Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: biquadFilter mbed MODSERIAL
main.cpp
- Committer:
- Jitse_Giesen
- Date:
- 2017-11-07
- Revision:
- 18:7fb73aa6dbc0
- Parent:
- 17:358e7e1213cf
- Child:
- 19:aa1ed300be11
File content as of revision 18:7fb73aa6dbc0:
/* ___________ ___ / | | \ / o\ /___|____|____\_/ _ > / / | \ _____/ \_ / ___|__ \ __/ / / \ \ /__/ \__\ */ #include "mbed.h" #include "math.h" #include "QEI.h" #include "BiQuad.h" #include "MODSERIAL.h" MODSERIAL pc(USBTX, USBRX); //Defining all in- and outputs //EMG input AnalogIn emgBR( A0 ); //Right Biceps AnalogIn emgBL( A1 ); //Left Biceps //Output motor 1 and reading Encoder motor 1 DigitalOut motor1DirectionPin(D4); PwmOut motor1MagnitudePin(D5); QEI Encoder1(D12,D13,NC,32); //Output motor 2 and reading Encoder motor 2 DigitalOut motor2DirectionPin(D7); PwmOut motor2MagnitudePin(D6); QEI Encoder2(D10,D11,NC,32); //Output motor 3 and reading Encoder motor 3 DigitalOut motor3DirectionPin(D8); PwmOut motor3MagnitudePin(D9); QEI Encoder3(D2,D3,NC,32); //LED output, needed for feedback DigitalOut led_R(LED_RED); DigitalOut led_G(LED_GREEN); DigitalOut led_B(LED_BLUE); //Setting Tickers for sampling EMG and determing if the threshold is met Ticker sample_timer; Ticker threshold_timerR; Ticker threshold_timerL; //Timer needed to determine the threshold for a pre-set time period Timer t_thresholdR; Timer t_thresholdL; //Variables to store the current time in float currentTimeTR; float currentTimeTL; //This is used when testing without EMG InterruptIn button(SW2); InterruptIn button2(SW3); //Timer needed for timing EMG input for the X and Y coördinates Timer t; // Boolean needed to know if new input coordinates have to be given bool Move_done = false; bool Input_done = true; /* Defining all the different BiQuad filters, which contain a Notch filter, High-pass filter and Low-pass filter. The Notch filter cancels all frequencies between 49 and 51 Hz, the High-pass filter cancels all frequencies below 20 Hz and the Low-pass filter cancels out all frequencies below 4 Hz. The filters are declared four times, so that they can be used for sampling of right and left biceps, during measurements and calibration. */ /* Defining all the normalized values of b and a in the Notch filter for the creation of the Notch BiQuad */ BiQuad bqNotch1( 0.9876, -1.5981, 0.9876, -1.5981, 0.9752 ); BiQuad bqNotch2( 0.9876, -1.5981, 0.9876, -1.5981, 0.9752 ); BiQuad bqNotchTR( 0.9876, -1.5981, 0.9876, -1.5981, 0.9752 ); BiQuad bqNotchTL( 0.9876, -1.5981, 0.9876, -1.5981, 0.9752 ); /* Defining all the normalized values of b and a in the High-pass filter for the creation of the High-pass BiQuad */ BiQuad bqHigh1( 0.8371, -1.6742, 0.8371, -1.6475, 0.7009 ); BiQuad bqHigh2( 0.8371, -1.6742, 0.8371, -1.6475, 0.7009 ); BiQuad bqHighTR( 0.8371, -1.6742, 0.8371, -1.6475, 0.7009 ); BiQuad bqHighTL( 0.8371, -1.6742, 0.8371, -1.6475, 0.7009 ); /* Defining all the normalized values of b and a in the Low-pass filter for the creation of the Low-pass BiQuad */ BiQuad bqLow1( 6.0985e-4, 0.0012, 6.0985e-4, -1.9289, 0.9314 ); BiQuad bqLow2( 6.0985e-4, 0.0012, 6.0985e-4, -1.9289, 0.9314 ); BiQuad bqLowTR( 6.0985e-4, 0.0012, 6.0985e-4, -1.9289, 0.9314 ); BiQuad bqLowTL( 6.0985e-4, 0.0012, 6.0985e-4, -1.9289, 0.9314 ); // Creating a variable needed for the creation of the BiQuadChain BiQuadChain bqChain1; BiQuadChain bqChain2; BiQuadChain bqChainTR; BiQuadChain bqChainTL; //Declaring all floats needed in the filtering process float emgBRfiltered; //Right biceps Notch+High pass filter float emgBRrectified; //Right biceps rectified float emgBRcomplete; //Right biceps low-pass filter, filtering complete float emgBLfiltered; //Left biceps Notch+High pass filter float emgBLrectified; //Left biceps rectified float emgBLcomplete; //Left biceps low-pass filter, filtering complete // Declaring all variables needed for getting the Threshold value float numsamples = 500; float emgBRsum = 0; float emgBRmeanMVC; float thresholdBR; float emgBLsum = 0; float emgBLmeanMVC; float