Garage Door Monitor and Opener

Dependencies:   X_NUCLEO_COMMON ST_INTERFACES

Introduction

This system implements a simple garage door opener and environmental monitor. The hardware connects to the internet using Wi-Fi then on to the Pelion Device Management Platform which provides device monitoring and secure firmware updates over the air (FOTA). Pelion Device Management provides a flexible set of REST APIs which we will use to communicate to a web application running on an EC-2 instance in AWS. The web application will serve a web page where we can monitor and control our garage..

This project is intended to work on the DISCO-L475VG-IOT01A from ST Microelectronics It implements a simple actuator to drive a relay to simulate pushing the "open" button on older style garage doors which do not use a rolling code interface.

The system is designed to be mounted over the door so that the on board time of flight sensor can be used to detect if the door is open or closed.

The system also monitors temperature, humidity and barometric pressure.

https://os.mbed.com/media/uploads/JimCarver/garageopener.jpg

Hardware Requirements:

DISCO-L475G-IOT01A https://os.mbed.com/platforms/ST-Discovery-L475E-IOT01A/

Seeed Studio Grove Relay module https://www.seeedstudio.com/Grove-Relay.html

Seeed Studio Grove cable, I used this one: https://www.seeedstudio.com/Grove-4-pin-Male-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-Pack.html

Connect to the PMOD connector like this:

https://os.mbed.com/media/uploads/JimCarver/opener.jpg

This shows how I installed so that the time of flight sensor can detect when the door is open

https://os.mbed.com/media/uploads/JimCarver/opener1.jpg https://os.mbed.com/media/uploads/JimCarver/opener2.jpg

To use the project:

You will also need a Pelion developers account.

I suggest you first use the Pelion quick state to become familiar with Pelion Device Management. https://os.mbed.com/guides/connect-device-to-pelion/1/?board=ST-Discovery-L475E-IOT01A

Web Interface

For my web interface I am running node-red under Ubuntu in an EC2 instance on AWS. This can run for 12 month within the constraints of their free tier. Here is a tutorial: https://nodered.org/docs/getting-started/aws

You will also need to install several node-red add ons:

sudo npm install -g node-red-dashboard

sudo npm install -g node-red-contrib-mbed-cloud

sudo npm istall -g node-red-contrib-moment

After starting node-red import the contents of GarageFlow.txt from the project, pin the flow into the page.

To enable your web app to access your Pelion account you need an API key.

First you will neet to use your Pelion account to create an API key.

https://os.mbed.com/media/uploads/JimCarver/api_portal.jpg

Now we need to apply that API key to your Node-Red flow.

https://os.mbed.com/media/uploads/JimCarver/api_node-red.jpg

sensors/LIS3MDL/magneto.h

Committer:
JimCarver
Date:
2019-12-05
Revision:
37:ec1124e5ec1f
Parent:
18:a15bfe7aaebd

File content as of revision 37:ec1124e5ec1f:

/**
 ******************************************************************************
 * @file    magneto.h
 * @author  MEMS Application Team
 * @version V1.2.0
 * @date    28-January-2015
 * @brief   This header file contains the functions prototypes for the
 *          magneto driver.
 ******************************************************************************
 * @attention
 *
 * <h2><center>&copy; COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *   1. Redistributions of source code must retain the above copyright notice,
 *      this list of conditions and the following disclaimer.
 *   2. Redistributions in binary form must reproduce the above copyright notice,
 *      this list of conditions and the following disclaimer in the documentation
 *      and/or other materials provided with the distribution.
 *   3. Neither the name of STMicroelectronics nor the names of its contributors
 *      may be used to endorse or promote products derived from this software
 *      without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************
 */


/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __MAGNETO_H
#define __MAGNETO_H

#ifdef __cplusplus
extern "C" {
#endif

/* Includes ------------------------------------------------------------------*/
#include <stdint.h>

/** @addtogroup BSP
  * @{
  */

/** @addtogroup Components
  * @{
  */

/** @addtogroup MAGNETO
  * @{
  */

/** @defgroup MAGNETO_Exported_Types
  * @{
  */

/**
* @brief  MAGNETO init structure definition
*/
typedef struct
{
  uint8_t M_OutputDataRate;
  uint8_t M_OperatingMode;
  uint8_t M_FullScale;
  uint8_t M_XYOperativeMode;
} MAGNETO_InitTypeDef;

/**
* @brief  MAGNETO status enumerator definition
*/
typedef enum
{
  MAGNETO_OK = 0,
  MAGNETO_ERROR = 1,
  MAGNETO_TIMEOUT = 2,
  MAGNETO_NOT_IMPLEMENTED = 3
} MAGNETO_StatusTypeDef;

/**
 * @brief  MAGNETO component id enumerator definition
 */
typedef enum
{
  MAGNETO_NONE_COMPONENT = 0,
  MAGNETO_LIS3MDL_COMPONENT = 1
} MAGNETO_ComponentTypeDef;

/**
 * @brief  MAGNETO driver extended structure definition
 */
typedef struct
{
  MAGNETO_ComponentTypeDef
  id; /* This id must be unique for each component belonging to this class that wants to extend common class */
  void *pData; /* This pointer is specific for each component */
} MAGNETO_DrvExtTypeDef;

/**
* @brief  MAGNETO driver structure definition
*/
typedef struct
{
  MAGNETO_StatusTypeDef       (*Init)(MAGNETO_InitTypeDef *);
  MAGNETO_StatusTypeDef       (*Read_M_ID)(uint8_t *);
  MAGNETO_StatusTypeDef       (*Get_M_Axes)(int32_t *);
  MAGNETO_StatusTypeDef       (*Get_M_AxesRaw)(int16_t *);
  MAGNETO_DrvExtTypeDef       *extData;
} MAGNETO_DrvTypeDef;

/**
 * @}
 */

/**
 * @}
 */

/**
 * @}
 */

/**
 * @}
 */

#ifdef __cplusplus
}
#endif

#endif /* __MAGNETO_H */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/