Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Diff: LSM9DS1.cpp
- Revision:
- 0:801ebe391b00
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/LSM9DS1.cpp Thu Apr 11 22:16:47 2019 +0000
@@ -0,0 +1,1197 @@
+/******************************************************************************
+SFE_LSM9DS1.cpp
+SFE_LSM9DS1 Library Source File
+Jim Lindblom @ SparkFun Electronics
+Original Creation Date: February 27, 2015
+https://github.com/sparkfun/LSM9DS1_Breakout
+
+This file implements all functions of the LSM9DS1 class. Functions here range
+from higher level stuff, like reading/writing LSM9DS1 registers to low-level,
+hardware reads and writes. Both SPI and I2C handler functions can be found
+towards the bottom of this file.
+
+Development environment specifics:
+ IDE: Arduino 1.6
+ Hardware Platform: Arduino Uno
+ LSM9DS1 Breakout Version: 1.0
+
+This code is beerware; if you see me (or any other SparkFun employee) at the
+local, and you've found our code helpful, please buy us a round!
+
+Distributed as-is; no warranty is given.
+******************************************************************************/
+
+#include "LSM9DS1.h"
+#include "LSM9DS1_Registers.h"
+#include "LSM9DS1_Types.h"
+//#include <Wire.h> // Wire library is used for I2C
+//#include <SPI.h> // SPI library is used for...SPI.
+
+//#if defined(ARDUINO) && ARDUINO >= 100
+// #include "Arduino.h"
+//#else
+// #include "WProgram.h"
+//#endif
+
+#define LSM9DS1_COMMUNICATION_TIMEOUT 1000
+
+float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058};
+extern Serial pc;
+
+LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr)
+ :i2c(sda, scl)
+{
+ init(IMU_MODE_I2C, xgAddr, mAddr); // dont know about 0xD6 or 0x3B
+}
+/*
+LSM9DS1::LSM9DS1()
+{
+ init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1));
+}
+
+LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
+{
+ init(interface, xgAddr, mAddr);
+}
+*/
+
+void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
+{
+ settings.device.commInterface = interface;
+ settings.device.agAddress = xgAddr;
+ settings.device.mAddress = mAddr;
+
+ settings.gyro.enabled = true;
+ settings.gyro.enableX = true;
+ settings.gyro.enableY = true;
+ settings.gyro.enableZ = true;
+ // gyro scale can be 245, 500, or 2000
+ settings.gyro.scale = 245;
+ // gyro sample rate: value between 1-6
+ // 1 = 14.9 4 = 238
+ // 2 = 59.5 5 = 476
+ // 3 = 119 6 = 952
+ settings.gyro.sampleRate = 6;
+ // gyro cutoff frequency: value between 0-3
+ // Actual value of cutoff frequency depends
+ // on sample rate.
+ settings.gyro.bandwidth = 0;
+ settings.gyro.lowPowerEnable = false;
+ settings.gyro.HPFEnable = false;
+ // Gyro HPF cutoff frequency: value between 0-9
+ // Actual value depends on sample rate. Only applies
+ // if gyroHPFEnable is true.
+ settings.gyro.HPFCutoff = 0;
+ settings.gyro.flipX = false;
+ settings.gyro.flipY = false;
+ settings.gyro.flipZ = false;
+ settings.gyro.orientation = 0;
+ settings.gyro.latchInterrupt = true;
+
+ settings.accel.enabled = true;
+ settings.accel.enableX = true;
+ settings.accel.enableY = true;
+ settings.accel.enableZ = true;
+ // accel scale can be 2, 4, 8, or 16
+ settings.accel.scale = 2;
+ // accel sample rate can be 1-6
+ // 1 = 10 Hz 4 = 238 Hz
+ // 2 = 50 Hz 5 = 476 Hz
+ // 3 = 119 Hz 6 = 952 Hz
+ settings.accel.sampleRate = 6;
+ // Accel cutoff freqeuncy can be any value between -1 - 3.