thresholdBL; /* Function to sample the EMG of the Right Biceps and get a Threshold value from it, which can be used throughout the process */ void Threshold_samplingBR() { t_thresholdR.start(); currentTimeTR = t_thresholdR.read(); if (currentTimeTR <= 1) { emgBRfiltered = bqChainTR.step( emgBR.read() ); //Notch+High-pass emgBRrectified = fabs(emgBRfiltered); //Rectification emgBRcomplete = bqLowTR.step(emgBRrectified); //Low-pass emgBRsum = emgBRsum + emgBRcomplete; } emgBRmeanMVC = emgBRsum/numsamples; thresholdBR = emgBRmeanMVC * 0.20; } /* Function to sample the EMG of the Left Biceps and get a Threshold value from it, which can be used throughout the process */ void Threshold_samplingBL() { t_thresholdL.start(); currentTimeTL = t_thresholdL.read(); if (currentTimeTL <= 1) { emgBLfiltered = bqChain2.step( emgBL.read() ); //Notch+High-pass emgBLrectified = fabs( emgBLfiltered ); //Rectification emgBLcomplete = bqLow2.step( emgBLrectified ); //Low-pass emgBLsum = emgBLsum + emgBLcomplete; } emgBLmeanMVC = emgBLsum/numsamples; thresholdBL = emgBLmeanMVC * 0.20; } // EMG sampling and filtering void EMG_sample() { //Filtering steps for the Right Biceps EMG emgBRfiltered = bqChain1.step( emgBR.read() ); //Notch+High-pass emgBRrectified = fabs(emgBRfiltered); //Rectification emgBRcomplete = bqLow1.step(emgBRrectified); //Low-pass //Filtering steps for the Left Biceps EMG emgBLfiltered = bqChain2.step( emgBL.read() ); //Notch+High-pass emgBLrectified = fabs( emgBLfiltered ); //Rectification emgBLcomplete = bqLow2.step( emgBLrectified ); //Low-pass } //Function to make the BiQuadChain for the Notch and High pass filter for all three filters void getbqChain() { bqChain1.add(&bqNotch1).add(&bqHigh1); //Making the BiQuadChain bqChain2.add(&bqNotch2).add(&bqHigh2); bqChainTR.add(&bqNotchTR).add(&bqHighTR); bqChainTL.add(&bqNotchTR).add(&bqHighTL); } //Initial input value for couting the X-values int Xin=0 ; //set X to zero for the first input sequence int Xin_new; float huidigetijdX; /*Feedback system for counting values of X: The user has 2 secondes to give input before the program jumps to the next section. If input is regesered the timer is reset so the user has 2 secondes again for the next input.*/ void ledtX() { t.reset(); //Reset (restart) the timer Xin++; pc.printf("Xin is %i\n",Xin); led_G=0; //Feedback for user to ensure his input is regestered led_R=1; wait(0.2); //time led green on led_G=1; led_R=0; wait(0.5); /*prevent multiple counts for one muscle contraction. This way only one contraction can be regestered per half second*/ } // Couting system for values of X int tellerX() { if (Move_done == true) { t.reset(); led_G=1; led_B=1; led_R=0; while(true) { //button.fall(ledtX); // this can be used for testing without EMG if (emgBRcomplete > thresholdBR) { ledtX(); } t.start(); //Start timer huidigetijdX=t.read(); if (huidigetijdX>2) { //After 2 seconds without input led_R=1; Xin_new = Xin; Xin = 0; //Reset X to zero for the next input sequence return Xin_new; //Go to the next program } } } return 0; } // Initial values needed for Y (see comments at X function) int Yin=0; int Yin_new; float huidigetijdY; /*Feedback system for counting values of Y: The user has 2 secondes to give input before the program jumps to the next section. If input is regesered the timer is reset so the user has 2 secondes again for the next input.*/ void ledtY() { t.reset(); //Reset (restart) the timer Yin++; pc.printf("Yin is %i\n",Yin); led_G=0; //Feedback for user to ensure his input is regestered led_B=1; wait(0.2); //time led green on led_G=1; led_B=0; wait(0.5); /*prevent multiple counts for one muscle contraction. This way only one contraction can be regestered per half second*/ } // Couting system for values of Y int tellerY() { if (Move_done == true) { t.reset(); led_G=1; led_B=0; led_R=1; while(true) { //button.fall(ledtY); // this can be used for testing without EMG if (emgBRcomplete > thresholdBR) { ledtY(); } t.start(); //Start timer huidigetijdY=t.read(); if (huidigetijdY>2) { //After 