ef7eb2e8f9f7 86 * @return RANGE value.
<> 144:ef7eb2e8f9f7 87 */
<> 144:ef7eb2e8f9f7 88 static uint8_t CLOCK_GetOscRangeFromFreq(uint32_t freq);
<> 144:ef7eb2e8f9f7 89
<> 144:ef7eb2e8f9f7 90 /*******************************************************************************
<> 144:ef7eb2e8f9f7 91 * Code
<> 144:ef7eb2e8f9f7 92 ******************************************************************************/
<> 144:ef7eb2e8f9f7 93
<> 144:ef7eb2e8f9f7 94 static uint32_t CLOCK_GetLircClkFreq(void)
<> 144:ef7eb2e8f9f7 95 {
<> 144:ef7eb2e8f9f7 96 static const uint32_t lircFreqs[] = {MCG_LIRC_FREQ1, MCG_LIRC_FREQ2};
<> 144:ef7eb2e8f9f7 97
<> 144:ef7eb2e8f9f7 98 /* Check whether the LIRC is enabled. */
<> 144:ef7eb2e8f9f7 99 if ((MCG->C1 & MCG_C1_IRCLKEN_MASK) || (kMCGLITE_ClkSrcLirc == MCG_S_CLKST_VAL))
<> 144:ef7eb2e8f9f7 100 {
<> 144:ef7eb2e8f9f7 101 return lircFreqs[MCG_C2_IRCS_VAL];
<> 144:ef7eb2e8f9f7 102 }
<> 144:ef7eb2e8f9f7 103 else
<> 144:ef7eb2e8f9f7 104 {
<> 144:ef7eb2e8f9f7 105 return 0U;
<> 144:ef7eb2e8f9f7 106 }
<> 144:ef7eb2e8f9f7 107 }
<> 144:ef7eb2e8f9f7 108
<> 144:ef7eb2e8f9f7 109 static uint8_t CLOCK_GetOscRangeFromFreq(uint32_t freq)
<> 144:ef7eb2e8f9f7 110 {
<> 144:ef7eb2e8f9f7 111 uint8_t range;
<> 144:ef7eb2e8f9f7 112
<> 144:ef7eb2e8f9f7 113 if (freq <= 39063U)
<> 144:ef7eb2e8f9f7 114 {
<> 144:ef7eb2e8f9f7 115 range = 0U;
<> 144:ef7eb2e8f9f7 116 }
<> 144:ef7eb2e8f9f7 117 else if (freq <= 8000000U)
<> 144:ef7eb2e8f9f7 118 {
<> 144:ef7eb2e8f9f7 119 range = 1U;
<> 144:ef7eb2e8f9f7 120 }
<> 144:ef7eb2e8f9f7 121 else
<> 144:ef7eb2e8f9f7 122 {
<> 144:ef7eb2e8f9f7 123 range = 2U;
<> 144:ef7eb2e8f9f7 124 }
<> 144:ef7eb2e8f9f7 125
<> 144:ef7eb2e8f9f7 126 return range;
<> 144:ef7eb2e8f9f7 127 }
<> 144:ef7eb2e8f9f7 128
<> 144:ef7eb2e8f9f7 129 uint32_t CLOCK_GetOsc0ErClkFreq(void)
<> 144:ef7eb2e8f9f7 130 {
<> 144:ef7eb2e8f9f7 131 if (OSC0->CR & OSC_CR_ERCLKEN_MASK)
<> 144:ef7eb2e8f9f7 132 {
<> 144:ef7eb2e8f9f7 133 /* Please call CLOCK_SetXtal0Freq base on board setting before using OSC0 clock. */
<> 144:ef7eb2e8f9f7 134 assert(g_xtal0Freq);
<> 144:ef7eb2e8f9f7 135 return g_xtal0Freq;
<> 144:ef7eb2e8f9f7 136 }
<> 144:ef7eb2e8f9f7 137 else
<> 144:ef7eb2e8f9f7 138 {
<> 144:ef7eb2e8f9f7 139 return 0U;