+ // -1 = bandwidth determined by sample rate
+ // 0 = 408 Hz 2 = 105 Hz
+ // 1 = 211 Hz 3 = 50 Hz
+ settings.accel.bandwidth = -1;
+ settings.accel.highResEnable = false;
+ // accelHighResBandwidth can be any value between 0-3
+ // LP cutoff is set to a factor of sample rate
+ // 0 = ODR/50 2 = ODR/9
+ // 1 = ODR/100 3 = ODR/400
+ settings.accel.highResBandwidth = 0;
+
+ settings.mag.enabled = true;
+ // mag scale can be 4, 8, 12, or 16
+ settings.mag.scale = 4;
+ // mag data rate can be 0-7
+ // 0 = 0.625 Hz 4 = 10 Hz
+ // 1 = 1.25 Hz 5 = 20 Hz
+ // 2 = 2.5 Hz 6 = 40 Hz
+ // 3 = 5 Hz 7 = 80 Hz
+ settings.mag.sampleRate = 7;
+ settings.mag.tempCompensationEnable = false;
+ // magPerformance can be any value between 0-3
+ // 0 = Low power mode 2 = high performance
+ // 1 = medium performance 3 = ultra-high performance
+ settings.mag.XYPerformance = 3;
+ settings.mag.ZPerformance = 3;
+ settings.mag.lowPowerEnable = false;
+ // magOperatingMode can be 0-2
+ // 0 = continuous conversion
+ // 1 = single-conversion
+ // 2 = power down
+ settings.mag.operatingMode = 0;
+
+ settings.temp.enabled = true;
+ for (int i=0; i<3; i++)
+ {
+ gBias[i] = 0;
+ aBias[i] = 0;
+ mBias[i] = 0;
+ gBiasRaw[i] = 0;
+ aBiasRaw[i] = 0;
+ mBiasRaw[i] = 0;
+ }
+ _autoCalc = false;
+}
+
+
+uint16_t LSM9DS1::begin()
+{
+ //! Todo: don't use _xgAddress or _mAddress, duplicating memory
+ _xgAddress = settings.device.agAddress;
+ _mAddress = settings.device.mAddress;
+
+ constrainScales();
+ // Once we have the scale values, we can calculate the resolution
+ // of each sensor. That's what these functions are for. One for each sensor
+ calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
+ calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
+ calcaRes(); // Calculate g / ADC tick, stored in aRes variable
+
+ // Now, initialize our hardware interface.
+ if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C
+ initI2C(); // Initialize I2C
+ else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI
+ initSPI(); // Initialize SPI
+
+ // To verify communication, we can read from the WHO_AM_I register of
+ // each device. Store those in a variable so we can return them.
+ uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I
+ uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I
+ pc.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress);
+ uint16_t whoAmICombined = (xgTest << 8) | mTest;
+
+ if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP))
+ return 0;
+
+ // Gyro initialization stuff:
+ initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
+
+ // Accelerometer initialization stuff:
+ initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
+
+ // Magnetometer initialization stuff:
+ initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
+
+ // Once everything is initialized, return the WHO_AM_I registers we read:
+ return whoAmICombined;
+}
+
+void LSM9DS1::initGyro()
+{
+ uint8_t tempRegValue = 0;
+
+ // CTRL_REG1_G (Default value: 0x00)
+ // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0]
+ // ODR_G[2:0] - Output data rate selection
+ // FS_G[1:0] - Gyroscope full-scale selection
+ // BW_G[1:0] - Gyroscope bandwidth selection
+
+ // To disable gyro, set sample rate bits to 0. We'll only set sample
+ // rate if the gyro is enabled.
+ if (settings.gyro.enabled)
+ {
+ tempRegValue = (settings.gyro.sampleRate & 0x07) << 5;
+ }
+ switch (settings.gyro.scale)
+ {
+ case 500:
+ tempRegValue |= (0x1 << 3);
+ break;
+ case 2000:
+ tempRegValue |= (0x3 << 3);
+ break;
+ // Otherwise we'll set it to 245 dps (0x0 << 4)
+ }
+ tempRegValue |= (settings.gyro.bandwidth & 0x3);
+ xgWriteByte(CTRL_REG1_G, tempRegValue);
+
+ // CTRL_REG2_G (Default value: 0x00)
+ // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0]
+ // INT_SEL[1:0] - INT selection configuration
+ // OUT_SEL[1:0] - Out selection configuration
+ xgWriteByte(CTRL_REG2_G, 0x00);
+
+ // CTRL_REG3_G (Default value: 0x00)
+ // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G]
+ // LP_mode - Low-power mode enable (0: disabled, 1: enabled)
+ // HP_EN - HPF enable (0:disabled, 1: enabled)
+ // HPCF_G[3:0] - HPF cutoff frequency
+ tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0;
+ if (settings.gyro.HPFEnable)
+ {
+ tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F);
+ }
+ xgWriteByte(CTRL_REG3_G, tempRegValue);
+
+ // CTRL_REG4 (Default value: 0x38)
+ // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1]
+ // Zen_G - Z-axis output enable (0:disable, 1:enable)
+ // Yen_G - Y-axis output enable (0:disable, 1:enable)
+ // Xen_G - X-axis output enable (0:disable, 1:enable)
+ // LIR_XL1 - Latched interrupt (0:not latched, 1:latched)
+ // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used)
+ tempRegValue = 0;
+ if (settings.gyro.enableZ) tempRegValue |= (1<<5);
+ if (settings.gyro.enableY) tempRegValue |= (1<<4);
+ if (settings.gyro.enableX) tempRegValue |= (1<<3);
+ if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1);
+ xgWriteByte(CTRL_REG4, tempRegValue);
+
+ // ORIENT_CFG_G (Default value: 0x00)
+ // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0]
+ // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative)
+ // Orient [2:0] - Directional user orientation selection
+ tempRegValue = 0;
+ if (settings.gyro.flipX) tempRegValue |= (1<<5);
+ if (settings.gyro.flipY) tempRegValue |= (1<<4);
+ if (settings.gyro.flipZ) tempRegValue |= (1<<3);
+ xgWriteByte(ORIENT_CFG_G, tempRegValue);
+}
+
+void LSM9DS1::initAccel()
+{
+ uint8_t tempRegValue = 0;
+
+ // CTRL_REG5_XL (0x1F) (Default value: 0x38)
+ // [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0]
+ // DEC[0:1] - Decimation of accel data on OUT REG and FIFO.
