James Bartholomew / LSM9DS1
Committer:
JamB
Date:
Thu Apr 11 22:16:47 2019 +0000
Revision:
0:801ebe391b00
This is a version for my project

Who changed what in which revision?

UserRevisionLine numberNew contents of line
JamB 0:801ebe391b00 1 /******************************************************************************
JamB 0:801ebe391b00 2 SFE_LSM9DS1.cpp
JamB 0:801ebe391b00 3 SFE_LSM9DS1 Library Source File
JamB 0:801ebe391b00 4 Jim Lindblom @ SparkFun Electronics
JamB 0:801ebe391b00 5 Original Creation Date: February 27, 2015
JamB 0:801ebe391b00 6 https://github.com/sparkfun/LSM9DS1_Breakout
JamB 0:801ebe391b00 7
JamB 0:801ebe391b00 8 This file implements all functions of the LSM9DS1 class. Functions here range
JamB 0:801ebe391b00 9 from higher level stuff, like reading/writing LSM9DS1 registers to low-level,
JamB 0:801ebe391b00 10 hardware reads and writes. Both SPI and I2C handler functions can be found
JamB 0:801ebe391b00 11 towards the bottom of this file.
JamB 0:801ebe391b00 12
JamB 0:801ebe391b00 13 Development environment specifics:
JamB 0:801ebe391b00 14 IDE: Arduino 1.6
JamB 0:801ebe391b00 15 Hardware Platform: Arduino Uno
JamB 0:801ebe391b00 16 LSM9DS1 Breakout Version: 1.0
JamB 0:801ebe391b00 17
JamB 0:801ebe391b00 18 This code is beerware; if you see me (or any other SparkFun employee) at the
JamB 0:801ebe391b00 19 local, and you've found our code helpful, please buy us a round!
JamB 0:801ebe391b00 20
JamB 0:801ebe391b00 21 Distributed as-is; no warranty is given.
JamB 0:801ebe391b00 22 ******************************************************************************/
JamB 0:801ebe391b00 23
JamB 0:801ebe391b00 24 #include "LSM9DS1.h"
JamB 0:801ebe391b00 25 #include "LSM9DS1_Registers.h"
JamB 0:801ebe391b00 26 #include "LSM9DS1_Types.h"
JamB 0:801ebe391b00 27 //#include <Wire.h> // Wire library is used for I2C
JamB 0:801ebe391b00 28 //#include <SPI.h> // SPI library is used for...SPI.
JamB 0:801ebe391b00 29
JamB 0:801ebe391b00 30 //#if defined(ARDUINO) && ARDUINO >= 100
JamB 0:801ebe391b00 31 // #include "Arduino.h"
JamB 0:801ebe391b00 32 //#else
JamB 0:801ebe391b00 33 // #include "WProgram.h"
JamB 0:801ebe391b00 34 //#endif
JamB 0:801ebe391b00 35
JamB 0:801ebe391b00 36 #define LSM9DS1_COMMUNICATION_TIMEOUT 1000
JamB 0:801ebe391b00 37
JamB 0:801ebe391b00 38 float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058};
JamB 0:801ebe391b00 39 extern Serial pc;
JamB 0:801ebe391b00 40
JamB 0:801ebe391b00 41 LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr)
JamB 0:801ebe391b00 42 :i2c(sda, scl)
JamB 0:801ebe391b00 43 {
JamB 0:801ebe391b00 44 init(IMU_MODE_I2C, xgAddr, mAddr); // dont know about 0xD6 or 0x3B
JamB 0:801ebe391b00 45 }
JamB 0:801ebe391b00 46 /*
JamB 0:801ebe391b00 47 LSM9DS1::LSM9DS1()
JamB 0:801ebe391b00 48 {
JamB 0:801ebe391b00 49 init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1));
JamB 0:801ebe391b00 50 }
JamB 0:801ebe391b00 51
JamB 0:801ebe391b00 52 LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
JamB 0:801ebe391b00 53 {
JamB 0:801ebe391b00 54 init(interface, xgAddr, mAddr);
JamB 0:801ebe391b00 55 }
JamB 0:801ebe391b00 56 */
JamB 0:801ebe391b00 57
JamB 0:801ebe391b00 58 void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
JamB 0:801ebe391b00 59 {
JamB 0:801ebe391b00 60 settings.device.commInterface = interface;
JamB 0:801ebe391b00 61 settings.device.agAddress = xgAddr;
JamB 0:801ebe391b00 62 settings.device.mAddress = mAddr;
JamB 0:801ebe391b00 63
JamB 0:801ebe391b00 64 settings.gyro.enabled = true;
JamB 0:801ebe391b00 65 settings.gyro.enableX = true;
JamB 0:801ebe391b00 66 settings.gyro.enableY = true;
JamB 0:801ebe391b00 67 settings.gyro.enableZ = true;
JamB 0:801ebe391b00 68 // gyro scale can be 245, 500, or 2000
JamB 0:801ebe391b00 69 settings.gyro.scale = 245;
JamB 0:801ebe391b00 70 // gyro sample rate: value between 1-6
JamB 0:801ebe391b00 71 // 1 = 14.9 4 = 238
JamB 0:801ebe391b00 72 // 2 = 59.5 5 = 476
JamB 0:801ebe391b00 73 // 3 = 119 6 = 952
JamB 0:801ebe391b00 74 settings.gyro.sampleRate = 6;
JamB 0:801ebe391b00 75 // gyro cutoff frequency: value between 0-3
JamB 0:801ebe391b00 76 // Actual value of cutoff frequency depends
JamB 0:801ebe391b00 77 // on sample rate.
JamB 0:801ebe391b00 78 settings.gyro.bandwidth = 0;
JamB 0:801ebe391b00 79 settings.gyro.lowPowerEnable = false;
JamB 0:801ebe391b00 80 settings.gyro.HPFEnable = false;
JamB 0:801ebe391b00 81 // Gyro HPF cutoff frequency: value between 0-9
JamB 0:801ebe391b00 82 // Actual value depends on sample rate. Only applies
JamB 0:801ebe391b00 83 // if gyroHPFEnable is true.
JamB 0:801ebe391b00 84 settings.gyro.HPFCutoff = 0;
JamB 0:801ebe391b00 85 settings.gyro.flipX = false;
JamB 0:801ebe391b00 86 settings.gyro.flipY = false;
JamB 0:801ebe391b00 87 settings.gyro.flipZ = false;
JamB 0:801ebe391b00 88 settings.gyro.orientation = 0;
JamB 0:801ebe391b00 89 settings.gyro.latchInterrupt = true;
JamB 0:801ebe391b00 90
JamB 0:801ebe391b00 91 settings.accel.enabled = true;
JamB 0:801ebe391b00 92 settings.accel.enableX = true;
JamB 0:801ebe391b00 93 settings.accel.enableY = true;
JamB 0:801ebe391b00 94 settings.accel.enableZ = true;
JamB 0:801ebe391b00 95 // accel scale can be 2, 4, 8, or 16
JamB 0:801ebe391b00 96 settings.accel.scale = 2;
JamB 0:801ebe391b00 97 // accel sample rate can be 1-6
JamB 0:801ebe391b00 98 // 1 = 10 Hz 4 = 238 Hz
JamB 0:801ebe391b00 99 // 2 = 50 Hz 5 = 476 Hz
JamB 0:801ebe391b00 100 // 3 = 119 Hz 6 = 952 Hz
JamB 0:801ebe391b00 101 settings.accel.sampleRate = 6;
JamB 0:801ebe391b00 102 // Accel cutoff freqeuncy can be any value between -1 - 3.
JamB 0:801ebe391b00 103 // -1 = bandwidth determined by sample rate
JamB 0:801ebe391b00 104 // 0 = 408 Hz 2 = 105 Hz
JamB 0:801ebe391b00 105 // 1 = 211 Hz 3 = 50 Hz
JamB 0:801ebe391b00 106 settings.accel.bandwidth = -1;
JamB 0:801ebe391b00 107 settings.accel.highResEnable = false;
JamB 0:801ebe391b00 108 // accelHighResBandwidth can be any value between 0-3
JamB 0:801ebe391b00 109 // LP cutoff is set to a factor of sample rate
JamB 0:801ebe391b00 110 // 0 = ODR/50 2 = ODR/9
JamB 0:801ebe391b00 111 // 1 = ODR/100 3 = ODR/400
JamB 0:801ebe391b00 112 settings.accel.highResBandwidth = 0;
JamB 0:801ebe391b00 113
JamB 0:801ebe391b00 114 settings.mag.enabled = true;
JamB 0:801ebe391b00 115 // mag scale can be 4, 8, 12, or 16
JamB 0:801ebe391b00 116 settings.mag.scale = 4;
JamB 0:801ebe391b00 117 // mag data rate can be 0-7
JamB 0:801ebe391b00 118 // 0 = 0.625 Hz 4 = 10 Hz
JamB 0:801ebe391b00 119 // 1 = 1.25 Hz 5 = 20 Hz
JamB 0:801ebe391b00 120 // 2 = 2.5 Hz 6 = 40 Hz
JamB 0:801ebe391b00 121 // 3 = 5 Hz 7 = 80 Hz
JamB 0:801ebe391b00 122 settings.mag.sampleRate = 7;
JamB 0:801ebe391b00 123 settings.mag.tempCompensationEnable = false;
JamB 0:801ebe391b00 124 // magPerformance can be any value between 0-3
JamB 0:801ebe391b00 125 // 0 = Low power mode 2 = high performance
JamB 0:801ebe391b00 126 // 1 = medium performance 3 = ultra-high performance
JamB 0:801ebe391b00 127 settings.mag.XYPerformance = 3;
JamB 0:801ebe391b00 128 settings.mag.ZPerformance = 3;
JamB 0:801ebe391b00 129 settings.mag.lowPowerEnable = false;
JamB 0:801ebe391b00 130 // magOperatingMode can be 0-2
JamB 0:801ebe391b00 131 // 0 = continuous conversion
JamB 0:801ebe391b00 132 // 1 = single-conversion
JamB 0:801ebe391b00 133 // 2 = power down
JamB 0:801ebe391b00 134 settings.mag.operatingMode = 0;
JamB 0:801ebe391b00 135
JamB 0:801ebe391b00 136 settings.temp.enabled = true;
JamB 0:801ebe391b00 137 for (int i=0; i<3; i++)
JamB 0:801ebe391b00 138 {
JamB 0:801ebe391b00 139 gBias[i] = 0;
JamB 0:801ebe391b00 140 aBias[i] = 0;
JamB 0:801ebe391b00 141 mBias[i] = 0;
JamB 0:801ebe391b00 142 gBiasRaw[i] = 0;
JamB 0:801ebe391b00 143 aBiasRaw[i] = 0;
JamB 0:801ebe391b00 144 mBiasRaw[i] = 0;
JamB 0:801ebe391b00 145 }
JamB 0:801ebe391b00 146 _autoCalc = false;
JamB 0:801ebe391b00 147 }
JamB 0:801ebe391b00 148
JamB 0:801ebe391b00 149
JamB 0:801ebe391b00 150 uint16_t LSM9DS1::begin()
JamB 0:801ebe391b00 151 {
JamB 0:801ebe391b00 152 //! Todo: don't use _xgAddress or _mAddress, duplicating memory
JamB 0:801ebe391b00 153 _xgAddress = settings.device.agAddress;
JamB 0:801ebe391b00 154 _mAddress = settings.device.mAddress;
JamB 0:801ebe391b00 155
JamB 0:801ebe391b00 156 constrainScales();
JamB 0:801ebe391b00 157 // Once we have the scale values, we can calculate the resolution
JamB 0:801ebe391b00 158 // of each sensor. That's what these functions are for. One for each sensor
JamB 0:801ebe391b00 159 calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
JamB 0:801ebe391b00 160 calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
JamB 0:801ebe391b00 161 calcaRes(); // Calculate g / ADC tick, stored in aRes variable
JamB 0:801ebe391b00 162
JamB 0:801ebe391b00 163 // Now, initialize our hardware interface.