<> 144:ef7eb2e8f9f7 140 }
<> 144:ef7eb2e8f9f7 141 }
<> 144:ef7eb2e8f9f7 142
<> 144:ef7eb2e8f9f7 143 uint32_t CLOCK_GetEr32kClkFreq(void)
<> 144:ef7eb2e8f9f7 144 {
<> 144:ef7eb2e8f9f7 145 uint32_t freq;
<> 144:ef7eb2e8f9f7 146
<> 144:ef7eb2e8f9f7 147 switch (SIM_SOPT1_OSC32KSEL_VAL)
<> 144:ef7eb2e8f9f7 148 {
<> 144:ef7eb2e8f9f7 149 case 0U: /* OSC 32k clock */
<> 144:ef7eb2e8f9f7 150 freq = (CLOCK_GetOsc0ErClkFreq() == 32768U) ? 32768U : 0U;
<> 144:ef7eb2e8f9f7 151 break;
<> 144:ef7eb2e8f9f7 152 case 2U: /* RTC 32k clock */
<> 144:ef7eb2e8f9f7 153 /* Please call CLOCK_SetXtal32Freq base on board setting before using XTAL32K/RTC_CLKIN clock. */
<> 144:ef7eb2e8f9f7 154 assert(g_xtal32Freq);
<> 144:ef7eb2e8f9f7 155 freq = g_xtal32Freq;
<> 144:ef7eb2e8f9f7 156 break;
<> 144:ef7eb2e8f9f7 157 case 3U: /* LPO clock */
<> 144:ef7eb2e8f9f7 158 freq = LPO_CLK_FREQ;
<> 144:ef7eb2e8f9f7 159 break;
<> 144:ef7eb2e8f9f7 160 default:
<> 144:ef7eb2e8f9f7 161 freq = 0U;
<> 144:ef7eb2e8f9f7 162 break;
<> 144:ef7eb2e8f9f7 163 }
<> 144:ef7eb2e8f9f7 164 return freq;
<> 144:ef7eb2e8f9f7 165 }
<> 144:ef7eb2e8f9f7 166
<> 144:ef7eb2e8f9f7 167 uint32_t CLOCK_GetPlatClkFreq(void)
<> 144:ef7eb2e8f9f7 168 {
<> 144:ef7eb2e8f9f7 169 return CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV1_VAL + 1);
<> 144:ef7eb2e8f9f7 170 }
<> 144:ef7eb2e8f9f7 171
<> 144:ef7eb2e8f9f7 172 uint32_t CLOCK_GetFlashClkFreq(void)
<> 144:ef7eb2e8f9f7 173 {
<> 144:ef7eb2e8f9f7 174 uint32_t freq;
<> 144:ef7eb2e8f9f7 175
<> 144:ef7eb2e8f9f7 176 freq = CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV1_VAL + 1);
<> 144:ef7eb2e8f9f7 177 freq /= (SIM_CLKDIV1_OUTDIV4_VAL + 1);
<> 144:ef7eb2e8f9f7 178
<> 144:ef7eb2e8f9f7 179 return freq;
<> 144:ef7eb2e8f9f7 180 }
<> 144:ef7eb2e8f9f7 181
<> 144:ef7eb2e8f9f7 182 uint32_t CLOCK_GetBusClkFreq(void)
<> 144:ef7eb2e8f9f7 183 {
<> 144:ef7eb2e8f9f7 184 uint32_t freq;
<> 144:ef7eb2e8f9f7 185
<> 144:ef7eb2e8f9f7 186 freq = CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV1_VAL + 1);
<> 144:ef7eb2e8f9f7 187 freq /= (SIM_CLKDIV1_OUTDIV4_VAL + 1);
<> 144:ef7eb2e8f9f7 188
<> 144:ef7eb2e8f9f7 189 return freq;
<> 144:ef7eb2e8f9f7 190 }
<> 144:ef7eb2e8f9f7 191
<> 144:ef7eb2e8f9f7 192 uint32_t CLOCK_GetCoreSysClkFreq(void)