+ // 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples
+ // Zen_XL - Z-axis output enabled
+ // Yen_XL - Y-axis output enabled
+ // Xen_XL - X-axis output enabled
+ if (settings.accel.enableZ) tempRegValue |= (1<<5);
+ if (settings.accel.enableY) tempRegValue |= (1<<4);
+ if (settings.accel.enableX) tempRegValue |= (1<<3);
+
+ xgWriteByte(CTRL_REG5_XL, tempRegValue);
+
+ // CTRL_REG6_XL (0x20) (Default value: 0x00)
+ // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0]
+ // ODR_XL[2:0] - Output data rate & power mode selection
+ // FS_XL[1:0] - Full-scale selection
+ // BW_SCAL_ODR - Bandwidth selection
+ // BW_XL[1:0] - Anti-aliasing filter bandwidth selection
+ tempRegValue = 0;
+ // To disable the accel, set the sampleRate bits to 0.
+ if (settings.accel.enabled)
+ {
+ tempRegValue |= (settings.accel.sampleRate & 0x07) << 5;
+ }
+ switch (settings.accel.scale)
+ {
+ case 4:
+ tempRegValue |= (0x2 << 3);
+ break;
+ case 8:
+ tempRegValue |= (0x3 << 3);
+ break;
+ case 16:
+ tempRegValue |= (0x1 << 3);
+ break;
+ // Otherwise it'll be set to 2g (0x0 << 3)
+ }
+ if (settings.accel.bandwidth >= 0)
+ {
+ tempRegValue |= (1<<2); // Set BW_SCAL_ODR
+ tempRegValue |= (settings.accel.bandwidth & 0x03);
+ }
+ xgWriteByte(CTRL_REG6_XL, tempRegValue);
+
+ // CTRL_REG7_XL (0x21) (Default value: 0x00)
+ // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1]
+ // HR - High resolution mode (0: disable, 1: enable)
+ // DCF[1:0] - Digital filter cutoff frequency
+ // FDS - Filtered data selection
+ // HPIS1 - HPF enabled for interrupt function
+ tempRegValue = 0;
+ if (settings.accel.highResEnable)
+ {
+ tempRegValue |= (1<<7); // Set HR bit
+ tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5;
+ }
+ xgWriteByte(CTRL_REG7_XL, tempRegValue);
+}
+
+// This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average
+// them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch
+// for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store
+// the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to
+// subtract the biases ourselves. This results in a more accurate measurement in general and can
+// remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner
+// is good practice.
+void LSM9DS1::calibrate(bool autoCalc)
+{
+ uint8_t data[6] = {0, 0, 0, 0, 0, 0};
+ uint8_t samples = 0;
+ int ii;
+ int32_t aBiasRawTemp[3] = {0, 0, 0};
+ int32_t gBiasRawTemp[3] = {0, 0, 0};
+
+ // Turn on FIFO and set threshold to 32 samples
+ enableFIFO(true);
+ setFIFO(FIFO_THS, 0x1F);
+ while (samples < 0x1F)
+ {
+ samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples
+ }
+ for(ii = 0; ii < samples ; ii++)
+ { // Read the gyro data stored in the FIFO
+ readGyro();
+ gBiasRawTemp[0] += gx;
+ gBiasRawTemp[1] += gy;
+ gBiasRawTemp[2] += gz;
+ readAccel();
+ aBiasRawTemp[0] += ax;
+ aBiasRawTemp[1] += ay;
+ aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up!