JamB 0:801ebe391b00 164 if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C
JamB 0:801ebe391b00 165 initI2C(); // Initialize I2C
JamB 0:801ebe391b00 166 else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI
JamB 0:801ebe391b00 167 initSPI(); // Initialize SPI
JamB 0:801ebe391b00 168
JamB 0:801ebe391b00 169 // To verify communication, we can read from the WHO_AM_I register of
JamB 0:801ebe391b00 170 // each device. Store those in a variable so we can return them.
JamB 0:801ebe391b00 171 uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I
JamB 0:801ebe391b00 172 uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I
JamB 0:801ebe391b00 173 pc.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress);
JamB 0:801ebe391b00 174 uint16_t whoAmICombined = (xgTest << 8) | mTest;
JamB 0:801ebe391b00 175
JamB 0:801ebe391b00 176 if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP))
JamB 0:801ebe391b00 177 return 0;
JamB 0:801ebe391b00 178
JamB 0:801ebe391b00 179 // Gyro initialization stuff:
JamB 0:801ebe391b00 180 initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
JamB 0:801ebe391b00 181
JamB 0:801ebe391b00 182 // Accelerometer initialization stuff:
JamB 0:801ebe391b00 183 initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
JamB 0:801ebe391b00 184
JamB 0:801ebe391b00 185 // Magnetometer initialization stuff:
JamB 0:801ebe391b00 186 initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
JamB 0:801ebe391b00 187
JamB 0:801ebe391b00 188 // Once everything is initialized, return the WHO_AM_I registers we read:
JamB 0:801ebe391b00 189 return whoAmICombined;
JamB 0:801ebe391b00 190 }
JamB 0:801ebe391b00 191
JamB 0:801ebe391b00 192 void LSM9DS1::initGyro()
JamB 0:801ebe391b00 193 {
JamB 0:801ebe391b00 194 uint8_t tempRegValue = 0;
JamB 0:801ebe391b00 195
JamB 0:801ebe391b00 196 // CTRL_REG1_G (Default value: 0x00)
JamB 0:801ebe391b00 197 // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0]
JamB 0:801ebe391b00 198 // ODR_G[2:0] - Output data rate selection
JamB 0:801ebe391b00 199 // FS_G[1:0] - Gyroscope full-scale selection
JamB 0:801ebe391b00 200 // BW_G[1:0] - Gyroscope bandwidth selection
JamB 0:801ebe391b00 201
JamB 0:801ebe391b00 202 // To disable gyro, set sample rate bits to 0. We'll only set sample
JamB 0:801ebe391b00 203 // rate if the gyro is enabled.
JamB 0:801ebe391b00 204 if (settings.gyro.enabled)
JamB 0:801ebe391b00 205 {
JamB 0:801ebe391b00 206 tempRegValue = (settings.gyro.sampleRate & 0x07) << 5;
JamB 0:801ebe391b00 207 }
JamB 0:801ebe391b00 208 switch (settings.gyro.scale)
JamB 0:801ebe391b00 209 {
JamB 0:801ebe391b00 210 case 500:
JamB 0:801ebe391b00 211 tempRegValue |= (0x1 << 3);
JamB 0:801ebe391b00 212 break;
JamB 0:801ebe391b00 213 case 2000:
JamB 0:801ebe391b00 214 tempRegValue |= (0x3 << 3);
JamB 0:801ebe391b00 215 break;
JamB 0:801ebe391b00 216 // Otherwise we'll set it to 245 dps (0x0 << 4)
JamB 0:801ebe391b00 217 }
JamB 0:801ebe391b00 218 tempRegValue |= (settings.gyro.bandwidth & 0x3);
JamB 0:801ebe391b00 219 xgWriteByte(CTRL_REG1_G, tempRegValue);
JamB 0:801ebe391b00 220
JamB 0:801ebe391b00 221 // CTRL_REG2_G (Default value: 0x00)
JamB 0:801ebe391b00 222 // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0]
JamB 0:801ebe391b00 223 // INT_SEL[1:0] - INT selection configuration
JamB 0:801ebe391b00 224 // OUT_SEL[1:0] - Out selection configuration
JamB 0:801ebe391b00 225 xgWriteByte(CTRL_REG2_G, 0x00);
JamB 0:801ebe391b00 226
JamB 0:801ebe391b00 227 // CTRL_REG3_G (Default value: 0x00)
JamB 0:801ebe391b00 228 // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G]
JamB 0:801ebe391b00 229 // LP_mode - Low-power mode enable (0: disabled, 1: enabled)
JamB 0:801ebe391b00 230 // HP_EN - HPF enable (0:disabled, 1: enabled)
JamB 0:801ebe391b00 231 // HPCF_G[3:0] - HPF cutoff frequency
JamB 0:801ebe391b00 232 tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0;
JamB 0:801ebe391b00 233 if (settings.gyro.HPFEnable)
JamB 0:801ebe391b00 234 {
JamB 0:801ebe391b00 235 tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F);
JamB 0:801ebe391b00 236 }
JamB 0:801ebe391b00 237 xgWriteByte(CTRL_REG3_G, tempRegValue);
JamB 0:801ebe391b00 238
JamB 0:801ebe391b00 239 // CTRL_REG4 (Default value: 0x38)
JamB 0:801ebe391b00 240 // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1]
JamB 0:801ebe391b00 241 // Zen_G - Z-axis output enable (0:disable, 1:enable)
JamB 0:801ebe391b00 242 // Yen_G - Y-axis output enable (0:disable, 1:enable)
JamB 0:801ebe391b00 243 // Xen_G - X-axis output enable (0:disable, 1:enable)
JamB 0:801ebe391b00 244 // LIR_XL1 - Latched interrupt (0:not latched, 1:latched)
JamB 0:801ebe391b00 245 // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used)
JamB 0:801ebe391b00 246 tempRegValue = 0;
JamB 0:801ebe391b00 247 if (settings.gyro.enableZ) tempRegValue |= (1<<5);
JamB 0:801ebe391b00 248 if (settings.gyro.enableY) tempRegValue |= (1<<4);
JamB 0:801ebe391b00 249 if (settings.gyro.enableX) tempRegValue |= (1<<3);
JamB 0:801ebe391b00 250 if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1);
JamB 0:801ebe391b00 251 xgWriteByte(CTRL_REG4, tempRegValue);
JamB 0:801ebe391b00 252
JamB 0:801ebe391b00 253 // ORIENT_CFG_G (Default value: 0x00)
JamB 0:801ebe391b00 254 // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0]
JamB 0:801ebe391b00 255 // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative)
JamB 0:801ebe391b00 256 // Orient [2:0] - Directional user orientation selection
JamB 0:801ebe391b00 257 tempRegValue = 0;
JamB 0:801ebe391b00 258 if (settings.gyro.flipX) tempRegValue |= (1<<5);
JamB 0:801ebe391b00 259 if (settings.gyro.flipY) tempRegValue |= (1<<4);
JamB 0:801ebe391b00 260 if (settings.gyro.flipZ) tempRegValue |= (1<<3);
JamB 0:801ebe391b00 261 xgWriteByte(ORIENT_CFG_G, tempRegValue);
JamB 0:801ebe391b00 262 }
JamB 0:801ebe391b00 263
JamB 0:801ebe391b00 264 void LSM9DS1::initAccel()
JamB 0:801ebe391b00 265 {
JamB 0:801ebe391b00 266 uint8_t tempRegValue = 0;
JamB 0:801ebe391b00 267
JamB 0:801ebe391b00 268 // CTRL_REG5_XL (0x1F) (Default value: 0x38)
JamB 0:801ebe391b00 269 // [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0]
JamB 0:801ebe391b00 270 // DEC[0:1] - Decimation of accel data on OUT REG and FIFO.