<> 144:ef7eb2e8f9f7 193 {
<> 144:ef7eb2e8f9f7 194 return CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV1_VAL + 1);
<> 144:ef7eb2e8f9f7 195 }
<> 144:ef7eb2e8f9f7 196
<> 144:ef7eb2e8f9f7 197 uint32_t CLOCK_GetFreq(clock_name_t clockName)
<> 144:ef7eb2e8f9f7 198 {
<> 144:ef7eb2e8f9f7 199 uint32_t freq;
<> 144:ef7eb2e8f9f7 200
<> 144:ef7eb2e8f9f7 201 switch (clockName)
<> 144:ef7eb2e8f9f7 202 {
<> 144:ef7eb2e8f9f7 203 case kCLOCK_CoreSysClk:
<> 144:ef7eb2e8f9f7 204 case kCLOCK_PlatClk:
<> 144:ef7eb2e8f9f7 205 freq = CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV1_VAL + 1);
<> 144:ef7eb2e8f9f7 206 break;
<> 144:ef7eb2e8f9f7 207 case kCLOCK_BusClk:
<> 144:ef7eb2e8f9f7 208 case kCLOCK_FlashClk:
<> 144:ef7eb2e8f9f7 209 freq = CLOCK_GetOutClkFreq() / (SIM_CLKDIV1_OUTDIV1_VAL + 1);
<> 144:ef7eb2e8f9f7 210 freq /= (SIM_CLKDIV1_OUTDIV4_VAL + 1);
<> 144:ef7eb2e8f9f7 211 break;
<> 144:ef7eb2e8f9f7 212 case kCLOCK_Er32kClk:
<> 144:ef7eb2e8f9f7 213 freq = CLOCK_GetEr32kClkFreq();
<> 144:ef7eb2e8f9f7 214 break;
<> 144:ef7eb2e8f9f7 215 case kCLOCK_Osc0ErClk:
<> 144:ef7eb2e8f9f7 216 freq = CLOCK_GetOsc0ErClkFreq();
<> 144:ef7eb2e8f9f7 217 break;
<> 144:ef7eb2e8f9f7 218 case kCLOCK_McgInternalRefClk:
<> 144:ef7eb2e8f9f7 219 freq = CLOCK_GetInternalRefClkFreq();
<> 144:ef7eb2e8f9f7 220 break;
<> 144:ef7eb2e8f9f7 221 case kCLOCK_McgPeriphClk:
<> 144:ef7eb2e8f9f7 222 case kCLOCK_McgIrc48MClk:
<> 144:ef7eb2e8f9f7 223 freq = CLOCK_GetPeriphClkFreq();
<> 144:ef7eb2e8f9f7 224 break;
<> 144:ef7eb2e8f9f7 225 case kCLOCK_LpoClk:
<> 144:ef7eb2e8f9f7 226 freq = LPO_CLK_FREQ;
<> 144:ef7eb2e8f9f7 227 break;
<> 144:ef7eb2e8f9f7 228 default:
<> 144:ef7eb2e8f9f7 229 freq = 0U;
<> 144:ef7eb2e8f9f7 230 break;
<> 144:ef7eb2e8f9f7 231 }
<> 144:ef7eb2e8f9f7 232
<> 144:ef7eb2e8f9f7 233 return freq;
<> 144:ef7eb2e8f9f7 234 }
<> 144:ef7eb2e8f9f7 235
<> 144:ef7eb2e8f9f7 236 void CLOCK_SetSimConfig(sim_clock_config_t const *config)
<> 144:ef7eb2e8f9f7 237 {
<> 144:ef7eb2e8f9f7 238 SIM->CLKDIV1 = config->clkdiv1;
<> 144:ef7eb2e8f9f7 239 CLOCK_SetEr32kClock(config->er32kSrc);
<> 144:ef7eb2e8f9f7 240 }
<> 144:ef7eb2e8f9f7 241
<> 144:ef7eb2e8f9f7 242 bool CLOCK_EnableUsbfs0Clock(clock_usb_src_t src, uint32_t freq)