+ }
+ for (ii = 0; ii < 3; ii++)
+ {
+ gBiasRaw[ii] = gBiasRawTemp[ii] / samples;
+ gBias[ii] = calcGyro(gBiasRaw[ii]);
+ aBiasRaw[ii] = aBiasRawTemp[ii] / samples;
+ aBias[ii] = calcAccel(aBiasRaw[ii]);
+ }
+
+ enableFIFO(false);
+ setFIFO(FIFO_OFF, 0x00);
+
+ if (autoCalc) _autoCalc = true;
+}
+
+void LSM9DS1::calibrateMag(bool loadIn)
+{
+ int i, j;
+ int16_t magMin[3] = {0, 0, 0};
+ int16_t magMax[3] = {0, 0, 0}; // The road warrior
+
+ for (i=0; i<128; i++)
+ {
+ while (!magAvailable())
+ ;
+ readMag();
+ int16_t magTemp[3] = {0, 0, 0};
+ magTemp[0] = mx;
+ magTemp[1] = my;
+ magTemp[2] = mz;
+ for (j = 0; j < 3; j++)
+ {
+ if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j];
+ if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j];
+ }
+ }
+ for (j = 0; j < 3; j++)
+ {
+ mBiasRaw[j] = (magMax[j] + magMin[j]) / 2;
+ mBias[j] = calcMag(mBiasRaw[j]);
+ if (loadIn)
+ magOffset(j, mBiasRaw[j]);
+ }
+
+}
+void LSM9DS1::magOffset(uint8_t axis, int16_t offset)
+{
+ if (axis > 2)
+ return;
+ uint8_t msb, lsb;
+ msb = (offset & 0xFF00) >> 8;
+ lsb = offset & 0x00FF;
+ mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb);
+ mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb);
+}
+
+void LSM9DS1::initMag()
+{
+ uint8_t tempRegValue = 0;
+
+ // CTRL_REG1_M (Default value: 0x10)
+ // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST]
+ // TEMP_COMP - Temperature compensation
+ // OM[1:0] - X & Y axes op mode selection
+ // 00:low-power, 01:medium performance
+ // 10: high performance, 11:ultra-high performance
+ // DO[2:0] - Output data rate selection
+ // ST - Self-test enable
+ if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7);
+ tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5;
+ tempRegValue |= (settings.mag.sampleRate & 0x7) << 2;
+ mWriteByte(CTRL_REG1_M, tempRegValue);
+
+ // CTRL_REG2_M (Default value 0x00)
+ // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0]
+ // FS[1:0] - Full-scale configuration
+ // REBOOT - Reboot memory content (0:normal, 1:reboot)
+ // SOFT_RST - Reset config and user registers (0:default, 1:reset)
+ tempRegValue = 0;
+ switch (settings.mag.scale)
+ {
+ case 8:
+ tempRegValue |= (0x1 << 5);
+ break;
+ case 12:
+ tempRegValue |= (0x2 << 5);
+ break;
+ case 16:
+ tempRegValue |= (0x3 << 5);
+ break;
+ // Otherwise we'll default to 4 gauss (00)
+ }
+ mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss
+
+ // CTRL_REG3_M (Default value: 0x03)
+ // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0]
+ // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable)
+ // LP - Low-power mode cofiguration (1:enable)
+ // SIM - SPI mode selection (0:write-only, 1:read/write enable)
+ // MD[1:0] - Operating mode
+ // 00:continuous conversion, 01:single-conversion,
+ // 10,11: Power-down
+ tempRegValue = 0;
+ if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5);
+ tempRegValue |= (settings.mag.operatingMode & 0x3);
+ mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode
+
+ // CTRL_REG4_M (Default value: 0x00)
+ // [0][0][0][0][OMZ1][OMZ0][BLE][0]
+ // OMZ[1:0] - Z-axis operative mode selection
+ // 00:low-power mode, 01:medium performance
+ // 10:high performance, 10:ultra-high performance
+ // BLE - Big/little endian data
+ tempRegValue = 0;
+ tempRegValue = (settings.mag.ZPerformance & 0x3) << 2;
+ mWriteByte(CTRL_REG4_M, tempRegValue);
+
+ // CTRL_REG5_M (Default value: 0x00)
+ // [0][BDU][0][0][0][0][0][0]
+ // BDU - Block data update for magnetic data
+ // 0:continuous, 1:not updated until MSB/LSB are read
+ tempRegValue = 0;
+ mWriteByte(CTRL_REG5_M, tempRegValue);
+}
+
+uint8_t LSM9DS1::accelAvailable()
+{
+ uint8_t status = xgReadByte(STATUS_REG_1);
+
+ return (status & (1<<0));
+}
+
+uint8_t LSM9DS1::gyroAvailable()
+{
+ uint8_t status = xgReadByte(STATUS_REG_1);
+
+ return ((status & (1<<1)) >> 1);
+}
+
+uint8_t LSM9DS1::tempAvailable()
+{
+ uint8_t status = xgReadByte(STATUS_REG_1);
+
+ return ((status & (1<<2)) >> 2);
+}
+
+uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis)
+{
+ uint8_t status;
+ status = mReadByte(STATUS_REG_M);
+
+ return ((status & (1<<axis)) >> axis);
+}
+
+void LSM9DS1::readAccel()
+{
+ uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp
+ xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL
+ ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
+ ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
+ az = (temp[5] << 8) | temp[4]; // Store z-axis values into az
+ if (_autoCalc)
+ {
+ ax -= aBiasRaw[X_AXIS];
+ ay -= aBiasRaw[Y_AXIS];
+ az -= aBiasRaw[Z_AXIS];
+ }