JamB 0:801ebe391b00 271 // 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples
JamB 0:801ebe391b00 272 // Zen_XL - Z-axis output enabled
JamB 0:801ebe391b00 273 // Yen_XL - Y-axis output enabled
JamB 0:801ebe391b00 274 // Xen_XL - X-axis output enabled
JamB 0:801ebe391b00 275 if (settings.accel.enableZ) tempRegValue |= (1<<5);
JamB 0:801ebe391b00 276 if (settings.accel.enableY) tempRegValue |= (1<<4);
JamB 0:801ebe391b00 277 if (settings.accel.enableX) tempRegValue |= (1<<3);
JamB 0:801ebe391b00 278
JamB 0:801ebe391b00 279 xgWriteByte(CTRL_REG5_XL, tempRegValue);
JamB 0:801ebe391b00 280
JamB 0:801ebe391b00 281 // CTRL_REG6_XL (0x20) (Default value: 0x00)
JamB 0:801ebe391b00 282 // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0]
JamB 0:801ebe391b00 283 // ODR_XL[2:0] - Output data rate & power mode selection
JamB 0:801ebe391b00 284 // FS_XL[1:0] - Full-scale selection
JamB 0:801ebe391b00 285 // BW_SCAL_ODR - Bandwidth selection
JamB 0:801ebe391b00 286 // BW_XL[1:0] - Anti-aliasing filter bandwidth selection
JamB 0:801ebe391b00 287 tempRegValue = 0;
JamB 0:801ebe391b00 288 // To disable the accel, set the sampleRate bits to 0.
JamB 0:801ebe391b00 289 if (settings.accel.enabled)
JamB 0:801ebe391b00 290 {
JamB 0:801ebe391b00 291 tempRegValue |= (settings.accel.sampleRate & 0x07) << 5;
JamB 0:801ebe391b00 292 }
JamB 0:801ebe391b00 293 switch (settings.accel.scale)
JamB 0:801ebe391b00 294 {
JamB 0:801ebe391b00 295 case 4:
JamB 0:801ebe391b00 296 tempRegValue |= (0x2 << 3);
JamB 0:801ebe391b00 297 break;
JamB 0:801ebe391b00 298 case 8:
JamB 0:801ebe391b00 299 tempRegValue |= (0x3 << 3);
JamB 0:801ebe391b00 300 break;
JamB 0:801ebe391b00 301 case 16:
JamB 0:801ebe391b00 302 tempRegValue |= (0x1 << 3);
JamB 0:801ebe391b00 303 break;
JamB 0:801ebe391b00 304 // Otherwise it'll be set to 2g (0x0 << 3)
JamB 0:801ebe391b00 305 }
JamB 0:801ebe391b00 306 if (settings.accel.bandwidth >= 0)
JamB 0:801ebe391b00 307 {
JamB 0:801ebe391b00 308 tempRegValue |= (1<<2); // Set BW_SCAL_ODR
JamB 0:801ebe391b00 309 tempRegValue |= (settings.accel.bandwidth & 0x03);
JamB 0:801ebe391b00 310 }
JamB 0:801ebe391b00 311 xgWriteByte(CTRL_REG6_XL, tempRegValue);
JamB 0:801ebe391b00 312
JamB 0:801ebe391b00 313 // CTRL_REG7_XL (0x21) (Default value: 0x00)
JamB 0:801ebe391b00 314 // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1]
JamB 0:801ebe391b00 315 // HR - High resolution mode (0: disable, 1: enable)
JamB 0:801ebe391b00 316 // DCF[1:0] - Digital filter cutoff frequency
JamB 0:801ebe391b00 317 // FDS - Filtered data selection
JamB 0:801ebe391b00 318 // HPIS1 - HPF enabled for interrupt function
JamB 0:801ebe391b00 319 tempRegValue = 0;
JamB 0:801ebe391b00 320 if (settings.accel.highResEnable)
JamB 0:801ebe391b00 321 {
JamB 0:801ebe391b00 322 tempRegValue |= (1<<7); // Set HR bit
JamB 0:801ebe391b00 323 tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5;
JamB 0:801ebe391b00 324 }
JamB 0:801ebe391b00 325 xgWriteByte(CTRL_REG7_XL, tempRegValue);
JamB 0:801ebe391b00 326 }
JamB 0:801ebe391b00 327
JamB 0:801ebe391b00 328 // This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average
JamB 0:801ebe391b00 329 // them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch
JamB 0:801ebe391b00 330 // for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store
JamB 0:801ebe391b00 331 // the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to
JamB 0:801ebe391b00 332 // subtract the biases ourselves. This results in a more accurate measurement in general and can
JamB 0:801ebe391b00 333 // remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner
JamB 0:801ebe391b00 334 // is good practice.
JamB 0:801ebe391b00 335 void LSM9DS1::calibrate(bool autoCalc)
JamB 0:801ebe391b00 336 {
JamB 0:801ebe391b00 337 uint8_t data[6] = {0, 0, 0, 0, 0, 0};
JamB 0:801ebe391b00 338 uint8_t samples = 0;
JamB 0:801ebe391b00 339 int ii;
JamB 0:801ebe391b00 340 int32_t aBiasRawTemp[3] = {0, 0, 0};
JamB 0:801ebe391b00 341 int32_t gBiasRawTemp[3] = {0, 0, 0};
JamB 0:801ebe391b00 342
JamB 0:801ebe391b00 343 // Turn on FIFO and set threshold to 32 samples
JamB 0:801ebe391b00 344 enableFIFO(true);
JamB 0:801ebe391b00 345 setFIFO(FIFO_THS, 0x1F);
JamB 0:801ebe391b00 346 while (samples < 0x1F)
JamB 0:801ebe391b00 347 {
JamB 0:801ebe391b00 348 samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples
JamB 0:801ebe391b00 349 }
JamB 0:801ebe391b00 350 for(ii = 0; ii < samples ; ii++)
JamB 0:801ebe391b00 351 { // Read the gyro data stored in the FIFO
JamB 0:801ebe391b00 352 readGyro();
JamB 0:801ebe391b00 353 gBiasRawTemp[0] += gx;
JamB 0:801ebe391b00 354 gBiasRawTemp[1] += gy;
JamB 0:801ebe391b00 355 gBiasRawTemp[2] += gz;
JamB 0:801ebe391b00 356 readAccel();
JamB 0:801ebe391b00 357 aBiasRawTemp[0] += ax;
JamB 0:801ebe391b00 358 aBiasRawTemp[1] += ay;
JamB 0:801ebe391b00 359 aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up!
JamB 0:801ebe391b00 360 }
JamB 0:801ebe391b00 361 for (ii = 0; ii < 3; ii++)
JamB 0:801ebe391b00 362 {
JamB 0:801ebe391b00 363 gBiasRaw[ii] = gBiasRawTemp[ii] / samples;
JamB 0:801ebe391b00 364 gBias[ii] = calcGyro(gBiasRaw[ii]);
JamB 0:801ebe391b00 365 aBiasRaw[ii] = aBiasRawTemp[ii] / samples;
JamB 0:801ebe391b00 366 aBias[ii] = calcAccel(aBiasRaw[ii]);
JamB 0:801ebe391b00 367 }
JamB 0:801ebe391b00 368
JamB 0:801ebe391b00 369 enableFIFO(false);
JamB 0:801ebe391b00 370 setFIFO(FIFO_OFF, 0x00);
JamB 0:801ebe391b00 371
JamB 0:801ebe391b00 372 if (autoCalc) _autoCalc = true;
JamB 0:801ebe391b00 373 }
JamB 0:801ebe391b00 374
JamB 0:801ebe391b00 375 void LSM9DS1::calibrateMag(bool loadIn)
JamB 0:801ebe391b00 376 {
JamB 0:801ebe391b00 377 int i, j;
JamB 0:801ebe391b00 378 int16_t magMin[3] = {0, 0, 0};
JamB 0:801ebe391b00 379 int16_t magMax[3] = {0, 0, 0}; // The road warrior
JamB 0:801ebe391b00 380
JamB 0:801ebe391b00 381 for (i=0; i<128; i++)
JamB 0:801ebe391b00 382 {
JamB 0:801ebe391b00 383 while (!magAvailable())
JamB 0:801ebe391b00 384 ;
JamB 0:801ebe391b00 385 readMag();
JamB 0:801ebe391b00 386 int16_t magTemp[3] = {0, 0, 0};
JamB 0:801ebe391b00 387 magTemp[0] = mx;
JamB 0:801ebe391b00 388 magTemp[1] = my;
JamB 0:801ebe391b00 389 magTemp[2] = mz;
JamB 0:801ebe391b00 390 for (j = 0; j < 3; j++)
JamB 0:801ebe391b00 391 {
JamB 0:801ebe391b00 392 if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j];
JamB 0:801ebe391b00 393 if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j];
JamB 0:801ebe391b00 394 }
JamB 0:801ebe391b00 395 }
JamB 0:801ebe391b00 396 for (j = 0; j < 3; j++)
JamB 0:801ebe391b00 397 {
JamB 0:801ebe391b00 398 mBiasRaw[j] = (magMax[j] + magMin[j]) / 2;
JamB 0:801ebe391b00 399 mBias[j] = calcMag(mBiasRaw[j]);
JamB 0:801ebe391b00 400 if (loadIn)
JamB 0:801ebe391b00 401 magOffset(j, mBiasRaw[j]);
JamB 0:801ebe391b00 402 }
JamB 0:801ebe391b00 403
JamB 0:801ebe391b00 404 }
JamB 0:801ebe391b00 405 void LSM9DS1::magOffset(uint8_t axis, int16_t offset)
JamB 0:801ebe391b00 406 {
JamB 0:801ebe391b00 407 if (axis > 2)
JamB 0:801ebe391b00 408 return;
JamB 0:801ebe391b00 409 uint8_t msb, lsb;
JamB 0:801ebe391b00 410 msb = (offset & 0xFF00) >> 8;
JamB 0:801ebe391b00 411 lsb = offset & 0x00FF;