<> 144:ef7eb2e8f9f7 243 {
<> 144:ef7eb2e8f9f7 244 bool ret = true;
<> 144:ef7eb2e8f9f7 245
<> 144:ef7eb2e8f9f7 246 CLOCK_DisableClock(kCLOCK_Usbfs0);
<> 144:ef7eb2e8f9f7 247
<> 144:ef7eb2e8f9f7 248 if (kCLOCK_UsbSrcExt == src)
<> 144:ef7eb2e8f9f7 249 {
<> 144:ef7eb2e8f9f7 250 SIM->SOPT2 &= ~SIM_SOPT2_USBSRC_MASK;
<> 144:ef7eb2e8f9f7 251 }
<> 144:ef7eb2e8f9f7 252 else
<> 144:ef7eb2e8f9f7 253 {
<> 144:ef7eb2e8f9f7 254 SIM->SOPT2 |= SIM_SOPT2_USBSRC_MASK;
<> 144:ef7eb2e8f9f7 255 }
<> 144:ef7eb2e8f9f7 256
<> 144:ef7eb2e8f9f7 257 CLOCK_EnableClock(kCLOCK_Usbfs0);
<> 144:ef7eb2e8f9f7 258
<> 144:ef7eb2e8f9f7 259 if (kCLOCK_UsbSrcIrc48M == src)
<> 144:ef7eb2e8f9f7 260 {
<> 144:ef7eb2e8f9f7 261 USB0->CLK_RECOVER_IRC_EN = 0x03U;
<> 144:ef7eb2e8f9f7 262 USB0->CLK_RECOVER_CTRL |= USB_CLK_RECOVER_CTRL_CLOCK_RECOVER_EN_MASK;
<> 144:ef7eb2e8f9f7 263 }
<> 144:ef7eb2e8f9f7 264
<> 144:ef7eb2e8f9f7 265 return ret;
<> 144:ef7eb2e8f9f7 266 }
<> 144:ef7eb2e8f9f7 267
<> 144:ef7eb2e8f9f7 268 uint32_t CLOCK_GetInternalRefClkFreq(void)
<> 144:ef7eb2e8f9f7 269 {
<> 144:ef7eb2e8f9f7 270 uint8_t divider1 = MCG_SC_FCRDIV_VAL;
<> 144:ef7eb2e8f9f7 271 uint8_t divider2 = MCG_MC_LIRC_DIV2_VAL;
<> 144:ef7eb2e8f9f7 272 /* LIRC internal reference clock is selected*/
<> 144:ef7eb2e8f9f7 273 return CLOCK_GetLircClkFreq() >> (divider1 + divider2);
<> 144:ef7eb2e8f9f7 274 }
<> 144:ef7eb2e8f9f7 275
<> 144:ef7eb2e8f9f7 276 uint32_t CLOCK_GetPeriphClkFreq(void)
<> 144:ef7eb2e8f9f7 277 {
<> 144:ef7eb2e8f9f7 278 /* Check whether the HIRC is enabled. */
<> 144:ef7eb2e8f9f7 279 if ((MCG->MC & MCG_MC_HIRCEN_MASK) || (kMCGLITE_ClkSrcHirc == MCG_S_CLKST_VAL))
<> 144:ef7eb2e8f9f7 280 {
<> 144:ef7eb2e8f9f7 281 return MCG_HIRC_FREQ;
<> 144:ef7eb2e8f9f7 282 }
<> 144:ef7eb2e8f9f7 283 else
<> 144:ef7eb2e8f9f7 284 {
<> 144:ef7eb2e8f9f7 285 return 0U;
<> 144:ef7eb2e8f9f7 286 }
<> 144:ef7eb2e8f9f7 287 }
<> 144:ef7eb2e8f9f7 288
<> 144:ef7eb2e8f9f7 289 uint32_t CLOCK_GetOutClkFreq(void)
<> 144:ef7eb2e8f9f7 290 {
<> 144:ef7eb2e8f9f7 291 uint32_t freq;
<> 144:ef7eb2e8f9f7 292
<> 144:ef7eb2e8f9f7 293 switch (MCG_S_CLKST_VAL)
<> 144:ef7eb2e8f9f7 294 {
<> 144:ef7eb2e8f9f7 295 case kMCGLITE_ClkSrcHirc:
<> 144:ef7eb2e8f9f7 296 freq = MCG_HIRC_FREQ;