+}
+
+int16_t LSM9DS1::readAccel(lsm9ds1_axis axis)
+{
+ uint8_t temp[2];
+ int16_t value;
+ xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2);
+ value = (temp[1] << 8) | temp[0];
+
+ if (_autoCalc)
+ value -= aBiasRaw[axis];
+
+ return value;
+}
+
+void LSM9DS1::readMag()
+{
+ uint8_t temp[6]; // We'll read six bytes from the mag into temp
+ mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
+ mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
+ my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
+ mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz
+}
+
+int16_t LSM9DS1::readMag(lsm9ds1_axis axis)
+{
+ uint8_t temp[2];
+ mReadBytes(OUT_X_L_M + (2 * axis), temp, 2);
+ return (temp[1] << 8) | temp[0];
+}
+
+void LSM9DS1::readTemp()
+{
+ uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
+ xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L
+ temperature = ((int16_t)temp[1] << 8) | temp[0];
+}
+
+void LSM9DS1::readGyro()
+{
+ uint8_t temp[6]; // We'll read six bytes from the gyro into temp
+ xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G
+ gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
+ gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
+ gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz
+ if (_autoCalc)
+ {
+ gx -= gBiasRaw[X_AXIS];
+ gy -= gBiasRaw[Y_AXIS];
+ gz -= gBiasRaw[Z_AXIS];
+ }
+}
+
+int16_t LSM9DS1::readGyro(lsm9ds1_axis axis)
+{
+ uint8_t temp[2];
+ int16_t value;
+
+ xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2);
+
+ value = (temp[1] << 8) | temp[0];
+
+ if (_autoCalc)
+ value -= gBiasRaw[axis];
+
+ return value;
+}
+
+float LSM9DS1::calcGyro(int16_t gyro)
+{
+ // Return the gyro raw reading times our pre-calculated DPS / (ADC tick):
+ return gRes * gyro;
+}
+
+float LSM9DS1::calcAccel(int16_t accel)
+{
+ // Return the accel raw reading times our pre-calculated g's / (ADC tick):
+ return aRes * accel;
+}
+
+float LSM9DS1::calcMag(int16_t mag)
+{
+ // Return the mag raw reading times our pre-calculated Gs / (ADC tick):
+ return mRes * mag;
+}
+
+void LSM9DS1::setGyroScale(uint16_t gScl)
+{
+ // Read current value of CTRL_REG1_G:
+ uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G);
+ // Mask out scale bits (3 & 4):
+ ctrl1RegValue &= 0xE7;
+ switch (gScl)
+ {
+ case 500:
+ ctrl1RegValue |= (0x1 << 3);
+ settings.gyro.scale = 500;
+ break;
+ case 2000:
+ ctrl1RegValue |= (0x3 << 3);
+ settings.gyro.scale = 2000;
+ break;
+ default: // Otherwise we'll set it to 245 dps (0x0 << 4)
+ settings.gyro.scale = 245;
+ break;
+ }
+ xgWriteByte(CTRL_REG1_G, ctrl1RegValue);
+
+ calcgRes();
+}
+
+void LSM9DS1::setAccelScale(uint8_t aScl)
+{
+ // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it:
+ uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL);
+ // Mask out accel scale bits:
+ tempRegValue &= 0xE7;
+
+ switch (aScl)
+ {
+ case 4:
+ tempRegValue |= (0x2 << 3);
+ settings.accel.scale = 4;
+ break;
+ case 8:
+ tempRegValue |= (0x3 << 3);
+ settings.accel.scale = 8;
+ break;
+ case 16:
+ tempRegValue |= (0x1 << 3);
+ settings.accel.scale = 16;
+ break;
+ default: // Otherwise it'll be set to 2g (0x0 << 3)
+ settings.accel.scale = 2;
+ break;
+ }
+ xgWriteByte(CTRL_REG6_XL, tempRegValue);
+
+ // Then calculate a new aRes, which relies on aScale being set correctly:
+ calcaRes();
+}
+
+void LSM9DS1::setMagScale(uint8_t mScl)
+{
+ // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it:
+ uint8_t temp = mReadByte(CTRL_REG2_M);
+ // Then mask out the mag scale bits:
+ temp &= 0xFF^(0x3 << 5);
+
+ switch (mScl)
+ {
+ case 8:
+ temp |= (0x1 << 5);
+ settings.mag.scale = 8;
+ break;
+ case 12:
+ temp |= (0x2 << 5);
+ settings.mag.scale = 12;
+ break;
+ case 16:
+ temp |= (0x3 << 5);
+ settings.mag.scale = 16;
+ break;
+ default: // Otherwise we'll default to 4 gauss (00)
+ settings.mag.scale = 4;
+ break;
+ }
+
+ // And write the new register value back into CTRL_REG6_XM:
+ mWriteByte(CTRL_REG2_M, temp);
+
+ // We've updated the sensor, but we also need to update our class variables
+ // First update mScale:
+ //mScale = mScl;
+ // Then calculate a new mRes, which relies on mScale being set correctly:
+ calcmRes();
+}
+
+void LSM9DS1::setGyroODR(uint8_t gRate)
+{
+ // Only do this if gRate is not 0 (which would disable the gyro)
+ if ((gRate & 0x07) != 0)
+ {
+ // We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
+ uint8_t temp = xgReadByte(CTRL_REG1_G);
+ // Then mask out the gyro ODR bits:
+ temp &= 0xFF^(0x7 << 5);
+ temp |= (gRate & 0x07) << 5;
+ // Update our settings struct