JamB 0:801ebe391b00 412 mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb);
JamB 0:801ebe391b00 413 mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb);
JamB 0:801ebe391b00 414 }
JamB 0:801ebe391b00 415
JamB 0:801ebe391b00 416 void LSM9DS1::initMag()
JamB 0:801ebe391b00 417 {
JamB 0:801ebe391b00 418 uint8_t tempRegValue = 0;
JamB 0:801ebe391b00 419
JamB 0:801ebe391b00 420 // CTRL_REG1_M (Default value: 0x10)
JamB 0:801ebe391b00 421 // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST]
JamB 0:801ebe391b00 422 // TEMP_COMP - Temperature compensation
JamB 0:801ebe391b00 423 // OM[1:0] - X & Y axes op mode selection
JamB 0:801ebe391b00 424 // 00:low-power, 01:medium performance
JamB 0:801ebe391b00 425 // 10: high performance, 11:ultra-high performance
JamB 0:801ebe391b00 426 // DO[2:0] - Output data rate selection
JamB 0:801ebe391b00 427 // ST - Self-test enable
JamB 0:801ebe391b00 428 if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7);
JamB 0:801ebe391b00 429 tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5;
JamB 0:801ebe391b00 430 tempRegValue |= (settings.mag.sampleRate & 0x7) << 2;
JamB 0:801ebe391b00 431 mWriteByte(CTRL_REG1_M, tempRegValue);
JamB 0:801ebe391b00 432
JamB 0:801ebe391b00 433 // CTRL_REG2_M (Default value 0x00)
JamB 0:801ebe391b00 434 // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0]
JamB 0:801ebe391b00 435 // FS[1:0] - Full-scale configuration
JamB 0:801ebe391b00 436 // REBOOT - Reboot memory content (0:normal, 1:reboot)
JamB 0:801ebe391b00 437 // SOFT_RST - Reset config and user registers (0:default, 1:reset)
JamB 0:801ebe391b00 438 tempRegValue = 0;
JamB 0:801ebe391b00 439 switch (settings.mag.scale)
JamB 0:801ebe391b00 440 {
JamB 0:801ebe391b00 441 case 8:
JamB 0:801ebe391b00 442 tempRegValue |= (0x1 << 5);
JamB 0:801ebe391b00 443 break;
JamB 0:801ebe391b00 444 case 12:
JamB 0:801ebe391b00 445 tempRegValue |= (0x2 << 5);
JamB 0:801ebe391b00 446 break;
JamB 0:801ebe391b00 447 case 16:
JamB 0:801ebe391b00 448 tempRegValue |= (0x3 << 5);
JamB 0:801ebe391b00 449 break;
JamB 0:801ebe391b00 450 // Otherwise we'll default to 4 gauss (00)
JamB 0:801ebe391b00 451 }
JamB 0:801ebe391b00 452 mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss
JamB 0:801ebe391b00 453
JamB 0:801ebe391b00 454 // CTRL_REG3_M (Default value: 0x03)
JamB 0:801ebe391b00 455 // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0]
JamB 0:801ebe391b00 456 // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable)
JamB 0:801ebe391b00 457 // LP - Low-power mode cofiguration (1:enable)
JamB 0:801ebe391b00 458 // SIM - SPI mode selection (0:write-only, 1:read/write enable)
JamB 0:801ebe391b00 459 // MD[1:0] - Operating mode
JamB 0:801ebe391b00 460 // 00:continuous conversion, 01:single-conversion,
JamB 0:801ebe391b00 461 // 10,11: Power-down
JamB 0:801ebe391b00 462 tempRegValue = 0;
JamB 0:801ebe391b00 463 if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5);
JamB 0:801ebe391b00 464 tempRegValue |= (settings.mag.operatingMode & 0x3);
JamB 0:801ebe391b00 465 mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode
JamB 0:801ebe391b00 466
JamB 0:801ebe391b00 467 // CTRL_REG4_M (Default value: 0x00)
JamB 0:801ebe391b00 468 // [0][0][0][0][OMZ1][OMZ0][BLE][0]
JamB 0:801ebe391b00 469 // OMZ[1:0] - Z-axis operative mode selection
JamB 0:801ebe391b00 470 // 00:low-power mode, 01:medium performance
JamB 0:801ebe391b00 471 // 10:high performance, 10:ultra-high performance
JamB 0:801ebe391b00 472 // BLE - Big/little endian data
JamB 0:801ebe391b00 473 tempRegValue = 0;
JamB 0:801ebe391b00 474 tempRegValue = (settings.mag.ZPerformance & 0x3) << 2;
JamB 0:801ebe391b00 475 mWriteByte(CTRL_REG4_M, tempRegValue);
JamB 0:801ebe391b00 476
JamB 0:801ebe391b00 477 // CTRL_REG5_M (Default value: 0x00)
JamB 0:801ebe391b00 478 // [0][BDU][0][0][0][0][0][0]
JamB 0:801ebe391b00 479 // BDU - Block data update for magnetic data
JamB 0:801ebe391b00 480 // 0:continuous, 1:not updated until MSB/LSB are read
JamB 0:801ebe391b00 481 tempRegValue = 0;
JamB 0:801ebe391b00 482 mWriteByte(CTRL_REG5_M, tempRegValue);
JamB 0:801ebe391b00 483 }
JamB 0:801ebe391b00 484
JamB 0:801ebe391b00 485 uint8_t LSM9DS1::accelAvailable()
JamB 0:801ebe391b00 486 {
JamB 0:801ebe391b00 487 uint8_t status = xgReadByte(STATUS_REG_1);
JamB 0:801ebe391b00 488
JamB 0:801ebe391b00 489 return (status & (1<<0));
JamB 0:801ebe391b00 490 }
JamB 0:801ebe391b00 491
JamB 0:801ebe391b00 492 uint8_t LSM9DS1::gyroAvailable()
JamB 0:801ebe391b00 493 {
JamB 0:801ebe391b00 494 uint8_t status = xgReadByte(STATUS_REG_1);
JamB 0:801ebe391b00 495
JamB 0:801ebe391b00 496 return ((status & (1<<1)) >> 1);
JamB 0:801ebe391b00 497 }
JamB 0:801ebe391b00 498
JamB 0:801ebe391b00 499 uint8_t LSM9DS1::tempAvailable()
JamB 0:801ebe391b00 500 {
JamB 0:801ebe391b00 501 uint8_t status = xgReadByte(STATUS_REG_1);
JamB 0:801ebe391b00 502
JamB 0:801ebe391b00 503 return ((status & (1<<2)) >> 2);
JamB 0:801ebe391b00 504 }
JamB 0:801ebe391b00 505
JamB 0:801ebe391b00 506 uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis)
JamB 0:801ebe391b00 507 {
JamB 0:801ebe391b00 508 uint8_t status;
JamB 0:801ebe391b00 509 status = mReadByte(STATUS_REG_M);
JamB 0:801ebe391b00 510
JamB 0:801ebe391b00 511 return ((status & (1<<axis)) >> axis);
JamB 0:801ebe391b00 512 }
JamB 0:801ebe391b00 513
JamB 0:801ebe391b00 514 void LSM9DS1::readAccel()
JamB 0:801ebe391b00 515 {
JamB 0:801ebe391b00 516 uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp
JamB 0:801ebe391b00 517 xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL
JamB 0:801ebe391b00 518 ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
JamB 0:801ebe391b00 519 ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
JamB 0:801ebe391b00 520 az = (temp[5] << 8) | temp[4]; // Store z-axis values into az
JamB 0:801ebe391b00 521 if (_autoCalc)
JamB 0:801ebe391b00 522 {
JamB 0:801ebe391b00 523 ax -= aBiasRaw[X_AXIS];
JamB 0:801ebe391b00 524 ay -= aBiasRaw[Y_AXIS];
JamB 0:801ebe391b00 525 az -= aBiasRaw[Z_AXIS];
JamB 0:801ebe391b00 526 }
JamB 0:801ebe391b00 527 }
JamB 0:801ebe391b00 528
JamB 0:801ebe391b00 529 int16_t LSM9DS1::readAccel(lsm9ds1_axis axis)
JamB 0:801ebe391b00 530 {
JamB 0:801ebe391b00 531 uint8_t temp[2];
JamB 0:801ebe391b00 532 int16_t value;
JamB 0:801ebe391b00 533 xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2);
JamB 0:801ebe391b00 534 value = (temp[1] << 8) | temp[0];
JamB 0:801ebe391b00 535
JamB 0:801ebe391b00 536 if (_autoCalc)
JamB 0:801ebe391b00 537 value -= aBiasRaw[axis];
JamB 0:801ebe391b00 538
JamB 0:801ebe391b00 539 return value;
JamB 0:801ebe391b00 540 }
JamB 0:801ebe391b00 541
JamB 0:801ebe391b00 542 void LSM9DS1::readMag()
JamB 0:801ebe391b00 543 {
JamB 0:801ebe391b00 544 uint8_t temp[6]; // We'll read six bytes from the mag into temp
JamB 0:801ebe391b00 545 mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
JamB 0:801ebe391b00 546 mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
JamB 0:801ebe391b00 547 my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
JamB 0:801ebe391b00 548 mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz
JamB 0:801ebe391b00 549 }
JamB 0:801ebe391b00 550
JamB 0:801ebe391b00 551 int16_t LSM9DS1::readMag(lsm9ds1_axis axis)