<> 144:ef7eb2e8f9f7 297 break;
<> 144:ef7eb2e8f9f7 298 case kMCGLITE_ClkSrcLirc:
<> 144:ef7eb2e8f9f7 299 freq = CLOCK_GetLircClkFreq() >> MCG_SC_FCRDIV_VAL;
<> 144:ef7eb2e8f9f7 300 break;
<> 144:ef7eb2e8f9f7 301 case kMCGLITE_ClkSrcExt:
<> 144:ef7eb2e8f9f7 302 /* Please call CLOCK_SetXtal0Freq base on board setting before using OSC0 clock. */
<> 144:ef7eb2e8f9f7 303 assert(g_xtal0Freq);
<> 144:ef7eb2e8f9f7 304 freq = g_xtal0Freq;
<> 144:ef7eb2e8f9f7 305 break;
<> 144:ef7eb2e8f9f7 306 default:
<> 144:ef7eb2e8f9f7 307 freq = 0U;
<> 144:ef7eb2e8f9f7 308 break;
<> 144:ef7eb2e8f9f7 309 }
<> 144:ef7eb2e8f9f7 310
<> 144:ef7eb2e8f9f7 311 return freq;
<> 144:ef7eb2e8f9f7 312 }
<> 144:ef7eb2e8f9f7 313
<> 144:ef7eb2e8f9f7 314 mcglite_mode_t CLOCK_GetMode(void)
<> 144:ef7eb2e8f9f7 315 {
<> 144:ef7eb2e8f9f7 316 mcglite_mode_t mode;
<> 144:ef7eb2e8f9f7 317
<> 144:ef7eb2e8f9f7 318 switch (MCG_S_CLKST_VAL)
<> 144:ef7eb2e8f9f7 319 {
<> 144:ef7eb2e8f9f7 320 case kMCGLITE_ClkSrcHirc: /* HIRC */
<> 144:ef7eb2e8f9f7 321 mode = kMCGLITE_ModeHirc48M;
<> 144:ef7eb2e8f9f7 322 break;
<> 144:ef7eb2e8f9f7 323 case kMCGLITE_ClkSrcLirc: /* LIRC */
<> 144:ef7eb2e8f9f7 324 if (kMCGLITE_Lirc2M == MCG_C2_IRCS_VAL)
<> 144:ef7eb2e8f9f7 325 {
<> 144:ef7eb2e8f9f7 326 mode = kMCGLITE_ModeLirc2M;
<> 144:ef7eb2e8f9f7 327 }
<> 144:ef7eb2e8f9f7 328 else
<> 144:ef7eb2e8f9f7 329 {
<> 144:ef7eb2e8f9f7 330 mode = kMCGLITE_ModeLirc8M;
<> 144:ef7eb2e8f9f7 331 }
<> 144:ef7eb2e8f9f7 332 break;
<> 144:ef7eb2e8f9f7 333 case kMCGLITE_ClkSrcExt: /* EXT */
<> 144:ef7eb2e8f9f7 334 mode = kMCGLITE_ModeExt;
<> 144:ef7eb2e8f9f7 335 break;
<> 144:ef7eb2e8f9f7 336 default:
<> 144:ef7eb2e8f9f7 337 mode = kMCGLITE_ModeError;
<> 144:ef7eb2e8f9f7 338 break;
<> 144:ef7eb2e8f9f7 339 }
<> 144:ef7eb2e8f9f7 340
<> 144:ef7eb2e8f9f7 341 return mode;
<> 144:ef7eb2e8f9f7 342 }
<> 144:ef7eb2e8f9f7 343
<> 144:ef7eb2e8f9f7 344 status_t CLOCK_SetMcgliteConfig(mcglite_config_t const *targetConfig)
<> 144:ef7eb2e8f9f7 345 {
<> 144:ef7eb2e8f9f7 346 assert(targetConfig);
<> 144:ef7eb2e8f9f7 347
<> 144:ef7eb2e8f9f7 348 /*
<> 144:ef7eb2e8f9f7 349 * If switch between LIRC8M and LIRC2M, need to switch to HIRC mode first,
<> 144:ef7eb2e8f9f7 350 * because could not switch directly.