+ settings.gyro.sampleRate = gRate & 0x07;
+ // And write the new register value back into CTRL_REG1_G:
+ xgWriteByte(CTRL_REG1_G, temp);
+ }
+}
+
+void LSM9DS1::setAccelODR(uint8_t aRate)
+{
+ // Only do this if aRate is not 0 (which would disable the accel)
+ if ((aRate & 0x07) != 0)
+ {
+ // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
+ uint8_t temp = xgReadByte(CTRL_REG6_XL);
+ // Then mask out the accel ODR bits:
+ temp &= 0x1F;
+ // Then shift in our new ODR bits:
+ temp |= ((aRate & 0x07) << 5);
+ settings.accel.sampleRate = aRate & 0x07;
+ // And write the new register value back into CTRL_REG1_XM:
+ xgWriteByte(CTRL_REG6_XL, temp);
+ }
+}
+
+void LSM9DS1::setMagODR(uint8_t mRate)
+{
+ // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it:
+ uint8_t temp = mReadByte(CTRL_REG1_M);
+ // Then mask out the mag ODR bits:
+ temp &= 0xFF^(0x7 << 2);
+ // Then shift in our new ODR bits:
+ temp |= ((mRate & 0x07) << 2);
+ settings.mag.sampleRate = mRate & 0x07;
+ // And write the new register value back into CTRL_REG5_XM:
+ mWriteByte(CTRL_REG1_M, temp);
+}
+
+void LSM9DS1::calcgRes()
+{
+ gRes = ((float) settings.gyro.scale) / 32768.0;
+}
+
+void LSM9DS1::calcaRes()
+{
+ aRes = ((float) settings.accel.scale) / 32768.0;
+}
+
+void LSM9DS1::calcmRes()
+{
+ //mRes = ((float) settings.mag.scale) / 32768.0;
+ switch (settings.mag.scale)
+ {
+ case 4:
+ mRes = magSensitivity[0];
+ break;
+ case 8:
+ mRes = magSensitivity[1];
+ break;
+ case 12:
+ mRes = magSensitivity[2];
+ break;
+ case 16:
+ mRes = magSensitivity[3];
+ break;
+ }
+
+}
+
+void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator,
+ h_lactive activeLow, pp_od pushPull)
+{
+ // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of
+ // those two values.
+ // [generator] should be an OR'd list of values from the interrupt_generators enum
+ xgWriteByte(interrupt, generator);
+
+ // Configure CTRL_REG8
+ uint8_t temp;
+ temp = xgReadByte(CTRL_REG8);
+
+ if (activeLow) temp |= (1<<5);
+ else temp &= ~(1<<5);
+
+ if (pushPull) temp &= ~(1<<4);
+ else temp |= (1<<4);
+
+ xgWriteByte(CTRL_REG8, temp);
+}
+
+void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn)
+{
+ uint8_t temp = 0;
+
+ temp = threshold & 0x7F;
+ if (sleepOn) temp |= (1<<7);
+ xgWriteByte(ACT_THS, temp);
+
+ xgWriteByte(ACT_DUR, duration);
+}
+
+uint8_t LSM9DS1::getInactivity()
+{
+ uint8_t temp = xgReadByte(STATUS_REG_0);
+ temp &= (0x10);
+ return temp;
+}
+
+void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts)
+{
+ // Use variables from accel_interrupt_generator, OR'd together to create
+ // the [generator]value.
+ uint8_t temp = generator;
+ if (andInterrupts) temp |= 0x80;
+ xgWriteByte(INT_GEN_CFG_XL, temp);
+}
+
+void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
+{
+ // Write threshold value to INT_GEN_THS_?_XL.
+ // axis will be 0, 1, or 2 (x, y, z respectively)
+ xgWriteByte(INT_GEN_THS_X_XL + axis, threshold);
+
+ // Write duration and wait to INT_GEN_DUR_XL
+ uint8_t temp;
+ temp = (duration & 0x7F);
+ if (wait) temp |= 0x80;
+ xgWriteByte(INT_GEN_DUR_XL, temp);
+}
+
+uint8_t LSM9DS1::getAccelIntSrc()
+{
+ uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL);
+
+ // Check if the IA_XL (interrupt active) bit is set
+ if (intSrc & (1<<6))
+ {
+ return (intSrc & 0x3F);
+ }
+
+ return 0;
+}
+
+void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch)
+{
+ // Use variables from accel_interrupt_generator, OR'd together to create
+ // the [generator]value.
+ uint8_t temp = generator;
+ if (aoi) temp |= 0x80;
+ if (latch) temp |= 0x40;
+ xgWriteByte(INT_GEN_CFG_G, temp);
+}
+
+void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
+{
+ uint8_t buffer[2];
+ buffer[0] = (threshold & 0x7F00) >> 8;
+ buffer[1] = (threshold & 0x00FF);
+ // Write threshold value to INT_GEN_THS_?H_G and INT_GEN_THS_?L_G.
+ // axis will be 0, 1, or 2 (x, y, z respectively)
+ xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]);
+ xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]);
+
+ // Write duration and wait to INT_GEN_DUR_XL
+ uint8_t temp;
+ temp = (duration & 0x7F);
+ if (wait) temp |= 0x80;
+ xgWriteByte(INT_GEN_DUR_G, temp);
+}
+
+uint8_t LSM9DS1::getGyroIntSrc()
+{
+ uint8_t intSrc = xgReadByte(INT_GEN_SRC_G);
+
+ // Check if the IA_G (interrupt active) bit is set
+ if (intSrc & (1<<6))
+ {
+ return (intSrc & 0x3F);
+ }
+
+ return 0;
+}
+
+void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch)
+{
+ // Mask out non-generator bits (0-4)
+ uint8_t config = (generator & 0xE0);
+ // IEA bit is 0 for active-low, 1 for active-high.