JamB 0:801ebe391b00 552 {
JamB 0:801ebe391b00 553 uint8_t temp[2];
JamB 0:801ebe391b00 554 mReadBytes(OUT_X_L_M + (2 * axis), temp, 2);
JamB 0:801ebe391b00 555 return (temp[1] << 8) | temp[0];
JamB 0:801ebe391b00 556 }
JamB 0:801ebe391b00 557
JamB 0:801ebe391b00 558 void LSM9DS1::readTemp()
JamB 0:801ebe391b00 559 {
JamB 0:801ebe391b00 560 uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
JamB 0:801ebe391b00 561 xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L
JamB 0:801ebe391b00 562 temperature = ((int16_t)temp[1] << 8) | temp[0];
JamB 0:801ebe391b00 563 }
JamB 0:801ebe391b00 564
JamB 0:801ebe391b00 565 void LSM9DS1::readGyro()
JamB 0:801ebe391b00 566 {
JamB 0:801ebe391b00 567 uint8_t temp[6]; // We'll read six bytes from the gyro into temp
JamB 0:801ebe391b00 568 xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G
JamB 0:801ebe391b00 569 gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
JamB 0:801ebe391b00 570 gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
JamB 0:801ebe391b00 571 gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz
JamB 0:801ebe391b00 572 if (_autoCalc)
JamB 0:801ebe391b00 573 {
JamB 0:801ebe391b00 574 gx -= gBiasRaw[X_AXIS];
JamB 0:801ebe391b00 575 gy -= gBiasRaw[Y_AXIS];
JamB 0:801ebe391b00 576 gz -= gBiasRaw[Z_AXIS];
JamB 0:801ebe391b00 577 }
JamB 0:801ebe391b00 578 }
JamB 0:801ebe391b00 579
JamB 0:801ebe391b00 580 int16_t LSM9DS1::readGyro(lsm9ds1_axis axis)
JamB 0:801ebe391b00 581 {
JamB 0:801ebe391b00 582 uint8_t temp[2];
JamB 0:801ebe391b00 583 int16_t value;
JamB 0:801ebe391b00 584
JamB 0:801ebe391b00 585 xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2);
JamB 0:801ebe391b00 586
JamB 0:801ebe391b00 587 value = (temp[1] << 8) | temp[0];
JamB 0:801ebe391b00 588
JamB 0:801ebe391b00 589 if (_autoCalc)
JamB 0:801ebe391b00 590 value -= gBiasRaw[axis];
JamB 0:801ebe391b00 591
JamB 0:801ebe391b00 592 return value;
JamB 0:801ebe391b00 593 }
JamB 0:801ebe391b00 594
JamB 0:801ebe391b00 595 float LSM9DS1::calcGyro(int16_t gyro)
JamB 0:801ebe391b00 596 {
JamB 0:801ebe391b00 597 // Return the gyro raw reading times our pre-calculated DPS / (ADC tick):
JamB 0:801ebe391b00 598 return gRes * gyro;
JamB 0:801ebe391b00 599 }
JamB 0:801ebe391b00 600
JamB 0:801ebe391b00 601 float LSM9DS1::calcAccel(int16_t accel)
JamB 0:801ebe391b00 602 {
JamB 0:801ebe391b00 603 // Return the accel raw reading times our pre-calculated g's / (ADC tick):
JamB 0:801ebe391b00 604 return aRes * accel;
JamB 0:801ebe391b00 605 }
JamB 0:801ebe391b00 606
JamB 0:801ebe391b00 607 float LSM9DS1::calcMag(int16_t mag)
JamB 0:801ebe391b00 608 {
JamB 0:801ebe391b00 609 // Return the mag raw reading times our pre-calculated Gs / (ADC tick):
JamB 0:801ebe391b00 610 return mRes * mag;
JamB 0:801ebe391b00 611 }
JamB 0:801ebe391b00 612
JamB 0:801ebe391b00 613 void LSM9DS1::setGyroScale(uint16_t gScl)
JamB 0:801ebe391b00 614 {
JamB 0:801ebe391b00 615 // Read current value of CTRL_REG1_G:
JamB 0:801ebe391b00 616 uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G);
JamB 0:801ebe391b00 617 // Mask out scale bits (3 & 4):
JamB 0:801ebe391b00 618 ctrl1RegValue &= 0xE7;
JamB 0:801ebe391b00 619 switch (gScl)
JamB 0:801ebe391b00 620 {
JamB 0:801ebe391b00 621 case 500:
JamB 0:801ebe391b00 622 ctrl1RegValue |= (0x1 << 3);
JamB 0:801ebe391b00 623 settings.gyro.scale = 500;
JamB 0:801ebe391b00 624 break;
JamB 0:801ebe391b00 625 case 2000:
JamB 0:801ebe391b00 626 ctrl1RegValue |= (0x3 << 3);
JamB 0:801ebe391b00 627 settings.gyro.scale = 2000;
JamB 0:801ebe391b00 628 break;
JamB 0:801ebe391b00 629 default: // Otherwise we'll set it to 245 dps (0x0 << 4)
JamB 0:801ebe391b00 630 settings.gyro.scale = 245;
JamB 0:801ebe391b00 631 break;
JamB 0:801ebe391b00 632 }
JamB 0:801ebe391b00 633 xgWriteByte(CTRL_REG1_G, ctrl1RegValue);
JamB 0:801ebe391b00 634
JamB 0:801ebe391b00 635 calcgRes();
JamB 0:801ebe391b00 636 }
JamB 0:801ebe391b00 637
JamB 0:801ebe391b00 638 void LSM9DS1::setAccelScale(uint8_t aScl)
JamB 0:801ebe391b00 639 {
JamB 0:801ebe391b00 640 // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it:
JamB 0:801ebe391b00 641 uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL);
JamB 0:801ebe391b00 642 // Mask out accel scale bits:
JamB 0:801ebe391b00 643 tempRegValue &= 0xE7;
JamB 0:801ebe391b00 644
JamB 0:801ebe391b00 645 switch (aScl)
JamB 0:801ebe391b00 646 {
JamB 0:801ebe391b00 647 case 4:
JamB 0:801ebe391b00 648 tempRegValue |= (0x2 << 3);
JamB 0:801ebe391b00 649 settings.accel.scale = 4;
JamB 0:801ebe391b00 650 break;
JamB 0:801ebe391b00 651 case 8:
JamB 0:801ebe391b00 652 tempRegValue |= (0x3 << 3);
JamB 0:801ebe391b00 653 settings.accel.scale = 8;
JamB 0:801ebe391b00 654 break;
JamB 0:801ebe391b00 655 case 16:
JamB 0:801ebe391b00 656 tempRegValue |= (0x1 << 3);
JamB 0:801ebe391b00 657 settings.accel.scale = 16;
JamB 0:801ebe391b00 658 break;
JamB 0:801ebe391b00 659 default: // Otherwise it'll be set to 2g (0x0 << 3)
JamB 0:801ebe391b00 660 settings.accel.scale = 2;
JamB 0:801ebe391b00 661 break;
JamB 0:801ebe391b00 662 }
JamB 0:801ebe391b00 663 xgWriteByte(CTRL_REG6_XL, tempRegValue);
JamB 0:801ebe391b00 664
JamB 0:801ebe391b00 665 // Then calculate a new aRes, which relies on aScale being set correctly:
JamB 0:801ebe391b00 666 calcaRes();
JamB 0:801ebe391b00 667 }
JamB 0:801ebe391b00 668
JamB 0:801ebe391b00 669 void LSM9DS1::setMagScale(uint8_t mScl)
JamB 0:801ebe391b00 670 {
JamB 0:801ebe391b00 671 // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it:
JamB 0:801ebe391b00 672 uint8_t temp = mReadByte(CTRL_REG2_M);
JamB 0:801ebe391b00 673 // Then mask out the mag scale bits:
JamB 0:801ebe391b00 674 temp &= 0xFF^(0x3 << 5);
JamB 0:801ebe391b00 675
JamB 0:801ebe391b00 676 switch (mScl)
JamB 0:801ebe391b00 677 {
JamB 0:801ebe391b00 678 case 8:
JamB 0:801ebe391b00 679 temp |= (0x1 << 5);
JamB 0:801ebe391b00 680 settings.mag.scale = 8;
JamB 0:801ebe391b00 681 break;
JamB 0:801ebe391b00 682 case 12:
JamB 0:801ebe391b00 683 temp |= (0x2 << 5);
JamB 0:801ebe391b00 684 settings.mag.scale = 12;
JamB 0:801ebe391b00 685 break;
JamB 0:801ebe391b00 686 case 16:
JamB 0:801ebe391b00 687 temp |= (0x3 << 5);
JamB 0:801ebe391b00 688 settings.mag.scale = 16;
JamB 0:801ebe391b00 689 break;
JamB 0:801ebe391b00 690 default: // Otherwise we'll default to 4 gauss (00)
JamB 0:801ebe391b00 691 settings.mag.scale = 4;
JamB 0:801ebe391b00 692 break;
JamB 0:801ebe391b00 693 }
JamB 0:801ebe391b00 694
JamB 0:801ebe391b00 695 // And write the new register value back into CTRL_REG6_XM:
JamB 0:801ebe391b00 696 mWriteByte(CTRL_REG2_M, temp);
JamB 0:801ebe391b00 697
JamB 0:801ebe391b00 698 // We've updated the sensor, but we also need to update our class variables
JamB 0:801ebe391b00 699 // First update mScale:
JamB 0:801ebe391b00 700 //mScale = mScl;
JamB 0:801ebe391b00 701 // Then calculate a new mRes, which relies on mScale being set correctly:
JamB 0:801ebe391b00 702 calcmRes();
JamB 0:801ebe391b00 703 }
JamB 0:801ebe391b00 704
JamB 0:801ebe391b00 705 void LSM9DS1::setGyroODR(uint8_t gRate)
JamB 0:801ebe391b00 706 {
JamB 0:801ebe391b00 707 // Only do this if gRate is not 0 (which would disable the gyro)