<> 144:ef7eb2e8f9f7 351 */
<> 144:ef7eb2e8f9f7 352 if ((kMCGLITE_ClkSrcLirc == MCG_S_CLKST_VAL) && (kMCGLITE_ClkSrcLirc == targetConfig->outSrc) &&
<> 144:ef7eb2e8f9f7 353 (MCG_C2_IRCS_VAL != targetConfig->ircs))
<> 144:ef7eb2e8f9f7 354 {
<> 144:ef7eb2e8f9f7 355 MCG->C1 = (MCG->C1 & ~MCG_C1_CLKS_MASK) | MCG_C1_CLKS(kMCGLITE_ClkSrcHirc);
<> 144:ef7eb2e8f9f7 356 while (kMCGLITE_ClkSrcHirc != MCG_S_CLKST_VAL)
<> 144:ef7eb2e8f9f7 357 {
<> 144:ef7eb2e8f9f7 358 }
<> 144:ef7eb2e8f9f7 359 }
<> 144:ef7eb2e8f9f7 360
<> 144:ef7eb2e8f9f7 361 /* Set configuration now. */
<> 144:ef7eb2e8f9f7 362 MCG->SC = MCG_SC_FCRDIV(targetConfig->fcrdiv);
<> 144:ef7eb2e8f9f7 363 MCG->MC = MCG_MC_HIRCEN(targetConfig->hircEnableInNotHircMode) | MCG_MC_LIRC_DIV2(targetConfig->lircDiv2);
<> 144:ef7eb2e8f9f7 364 MCG->C2 = (MCG->C2 & ~MCG_C2_IRCS_MASK) | MCG_C2_IRCS(targetConfig->ircs);
<> 144:ef7eb2e8f9f7 365 MCG->C1 = MCG_C1_CLKS(targetConfig->outSrc) | targetConfig->irclkEnableMode;
<> 144:ef7eb2e8f9f7 366
<> 144:ef7eb2e8f9f7 367 /*
<> 144:ef7eb2e8f9f7 368 * If external oscillator used and MCG_Lite is set to EXT mode, need to
<> 144:ef7eb2e8f9f7 369 * wait for the OSC stable.
<> 144:ef7eb2e8f9f7 370 */
<> 144:ef7eb2e8f9f7 371 if ((MCG->C2 & MCG_C2_EREFS0_MASK) && (kMCGLITE_ClkSrcExt == targetConfig->outSrc))
<> 144:ef7eb2e8f9f7 372 {
<> 144:ef7eb2e8f9f7 373 while (!(MCG->S & MCG_S_OSCINIT0_MASK))
<> 144:ef7eb2e8f9f7 374 {
<> 144:ef7eb2e8f9f7 375 }
<> 144:ef7eb2e8f9f7 376 }
<> 144:ef7eb2e8f9f7 377
<> 144:ef7eb2e8f9f7 378 /* Wait for clock source change completed. */
<> 144:ef7eb2e8f9f7 379 while (targetConfig->outSrc != MCG_S_CLKST_VAL)
<> 144:ef7eb2e8f9f7 380 {
<> 144:ef7eb2e8f9f7 381 }
<> 144:ef7eb2e8f9f7 382
<> 144:ef7eb2e8f9f7 383 return kStatus_Success;
<> 144:ef7eb2e8f9f7 384 }
<> 144:ef7eb2e8f9f7 385
<> 144:ef7eb2e8f9f7 386 void CLOCK_InitOsc0(osc_config_t const *config)
<> 144:ef7eb2e8f9f7 387 {
<> 144:ef7eb2e8f9f7 388 uint8_t range = CLOCK_GetOscRangeFromFreq(config->freq);
<> 144:ef7eb2e8f9f7 389
<> 144:ef7eb2e8f9f7 390 OSC_SetCapLoad(OSC0, config->capLoad);
<> 144:ef7eb2e8f9f7 391 OSC_SetExtRefClkConfig(OSC0, &config->oscerConfig);
<> 144:ef7eb2e8f9f7 392
<> 144:ef7eb2e8f9f7 393 MCG->C2 = ((MCG->C2 & MCG_C2_IRCS_MASK) | MCG_C2_RANGE0(range) | (uint8_t)config->workMode);
<> 144:ef7eb2e8f9f7 394
<> 144:ef7eb2e8f9f7 395 if ((kOSC_ModeExt != config->workMode) && (OSC0->CR & OSC_CR_ERCLKEN_MASK))
<> 144:ef7eb2e8f9f7 396 {
<> 144:ef7eb2e8f9f7 397 /* Wait for stable. */
<> 144:ef7eb2e8f9f7 398 while (!(MCG->S & MCG_S_OSCINIT0_MASK))
<> 144:ef7eb2e8f9f7 399 {
<> 144:ef7eb2e8f9f7 400 }
<> 144:ef7eb2e8f9f7 401 }
<> 144:ef7eb2e8f9f7 402 }
<> 144:ef7eb2e8f9f7 403
<> 144:ef7eb2e8f9f7 404 void CLOCK_DeinitOsc0(void)
<> 144:ef7eb2e8f9f7 405 {
<> 144:ef7eb2e8f9f7 406 OSC0->CR = 0U;
<> 144:ef7eb2e8f9f7 407 MCG->C2 &= MCG_C2_IRCS_MASK;
<> 144:ef7eb2e8f9f7 408 }