+ if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2);
+ // IEL bit is 0 for latched, 1 for not-latched
+ if (!latch) config |= (1<<1);
+ // As long as we have at least 1 generator, enable the interrupt
+ if (generator != 0) config |= (1<<0);
+
+ mWriteByte(INT_CFG_M, config);
+}
+
+void LSM9DS1::configMagThs(uint16_t threshold)
+{
+ // Write high eight bits of [threshold] to INT_THS_H_M
+ mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8));
+ // Write low eight bits of [threshold] to INT_THS_L_M
+ mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF));
+}
+
+uint8_t LSM9DS1::getMagIntSrc()
+{
+ uint8_t intSrc = mReadByte(INT_SRC_M);
+
+ // Check if the INT (interrupt active) bit is set
+ if (intSrc & (1<<0))
+ {
+ return (intSrc & 0xFE);
+ }
+
+ return 0;
+}
+
+void LSM9DS1::sleepGyro(bool enable)
+{
+ uint8_t temp = xgReadByte(CTRL_REG9);
+ if (enable) temp |= (1<<6);
+ else temp &= ~(1<<6);
+ xgWriteByte(CTRL_REG9, temp);
+}
+
+void LSM9DS1::enableFIFO(bool enable)
+{
+ uint8_t temp = xgReadByte(CTRL_REG9);
+ if (enable) temp |= (1<<1);
+ else temp &= ~(1<<1);
+ xgWriteByte(CTRL_REG9, temp);
+}
+
+void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs)
+{
+ // Limit threshold - 0x1F (31) is the maximum. If more than that was asked
+ // limit it to the maximum.
+ uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F;
+ xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F));
+}
+
+uint8_t LSM9DS1::getFIFOSamples()
+{
+ return (xgReadByte(FIFO_SRC) & 0x3F);
+}
+
+void LSM9DS1::constrainScales()
+{
+ if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) &&
+ (settings.gyro.scale != 2000))
+ {
+ settings.gyro.scale = 245;
+ }
+
+ if ((settings.accel.scale != 2) && (settings.accel.scale != 4) &&
+ (settings.accel.scale != 8) && (settings.accel.scale != 16))
+ {
+ settings.accel.scale = 2;
+ }
+
+ if ((settings.mag.scale != 4) && (settings.mag.scale != 8) &&
+ (settings.mag.scale != 12) && (settings.mag.scale != 16))
+ {
+ settings.mag.scale = 4;
+ }
+}
+
+void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data)
+{
+ // Whether we're using I2C or SPI, write a byte using the
+ // gyro-specific I2C address or SPI CS pin.
+ if (settings.device.commInterface == IMU_MODE_I2C) {
+ printf("yo");
+ I2CwriteByte(_xgAddress, subAddress, data);
+ } else if (settings.device.commInterface == IMU_MODE_SPI) {
+ SPIwriteByte(_xgAddress, subAddress, data);
+ }
+}
+
+void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data)
+{
+ // Whether we're using I2C or SPI, write a byte using the
+ // accelerometer-specific I2C address or SPI CS pin.
+ if (settings.device.commInterface == IMU_MODE_I2C)
+ return I2CwriteByte(_mAddress, subAddress, data);
+ else if (settings.device.commInterface == IMU_MODE_SPI)
+ return SPIwriteByte(_mAddress, subAddress, data);
+}
+
+uint8_t LSM9DS1::xgReadByte(uint8_t subAddress)
+{
+ // Whether we're using I2C or SPI, read a byte using the
+ // gyro-specific I2C address or SPI CS pin.
+ if (settings.device.commInterface == IMU_MODE_I2C)
+ return I2CreadByte(_xgAddress, subAddress);
+ else if (settings.device.commInterface == IMU_MODE_SPI)
+ return SPIreadByte(_xgAddress, subAddress);
+}
+
+void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
+{
+ // Whether we're using I2C or SPI, read multiple bytes using the
+ // gyro-specific I2C address or SPI CS pin.
+ if (settings.device.commInterface == IMU_MODE_I2C) {
+ I2CreadBytes(_xgAddress, subAddress, dest, count);
+ } else if (settings.device.commInterface == IMU_MODE_SPI) {
+ SPIreadBytes(_xgAddress, subAddress, dest, count);
+ }
+}
+
+uint8_t LSM9DS1::mReadByte(uint8_t subAddress)
+{
+ // Whether we're using I2C or SPI, read a byte using the
+ // accelerometer-specific I2C address or SPI CS pin.
+ if (settings.device.commInterface == IMU_MODE_I2C)
+ return I2CreadByte(_mAddress, subAddress);
+ else if (settings.device.commInterface == IMU_MODE_SPI)
+ return SPIreadByte(_mAddress, subAddress);
+}
+
+void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
+{
+ // Whether we're using I2C or SPI, read multiple bytes using the
+ // accelerometer-specific I2C address or SPI CS pin.