JamB 0:801ebe391b00 708 if ((gRate & 0x07) != 0)
JamB 0:801ebe391b00 709 {
JamB 0:801ebe391b00 710 // We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
JamB 0:801ebe391b00 711 uint8_t temp = xgReadByte(CTRL_REG1_G);
JamB 0:801ebe391b00 712 // Then mask out the gyro ODR bits:
JamB 0:801ebe391b00 713 temp &= 0xFF^(0x7 << 5);
JamB 0:801ebe391b00 714 temp |= (gRate & 0x07) << 5;
JamB 0:801ebe391b00 715 // Update our settings struct
JamB 0:801ebe391b00 716 settings.gyro.sampleRate = gRate & 0x07;
JamB 0:801ebe391b00 717 // And write the new register value back into CTRL_REG1_G:
JamB 0:801ebe391b00 718 xgWriteByte(CTRL_REG1_G, temp);
JamB 0:801ebe391b00 719 }
JamB 0:801ebe391b00 720 }
JamB 0:801ebe391b00 721
JamB 0:801ebe391b00 722 void LSM9DS1::setAccelODR(uint8_t aRate)
JamB 0:801ebe391b00 723 {
JamB 0:801ebe391b00 724 // Only do this if aRate is not 0 (which would disable the accel)
JamB 0:801ebe391b00 725 if ((aRate & 0x07) != 0)
JamB 0:801ebe391b00 726 {
JamB 0:801ebe391b00 727 // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
JamB 0:801ebe391b00 728 uint8_t temp = xgReadByte(CTRL_REG6_XL);
JamB 0:801ebe391b00 729 // Then mask out the accel ODR bits:
JamB 0:801ebe391b00 730 temp &= 0x1F;
JamB 0:801ebe391b00 731 // Then shift in our new ODR bits:
JamB 0:801ebe391b00 732 temp |= ((aRate & 0x07) << 5);
JamB 0:801ebe391b00 733 settings.accel.sampleRate = aRate & 0x07;
JamB 0:801ebe391b00 734 // And write the new register value back into CTRL_REG1_XM:
JamB 0:801ebe391b00 735 xgWriteByte(CTRL_REG6_XL, temp);
JamB 0:801ebe391b00 736 }
JamB 0:801ebe391b00 737 }
JamB 0:801ebe391b00 738
JamB 0:801ebe391b00 739 void LSM9DS1::setMagODR(uint8_t mRate)
JamB 0:801ebe391b00 740 {
JamB 0:801ebe391b00 741 // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it:
JamB 0:801ebe391b00 742 uint8_t temp = mReadByte(CTRL_REG1_M);
JamB 0:801ebe391b00 743 // Then mask out the mag ODR bits:
JamB 0:801ebe391b00 744 temp &= 0xFF^(0x7 << 2);
JamB 0:801ebe391b00 745 // Then shift in our new ODR bits:
JamB 0:801ebe391b00 746 temp |= ((mRate & 0x07) << 2);
JamB 0:801ebe391b00 747 settings.mag.sampleRate = mRate & 0x07;
JamB 0:801ebe391b00 748 // And write the new register value back into CTRL_REG5_XM:
JamB 0:801ebe391b00 749 mWriteByte(CTRL_REG1_M, temp);
JamB 0:801ebe391b00 750 }
JamB 0:801ebe391b00 751
JamB 0:801ebe391b00 752 void LSM9DS1::calcgRes()
JamB 0:801ebe391b00 753 {
JamB 0:801ebe391b00 754 gRes = ((float) settings.gyro.scale) / 32768.0;
JamB 0:801ebe391b00 755 }
JamB 0:801ebe391b00 756
JamB 0:801ebe391b00 757 void LSM9DS1::calcaRes()
JamB 0:801ebe391b00 758 {
JamB 0:801ebe391b00 759 aRes = ((float) settings.accel.scale) / 32768.0;
JamB 0:801ebe391b00 760 }
JamB 0:801ebe391b00 761
JamB 0:801ebe391b00 762 void LSM9DS1::calcmRes()
JamB 0:801ebe391b00 763 {
JamB 0:801ebe391b00 764 //mRes = ((float) settings.mag.scale) / 32768.0;
JamB 0:801ebe391b00 765 switch (settings.mag.scale)
JamB 0:801ebe391b00 766 {
JamB 0:801ebe391b00 767 case 4:
JamB 0:801ebe391b00 768 mRes = magSensitivity[0];
JamB 0:801ebe391b00 769 break;
JamB 0:801ebe391b00 770 case 8:
JamB 0:801ebe391b00 771 mRes = magSensitivity[1];
JamB 0:801ebe391b00 772 break;
JamB 0:801ebe391b00 773 case 12:
JamB 0:801ebe391b00 774 mRes = magSensitivity[2];
JamB 0:801ebe391b00 775 break;
JamB 0:801ebe391b00 776 case 16:
JamB 0:801ebe391b00 777 mRes = magSensitivity[3];
JamB 0:801ebe391b00 778 break;
JamB 0:801ebe391b00 779 }
JamB 0:801ebe391b00 780
JamB 0:801ebe391b00 781 }
JamB 0:801ebe391b00 782
JamB 0:801ebe391b00 783 void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator,
JamB 0:801ebe391b00 784 h_lactive activeLow, pp_od pushPull)
JamB 0:801ebe391b00 785 {
JamB 0:801ebe391b00 786 // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of
JamB 0:801ebe391b00 787 // those two values.
JamB 0:801ebe391b00 788 // [generator] should be an OR'd list of values from the interrupt_generators enum
JamB 0:801ebe391b00 789 xgWriteByte(interrupt, generator);
JamB 0:801ebe391b00 790
JamB 0:801ebe391b00 791 // Configure CTRL_REG8
JamB 0:801ebe391b00 792 uint8_t temp;
JamB 0:801ebe391b00 793 temp = xgReadByte(CTRL_REG8);
JamB 0:801ebe391b00 794
JamB 0:801ebe391b00 795 if (activeLow) temp |= (1<<5);
JamB 0:801ebe391b00 796 else temp &= ~(1<<5);
JamB 0:801ebe391b00 797
JamB 0:801ebe391b00 798 if (pushPull) temp &= ~(1<<4);
JamB 0:801ebe391b00 799 else temp |= (1<<4);
JamB 0:801ebe391b00 800
JamB 0:801ebe391b00 801 xgWriteByte(CTRL_REG8, temp);
JamB 0:801ebe391b00 802 }
JamB 0:801ebe391b00 803
JamB 0:801ebe391b00 804 void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn)
JamB 0:801ebe391b00 805 {
JamB 0:801ebe391b00 806 uint8_t temp = 0;
JamB 0:801ebe391b00 807
JamB 0:801ebe391b00 808 temp = threshold & 0x7F;
JamB 0:801ebe391b00 809 if (sleepOn) temp |= (1<<7);
JamB 0:801ebe391b00 810 xgWriteByte(ACT_THS, temp);
JamB 0:801ebe391b00 811
JamB 0:801ebe391b00 812 xgWriteByte(ACT_DUR, duration);
JamB 0:801ebe391b00 813 }
JamB 0:801ebe391b00 814
JamB 0:801ebe391b00 815 uint8_t LSM9DS1::getInactivity()
JamB 0:801ebe391b00 816 {
JamB 0:801ebe391b00 817 uint8_t temp = xgReadByte(STATUS_REG_0);
JamB 0:801ebe391b00 818 temp &= (0x10);
JamB 0:801ebe391b00 819 return temp;
JamB 0:801ebe391b00 820 }
JamB 0:801ebe391b00 821
JamB 0:801ebe391b00 822 void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts)
JamB 0:801ebe391b00 823 {
JamB 0:801ebe391b00 824 // Use variables from accel_interrupt_generator, OR'd together to create
JamB 0:801ebe391b00 825 // the [generator]value.
JamB 0:801ebe391b00 826 uint8_t temp = generator;
JamB 0:801ebe391b00 827 if (andInterrupts) temp |= 0x80;
JamB 0:801ebe391b00 828 xgWriteByte(INT_GEN_CFG_XL, temp);
JamB 0:801ebe391b00 829 }
JamB 0:801ebe391b00 830
JamB 0:801ebe391b00 831 void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
JamB 0:801ebe391b00 832 {
JamB 0:801ebe391b00 833 // Write threshold value to INT_GEN_THS_?_XL.
JamB 0:801ebe391b00 834 // axis will be 0, 1, or 2 (x, y, z respectively)
JamB 0:801ebe391b00 835 xgWriteByte(INT_GEN_THS_X_XL + axis, threshold);
JamB 0:801ebe391b00 836
JamB 0:801ebe391b00 837 // Write duration and wait to INT_GEN_DUR_XL
JamB 0:801ebe391b00 838 uint8_t temp;
JamB 0:801ebe391b00 839 temp = (duration & 0x7F);
JamB 0:801ebe391b00 840 if (wait) temp |= 0x80;
JamB 0:801ebe391b00 841 xgWriteByte(INT_GEN_DUR_XL, temp);
JamB 0:801ebe391b00 842 }
JamB 0:801ebe391b00 843
JamB 0:801ebe391b00 844 uint8_t LSM9DS1::getAccelIntSrc()
JamB 0:801ebe391b00 845 {
JamB 0:801ebe391b00 846 uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL);
JamB 0:801ebe391b00 847
JamB 0:801ebe391b00 848 // Check if the IA_XL (interrupt active) bit is set
JamB 0:801ebe391b00 849 if (intSrc & (1<<6))
JamB 0:801ebe391b00 850 {
JamB 0:801ebe391b00 851 return (intSrc & 0x3F);
JamB 0:801ebe391b00 852 }
JamB 0:801ebe391b00 853
JamB 0:801ebe391b00 854 return 0;
JamB 0:801ebe391b00 855 }
JamB 0:801ebe391b00 856
JamB 0:801ebe391b00 857 void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch)
JamB 0:801ebe391b00 858 {
JamB 0:801ebe391b00 859 // Use variables from accel_interrupt_generator, OR'd together to create
JamB 0:801ebe391b00 860 // the [generator]value.