2 seconds without input led_B=1; Yin_new = Yin; Yin = 0; Input_done = true; //Set input done to True Move_done = false; //Next section is moving so move done is false return Yin_new; //Go to the next program } } } return 0; //Go to the next program } // Declaring all variables needed for calculating rope lengths, /* The following six floats were found using our SOLIDWORKS model*/ float Pox = 0; float Poy = 0; float Pbx = 0; float Pby = 887; float Prx = 768; float Pry = 443; /* The end-effector is manually placed in this (see beneath) position*/ float Pex=91; //initial value choosen for calibration float Pey=278; //initial value choosen for calibration float diamtrklosje=20; float pi=3.14159265359; //M_PI didn't work for some reason float omtrekklosje=diamtrklosje*pi; float Lou; float Lbu; float Lru; float dLod; float dLbd; float dLrd; // Declaring variables needed for calculating motor counts float roto; float rotb; float rotr; float rotzo; float rotzb; float rotzr; float counto; float countb; float countr; float countzo; float countzb; float countzr; // Declaring variables needed for calculating motor movements to get to a certain point float hcounto; float hcountb; float hcountr; int reference_o; int reference_b; int reference_r; int position_o; int position_b; int position_r; int error_o; int error_b; int error_r; float motorValue1; float motorValue2; float motorValue3; float Psx; float Psy; float Vex; float Vey; float Pstx; float Psty; float T=0.02;//seconds float kpo = 21; float kpb = 21; float kpr = 21; Ticker controlmotor1; Ticker controlmotor2; Ticker controlmotor3; //Deel om motor(en) aan te sturen-------------------------------------------- // start Motor 1 ------------------------------------------------------------ float P1(int error_o, float kpo) //Virtual spring with springconstant kpo { return error_o*kpo; } void MotorController1() { /*The reference is the place you want to go to but you have to subtract the initial set position (hcounts) since the encoders 'think' they are at 0 when starting*/ reference_o = (int) (counto-hcounto); position_o = Encoder1.getPulses(); error_o = reference_o - position_o; if (-20<error_o && error_o<20) { /*within this bandwith we are satisfied with the error thus the motor should not move anymore*/ motorValue1 = 0; } else { motorValue1 = P1(error_o, kpo)/4200; } /*differs from the other to due to the motor being on the opposite side of the pillar*/ if (motorValue1 >=0) motor1DirectionPin=0; else motor1DirectionPin=1; if (fabs(motorValue1)>1) motor1MagnitudePin = 1; else motor1MagnitudePin = fabs(motorValue1); } // end Motor 1 -------------------------------------------------------------- // start Motor 2 ------------------------------------------------------------ float P2(int error_b, float kpb) //Virtual spring with springconstant kpb { return error_b*kpb; } void MotorController2() { /*The reference is the place you want to go to but you have to subtract the initial set position (hcounts) since the encoders 'think' they are at 0 when starting*/ reference_b = (int) (-(countb-hcountb)); position_b = Encoder2.getPulses(); error_b = reference_b - position_b; if (-20<error_b && error_b<20) { /*within this bandwith we are satisfied with the error thus the motor should not move anymore*/ motorValue2 = 0; } else { motorValue2 = P2(error_b, kpb)/4200; } if (motorValue2 <=0) motor2DirectionPin=0; else motor2DirectionPin=1; if (fabs(motorValue2)>1) motor2MagnitudePin = 1; else motor2MagnitudePin = fabs(motorValue2); } // end Motor 2 -------------------------------------------------------------- // start Motor 3 ------------------------------------------------------------ float P3(int error_r, float kpr) //Virtual spring with springconstant kpr { return error_r*kpr; } void MotorController3() { /*The reference is the place you want to go to but you have to subtract the initial set position (hcounts) since the encoders 'think' they are at 0 when starting*/ reference_r = (int) (-(countr-hcountr)); position_r = Encoder3.getPulses(); error_r = reference_r - position_r; if (-20<error_r && error_r<20) { /*within this bandwith we are satisfied with the error thus the motor should not move anymore*/ motorValue3 = 0; } else { motorValue3 = P3(error_r, kpr)/4200; } if (motorValue3 <=0) motor3DirectionPin=0; else motor3DirectionPin=1; if (fabs(motorValue3)>1) motor3MagnitudePin = 1; else motor3MagnitudePin = fabs(motorValue3); } // end Motor 3 -------------------------------------------------------------- // einde deel motor---------------------------------------------------------- Ticker loop; /*Calculates ropelengths that are needed to get to new positions for each time step, based on the set coordinates and the position of the poles */ /*We think a lot of float with return zero could have been voids*/ float touwlengtes() { Lou=sqrt(pow((Pstx-Pox),2)+pow((Psty-Poy),2)); Lbu=sqrt(pow((Pstx-Pbx),2)+pow((Psty-Pby),2)); Lru=sqrt(pow((Pstx-Prx),2)+pow((Psty-Pry),2)); return 0; } /* Calculates rotations (and associated counts) of the motor to get to the desired new position for each time step*/ float turns() { roto=Lou/omtrekklosje; rotb=Lbu/omtrekklosje; rotr=Lru/omtrekklosje; counto=roto*4200; countb=rotb*4200; countr=rotr*4200; return 0; } //calculate the setpoint for each time step in coördinates, ropelenghts and counts float Pst() { Pstx=Pex+Vex*T; Psty=Pey+Vey*T; touwlengtes(); Pex=Pstx; Pey=Psty; turns(); return 0; } //Calculating desired end position based on the EMG input float Ps() { Psx=(Xin_new)*30+91; Psy=(Yin_new)*30+278; return 0; } //Calculates the vector pointing from position to setpoint void Ve() { Vex=(Psx-Pex); Vey=(Psy-Pey); Pst(); //calculates the new position for the next time step if((fabs(Vex)<0.01f)&&(fabs(Vey)<0.01f)) { /*If the velocities are lower than 0.01 m/s the move is done and the loop can be detached*/ Move_done=true; loop.detach(); } } // Calculating the desired position int calculator() { Ps(); if (Move_done == false) { /*While the move is being executed the new vector and new position (Pst) have to be calculated continiously*/ loop.attach(&Ve,0.02); } return 0; } // Function which makes it possible to lower the end-effector to pick up a piece void zakker() { /*277.85 is the distance between the board and the bottom of the magnet */ dLod=sqrt(pow(Lou,2)+pow((277.85),2))-Lou; dLbd=sqrt(pow(Lbu,2)+pow((277.85),2))-Lbu; dLrd=sqrt(pow(Lru,2)+pow((277.85),2))-Lru; rotzo=dLod/omtrekklosje; rotzb=dLbd/omtrekklosje; rotzr=dLrd/omtrekklosje; countzo=rotzo*4200; countzb=rotzb*4200; countzr=rotzr*4200; /*first one (counto)differs from the other to due to the motor being on the opposite side of the pillar*/ counto=countzo+hcounto+reference_o; countb=-(reference_b-countzb-hcountb); countr=-(reference_r-countzr-hcountr); } //Checks if the threshold for the left biceps is reached void zakken_threshold() { if (Move_done == true) { //should only be executed when the move is done if (emgBLcomplete > thresholdBL) { zakker(); } } } /*Calculates the counts corrosponding with the set position (which is (0,0))*/ void setcurrentposition() { if(Input_done==true) { hcounto=4200*((sqrt(pow((Pex-Pox),2)+pow((Pey-Poy),2)))/omtrekklosje); hcountb=4200*((sqrt(pow((Pex-Pbx),2)+pow((Pey-Pby),2)))/omtrekklosje); hcountr=4200*((sqrt(pow((Pex-Prx),2)+pow((Pey-Pry),2)))/omtrekklosje); Input_done=false; } } int main() { pc.baud(115200); wait(1.0f);//Gives you one second between starting te program and calibrating getbqChain(); threshold_timerR.attach(&Threshold_samplingBR, 0.002); threshold_timerL.attach(&Threshold_samplingBL, 0.002); setcurrentposition(); while(true) { sample_timer.attach(&EMG_sample, 0.002); zakken_threshold(); wait(2.5f); /*To give the user time between calibration and input, and allow the lowering to take place before new input is asked*/ tellerX(); tellerY(); calculator(); controlmotor1.attach(&MotorController1, 0.01); controlmotor2.attach(&MotorController2, 0.01); controlmotor3.attach(&MotorController3, 0.01); wait(4.0f); /*To allow the move in the XY-plane to finish before lowering can start*/ } }