+ if (settings.device.commInterface == IMU_MODE_I2C)
+ I2CreadBytes(_mAddress, subAddress, dest, count);
+ else if (settings.device.commInterface == IMU_MODE_SPI)
+ SPIreadBytes(_mAddress, subAddress, dest, count);
+}
+
+void LSM9DS1::initSPI()
+{
+ /*
+ pinMode(_xgAddress, OUTPUT);
+ digitalWrite(_xgAddress, HIGH);
+ pinMode(_mAddress, OUTPUT);
+ digitalWrite(_mAddress, HIGH);
+
+ SPI.begin();
+ // Maximum SPI frequency is 10MHz, could divide by 2 here:
+ SPI.setClockDivider(SPI_CLOCK_DIV2);
+ // Data is read and written MSb first.
+ SPI.setBitOrder(MSBFIRST);
+ // Data is captured on rising edge of clock (CPHA = 0)
+ // Base value of the clock is HIGH (CPOL = 1)
+ SPI.setDataMode(SPI_MODE0);
+ */
+}
+
+void LSM9DS1::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data)
+{
+ /*
+ digitalWrite(csPin, LOW); // Initiate communication
+
+ // If write, bit 0 (MSB) should be 0
+ // If single write, bit 1 should be 0
+ SPI.transfer(subAddress & 0x3F); // Send Address
+ SPI.transfer(data); // Send data
+
+ digitalWrite(csPin, HIGH); // Close communication
+ */
+}
+
+uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress)
+{
+ uint8_t temp;
+ // Use the multiple read function to read 1 byte.
+ // Value is returned to `temp`.
+ SPIreadBytes(csPin, subAddress, &temp, 1);
+ return temp;
+}
+
+void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress,
+ uint8_t * dest, uint8_t count)
+{
+ // To indicate a read, set bit 0 (msb) of first byte to 1
+ uint8_t rAddress = 0x80 | (subAddress & 0x3F);
+ // Mag SPI port is different. If we're reading multiple bytes,
+ // set bit 1 to 1. The remaining six bytes are the address to be read
+ if ((csPin == _mAddress) && count > 1)
+ rAddress |= 0x40;
+
+ /*
+ digitalWrite(csPin, LOW); // Initiate communication
+ SPI.transfer(rAddress);
+ for (int i=0; i<count; i++)
+ {
+ dest[i] = SPI.transfer(0x00); // Read into destination array
+ }
+ digitalWrite(csPin, HIGH); // Close communication
+ */
+}
+
+void LSM9DS1::initI2C()
+{
+ /*
+ Wire.begin(); // Initialize I2C library
+ */
+
+ //already initialized in constructor!
+}
+
+// Wire.h read and write protocols
+void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data)
+{
+ /*
+ Wire.beginTransmission(address); // Initialize the Tx buffer
+ Wire.write(subAddress); // Put slave register address in Tx buffer
+ Wire.write(data); // Put data in Tx buffer
+ Wire.endTransmission(); // Send the Tx buffer
+ */
+ char temp_data[2] = {subAddress, data};
+ i2c.write(address, temp_data, 2);
+}
+
+uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress)
+{
+ /*
+ int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
+ uint8_t data; // `data` will store the register data
+
+ Wire.beginTransmission(address); // Initialize the Tx buffer
+ Wire.write(subAddress); // Put slave register address in Tx buffer
+ Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
+ Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address
+ while ((Wire.available() < 1) && (timeout-- > 0))
+ delay(1);
+
+ if (timeout <= 0)
+ return 255; //! Bad! 255 will be misinterpreted as a good value.
+
+ data = Wire.read(); // Fill Rx buffer with result
+ return data; // Return data read from slave register
+ */
+ char data;
+ char temp[1] = {subAddress};
+
+ i2c.write(address, temp, 1);
+ //i2c.write(address & 0xFE);
+ temp[1] = 0x00;
+ i2c.write(address, temp, 1);
+ //i2c.write( address | 0x01);
+ int a = i2c.read(address, &data, 1);
+ return data;
+}
+
+uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count)
+{
+ /*
+ int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
+ Wire.beginTransmission(address); // Initialize the Tx buffer
+ // Next send the register to be read. OR with 0x80 to indicate multi-read.
+ Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer
+
+ Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
+ uint8_t i = 0;
+ Wire.requestFrom(address, count); // Read bytes from slave register address
+ while ((Wire.available() < count) && (timeout-- > 0))
+ delay(1);
+ if (timeout <= 0)
+ return -1;
+
+ for (int i=0; i<count;)
+ {
+ if (Wire.available())
+ {
+ dest[i++] = Wire.read();
+ }
+ }
+ return count;
+ */
+ int i;
+ char temp_dest[count];
+ char temp[1] = {subAddress};
+ i2c.write(address, temp, 1);
+ i2c.read(address, temp_dest, count);
+
+ //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion
+ for (i=0; i < count; i++) {
+ dest[i] = temp_dest[i];
+ }
+ return count;
+}