JamB 0:801ebe391b00 861 uint8_t temp = generator;
JamB 0:801ebe391b00 862 if (aoi) temp |= 0x80;
JamB 0:801ebe391b00 863 if (latch) temp |= 0x40;
JamB 0:801ebe391b00 864 xgWriteByte(INT_GEN_CFG_G, temp);
JamB 0:801ebe391b00 865 }
JamB 0:801ebe391b00 866
JamB 0:801ebe391b00 867 void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
JamB 0:801ebe391b00 868 {
JamB 0:801ebe391b00 869 uint8_t buffer[2];
JamB 0:801ebe391b00 870 buffer[0] = (threshold & 0x7F00) >> 8;
JamB 0:801ebe391b00 871 buffer[1] = (threshold & 0x00FF);
JamB 0:801ebe391b00 872 // Write threshold value to INT_GEN_THS_?H_G and INT_GEN_THS_?L_G.
JamB 0:801ebe391b00 873 // axis will be 0, 1, or 2 (x, y, z respectively)
JamB 0:801ebe391b00 874 xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]);
JamB 0:801ebe391b00 875 xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]);
JamB 0:801ebe391b00 876
JamB 0:801ebe391b00 877 // Write duration and wait to INT_GEN_DUR_XL
JamB 0:801ebe391b00 878 uint8_t temp;
JamB 0:801ebe391b00 879 temp = (duration & 0x7F);
JamB 0:801ebe391b00 880 if (wait) temp |= 0x80;
JamB 0:801ebe391b00 881 xgWriteByte(INT_GEN_DUR_G, temp);
JamB 0:801ebe391b00 882 }
JamB 0:801ebe391b00 883
JamB 0:801ebe391b00 884 uint8_t LSM9DS1::getGyroIntSrc()
JamB 0:801ebe391b00 885 {
JamB 0:801ebe391b00 886 uint8_t intSrc = xgReadByte(INT_GEN_SRC_G);
JamB 0:801ebe391b00 887
JamB 0:801ebe391b00 888 // Check if the IA_G (interrupt active) bit is set
JamB 0:801ebe391b00 889 if (intSrc & (1<<6))
JamB 0:801ebe391b00 890 {
JamB 0:801ebe391b00 891 return (intSrc & 0x3F);
JamB 0:801ebe391b00 892 }
JamB 0:801ebe391b00 893
JamB 0:801ebe391b00 894 return 0;
JamB 0:801ebe391b00 895 }
JamB 0:801ebe391b00 896
JamB 0:801ebe391b00 897 void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch)
JamB 0:801ebe391b00 898 {
JamB 0:801ebe391b00 899 // Mask out non-generator bits (0-4)
JamB 0:801ebe391b00 900 uint8_t config = (generator & 0xE0);
JamB 0:801ebe391b00 901 // IEA bit is 0 for active-low, 1 for active-high.
JamB 0:801ebe391b00 902 if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2);
JamB 0:801ebe391b00 903 // IEL bit is 0 for latched, 1 for not-latched
JamB 0:801ebe391b00 904 if (!latch) config |= (1<<1);
JamB 0:801ebe391b00 905 // As long as we have at least 1 generator, enable the interrupt
JamB 0:801ebe391b00 906 if (generator != 0) config |= (1<<0);
JamB 0:801ebe391b00 907
JamB 0:801ebe391b00 908 mWriteByte(INT_CFG_M, config);
JamB 0:801ebe391b00 909 }
JamB 0:801ebe391b00 910
JamB 0:801ebe391b00 911 void LSM9DS1::configMagThs(uint16_t threshold)
JamB 0:801ebe391b00 912 {
JamB 0:801ebe391b00 913 // Write high eight bits of [threshold] to INT_THS_H_M
JamB 0:801ebe391b00 914 mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8));
JamB 0:801ebe391b00 915 // Write low eight bits of [threshold] to INT_THS_L_M
JamB 0:801ebe391b00 916 mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF));
JamB 0:801ebe391b00 917 }
JamB 0:801ebe391b00 918
JamB 0:801ebe391b00 919 uint8_t LSM9DS1::getMagIntSrc()
JamB 0:801ebe391b00 920 {
JamB 0:801ebe391b00 921 uint8_t intSrc = mReadByte(INT_SRC_M);
JamB 0:801ebe391b00 922
JamB 0:801ebe391b00 923 // Check if the INT (interrupt active) bit is set
JamB 0:801ebe391b00 924 if (intSrc & (1<<0))
JamB 0:801ebe391b00 925 {
JamB 0:801ebe391b00 926 return (intSrc & 0xFE);
JamB 0:801ebe391b00 927 }
JamB 0:801ebe391b00 928
JamB 0:801ebe391b00 929 return 0;
JamB 0:801ebe391b00 930 }
JamB 0:801ebe391b00 931
JamB 0:801ebe391b00 932 void LSM9DS1::sleepGyro(bool enable)
JamB 0:801ebe391b00 933 {
JamB 0:801ebe391b00 934 uint8_t temp = xgReadByte(CTRL_REG9);
JamB 0:801ebe391b00 935 if (enable) temp |= (1<<6);
JamB 0:801ebe391b00 936 else temp &= ~(1<<6);
JamB 0:801ebe391b00 937 xgWriteByte(CTRL_REG9, temp);
JamB 0:801ebe391b00 938 }
JamB 0:801ebe391b00 939
JamB 0:801ebe391b00 940 void LSM9DS1::enableFIFO(bool enable)
JamB 0:801ebe391b00 941 {
JamB 0:801ebe391b00 942 uint8_t temp = xgReadByte(CTRL_REG9);
JamB 0:801ebe391b00 943 if (enable) temp |= (1<<1);
JamB 0:801ebe391b00 944 else temp &= ~(1<<1);
JamB 0:801ebe391b00 945 xgWriteByte(CTRL_REG9, temp);
JamB 0:801ebe391b00 946 }
JamB 0:801ebe391b00 947
JamB 0:801ebe391b00 948 void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs)
JamB 0:801ebe391b00 949 {
JamB 0:801ebe391b00 950 // Limit threshold - 0x1F (31) is the maximum. If more than that was asked
JamB 0:801ebe391b00 951 // limit it to the maximum.
JamB 0:801ebe391b00 952 uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F;
JamB 0:801ebe391b00 953 xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F));
JamB 0:801ebe391b00 954 }
JamB 0:801ebe391b00 955
JamB 0:801ebe391b00 956 uint8_t LSM9DS1::getFIFOSamples()
JamB 0:801ebe391b00 957 {
JamB 0:801ebe391b00 958 return (xgReadByte(FIFO_SRC) & 0x3F);
JamB 0:801ebe391b00 959 }
JamB 0:801ebe391b00 960
JamB 0:801ebe391b00 961 void LSM9DS1::constrainScales()
JamB 0:801ebe391b00 962 {
JamB 0:801ebe391b00 963 if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) &&
JamB 0:801ebe391b00 964 (settings.gyro.scale != 2000))
JamB 0:801ebe391b00 965 {
JamB 0:801ebe391b00 966 settings.gyro.scale = 245;
JamB 0:801ebe391b00 967 }
JamB 0:801ebe391b00 968
JamB 0:801ebe391b00 969 if ((settings.accel.scale != 2) && (settings.accel.scale != 4) &&
JamB 0:801ebe391b00 970 (settings.accel.scale != 8) && (settings.accel.scale != 16))
JamB 0:801ebe391b00 971 {
JamB 0:801ebe391b00 972 settings.accel.scale = 2;
JamB 0:801ebe391b00 973 }
JamB 0:801ebe391b00 974
JamB 0:801ebe391b00 975 if ((settings.mag.scale != 4) && (settings.mag.scale != 8) &&
JamB 0:801ebe391b00 976 (settings.mag.scale != 12) && (settings.mag.scale != 16))
JamB 0:801ebe391b00 977 {
JamB 0:801ebe391b00 978 settings.mag.scale = 4;
JamB 0:801ebe391b00 979 }
JamB 0:801ebe391b00 980 }
JamB 0:801ebe391b00 981
JamB 0:801ebe391b00 982 void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data)
JamB 0:801ebe391b00 983 {
JamB 0:801ebe391b00 984 // Whether we're using I2C or SPI, write a byte using the
JamB 0:801ebe391b00 985 // gyro-specific I2C address or SPI CS pin.
JamB 0:801ebe391b00 986 if (settings.device.commInterface == IMU_MODE_I2C) {
JamB 0:801ebe391b00 987 printf("yo");
JamB 0:801ebe391b00 988 I2CwriteByte(_xgAddress, subAddress, data);
JamB 0:801ebe391b00 989 } else if (settings.device.commInterface == IMU_MODE_SPI) {
JamB 0:801ebe391b00 990 SPIwriteByte(_xgAddress, subAddress, data);
JamB 0:801ebe391b00 991 }
JamB 0:801ebe391b00 992 }
JamB 0:801ebe391b00 993
JamB 0:801ebe391b00 994 void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data)
JamB 0:801ebe391b00 995 {
JamB 0:801ebe391b00 996 // Whether we're using I2C or SPI, write a byte using the
JamB 0:801ebe391b00 997 // accelerometer-specific I2C address or SPI CS pin.
JamB 0:801ebe391b00 998 if (settings.device.commInterface == IMU_MODE_I2C)
JamB 0:801ebe391b00 999 return I2CwriteByte(_mAddress, subAddress, data);
JamB 0:801ebe391b00 1000 else if (settings.device.commInterface == IMU_MODE_SPI)
JamB 0:801ebe391b00 1001 return SPIwriteByte(_mAddress, subAddress, data);
JamB 0:801ebe391b00 1002 }
JamB 0:801ebe391b00 1003
JamB 0:801ebe391b00 1004 uint8_t LSM9DS1::xgReadByte(uint8_t subAddress)
JamB 0:801ebe391b00 1005 {
JamB 0:801ebe391b00 1006 // Whether we're using I2C or SPI, read a byte using the
JamB 0:801ebe391b00 1007 // gyro-specific I2C address or SPI CS pin.
JamB 0:801ebe391b00 1008 if (settings.device.commInterface == IMU_MODE_I2C)
JamB 0:801ebe391b00 1009 return I2CreadByte(_xgAddress, subAddress);
JamB 0:801ebe391b00 1010 else if (settings.device.commInterface == IMU_MODE_SPI)
JamB 0:801ebe391b00 1011 return SPIreadByte(_xgAddress, subAddress);
JamB 0:801ebe391b00 1012 }
JamB 0:801ebe391b00 1013
JamB 0:801ebe391b00 1014 void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
JamB 0:801ebe391b00 1015 {
JamB 0:801ebe391b00 1016 // Whether we're using I2C or SPI, read multiple bytes using the
JamB 0:801ebe391b00 1017 // gyro-specific I2C address or SPI CS pin.
JamB 0:801ebe391b00 1018 if (settings.device.commInterface == IMU_MODE_I2C) {
JamB 0:801ebe391b00 1019 I2CreadBytes(_xgAddress, subAddress, dest, count);
JamB 0:801ebe391b00 1020 } else if (settings.device.commInterface == IMU_MODE_SPI) {
JamB 0:801ebe391b00 1021 SPIreadBytes(_xgAddress, subAddress, dest, count);
JamB 0:801ebe391b00 1022 }
JamB 0:801ebe391b00 1023 }
JamB 0:801ebe391b00 1024
JamB 0:801ebe391b00 1025 uint8_t LSM9DS1::mReadByte(uint8_t subAddress)
JamB 0:801ebe391b00 1026 {
JamB 0:801ebe391b00 1027 // Whether we're using I2C or SPI, read a byte using the
JamB 0:801ebe391b00 1028 // accelerometer-specific I2C address or SPI CS pin.
JamB 0:801ebe391b00 1029 if (settings.device.commInterface == IMU_MODE_I2C)
JamB 0:801ebe391b00 1030 return I2CreadByte(_mAddress, subAddress);
JamB 0:801ebe391b00 1031 else if (settings.device.commInterface == IMU_MODE_SPI)
JamB 0:801ebe391b00 1032 return SPIreadByte(_mAddress, subAddress);
JamB 0:801ebe391b00 1033 }
JamB 0:801ebe391b00 1034
JamB 0:801ebe391b00 1035 void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
JamB 0:801ebe391b00 1036 {
JamB 0:801ebe391b00 1037 // Whether we're using I2C or SPI, read multiple bytes using the
JamB 0:801ebe391b00 1038 // accelerometer-specific I2C address or SPI CS pin.
JamB 0:801ebe391b00 1039 if (settings.device.commInterface == IMU_MODE_I2C)
JamB 0:801ebe391b00 1040 I2CreadBytes(_mAddress, subAddress, dest, count);
JamB 0:801ebe391b00 1041 else if (settings.device.commInterface == IMU_MODE_SPI)
JamB 0:801ebe391b00 1042 SPIreadBytes(_mAddress, subAddress, dest, count);
JamB 0:801ebe391b00 1043 }
JamB 0:801ebe391b00 1044
JamB 0:801ebe391b00 1045 void LSM9DS1::initSPI()
JamB 0:801ebe391b00 1046 {
JamB 0:801ebe391b00 1047 /*
JamB 0:801ebe391b00 1048 pinMode(_xgAddress, OUTPUT);
JamB 0:801ebe391b00 1049 digitalWrite(_xgAddress, HIGH);
JamB 0:801ebe391b00 1050 pinMode(_mAddress, OUTPUT);
JamB 0:801ebe391b00 1051 digitalWrite(_mAddress, HIGH);
JamB 0:801ebe391b00 1052
JamB 0:801ebe391b00 1053 SPI.begin();
JamB 0:801ebe391b00 1054 // Maximum SPI frequency is 10MHz, could divide by 2 here:
JamB 0:801ebe391b00 1055 SPI.setClockDivider(SPI_CLOCK_DIV2);
JamB 0:801ebe391b00 1056 // Data is read and written MSb first.
JamB 0:801ebe391b00 1057 SPI.setBitOrder(MSBFIRST);
JamB 0:801ebe391b00 1058 // Data is captured on rising edge of clock (CPHA = 0)
JamB 0:801ebe391b00 1059 // Base value of the clock is HIGH (CPOL = 1)
JamB 0:801ebe391b00 1060 SPI.setDataMode(SPI_MODE0);
JamB 0:801ebe391b00 1061 */
JamB 0:801ebe391b00 1062 }
JamB 0:801ebe391b00 1063
JamB 0:801ebe391b00 1064 void LSM9DS1::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data)
JamB 0:801ebe391b00 1065 {
JamB 0:801ebe391b00 1066 /*
JamB 0:801ebe391b00 1067 digitalWrite(csPin, LOW); // Initiate communication
JamB 0:801ebe391b00 1068
JamB 0:801ebe391b00 1069 // If write, bit 0 (MSB) should be 0
JamB 0:801ebe391b00 1070 // If single write, bit 1 should be 0
JamB 0:801ebe391b00 1071 SPI.transfer(subAddress & 0x3F); // Send Address
JamB 0:801ebe391b00 1072 SPI.transfer(data); // Send data
JamB 0:801ebe391b00 1073
JamB 0:801ebe391b00 1074 digitalWrite(csPin, HIGH); // Close communication
JamB 0:801ebe391b00 1075 */
JamB 0:801ebe391b00 1076 }
JamB 0:801ebe391b00 1077
JamB 0:801ebe391b00 1078 uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress)
JamB 0:801ebe391b00 1079 {
JamB 0:801ebe391b00 1080 uint8_t temp;
JamB 0:801ebe391b00 1081 // Use the multiple read function to read 1 byte.
JamB 0:801ebe391b00 1082 // Value is returned to `temp`.
JamB 0:801ebe391b00 1083 SPIreadBytes(csPin, subAddress, &temp, 1);
JamB 0:801ebe391b00 1084 return temp;
JamB 0:801ebe391b00 1085 }
JamB 0:801ebe391b00 1086
JamB 0:801ebe391b00 1087 void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress,
JamB 0:801ebe391b00 1088 uint8_t * dest, uint8_t count)
JamB 0:801ebe391b00 1089 {
JamB 0:801ebe391b00 1090 // To indicate a read, set bit 0 (msb) of first byte to 1
JamB 0:801ebe391b00 1091 uint8_t rAddress = 0x80 | (subAddress & 0x3F);
JamB 0:801ebe391b00 1092 // Mag SPI port is different. If we're reading multiple bytes,
JamB 0:801ebe391b00 1093 // set bit 1 to 1. The remaining six bytes are the address to be read
JamB 0:801ebe391b00 1094 if ((csPin == _mAddress) && count > 1)
JamB 0:801ebe391b00 1095 rAddress |= 0x40;
JamB 0:801ebe391b00 1096
JamB 0:801ebe391b00 1097 /*
JamB 0:801ebe391b00 1098 digitalWrite(csPin, LOW); // Initiate communication
JamB 0:801ebe391b00 1099 SPI.transfer(rAddress);
JamB 0:801ebe391b00 1100 for (int i=0; i<count; i++)
JamB 0:801ebe391b00 1101 {
JamB 0:801ebe391b00 1102 dest[i] = SPI.transfer(0x00); // Read into destination array
JamB 0:801ebe391b00 1103 }
JamB 0:801ebe391b00 1104 digitalWrite(csPin, HIGH); // Close communication
JamB 0:801ebe391b00 1105 */
JamB 0:801ebe391b00 1106 }
JamB 0:801ebe391b00 1107
JamB 0:801ebe391b00 1108 void LSM9DS1::initI2C()
JamB 0:801ebe391b00 1109 {
JamB 0:801ebe391b00 1110 /*
JamB 0:801ebe391b00 1111 Wire.begin(); // Initialize I2C library
JamB 0:801ebe391b00 1112 */
JamB 0:801ebe391b00 1113
JamB 0:801ebe391b00 1114 //already initialized in constructor!
JamB 0:801ebe391b00 1115 }
JamB 0:801ebe391b00 1116
JamB 0:801ebe391b00 1117 // Wire.h read and write protocols
JamB 0:801ebe391b00 1118 void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data)
JamB 0:801ebe391b00 1119 {
JamB 0:801ebe391b00 1120 /*
JamB 0:801ebe391b00 1121 Wire.beginTransmission(address); // Initialize the Tx buffer
JamB 0:801ebe391b00 1122 Wire.write(subAddress); // Put slave register address in Tx buffer
JamB 0:801ebe391b00 1123 Wire.write(data); // Put data in Tx buffer
JamB 0:801ebe391b00 1124 Wire.endTransmission(); // Send the Tx buffer
JamB 0:801ebe391b00 1125 */
JamB 0:801ebe391b00 1126 char temp_data[2] = {subAddress, data};
JamB 0:801ebe391b00 1127 i2c.write(address, temp_data, 2);
JamB 0:801ebe391b00 1128 }
JamB 0:801ebe391b00 1129
JamB 0:801ebe391b00 1130 uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress)
JamB 0:801ebe391b00 1131 {
JamB 0:801ebe391b00 1132 /*
JamB 0:801ebe391b00 1133 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
JamB 0:801ebe391b00 1134 uint8_t data; // `data` will store the register data
JamB 0:801ebe391b00 1135
JamB 0:801ebe391b00 1136 Wire.beginTransmission(address); // Initialize the Tx buffer
JamB 0:801ebe391b00 1137 Wire.write(subAddress); // Put slave register address in Tx buffer
JamB 0:801ebe391b00 1138 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
JamB 0:801ebe391b00 1139 Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address
JamB 0:801ebe391b00 1140 while ((Wire.available() < 1) && (timeout-- > 0))
JamB 0:801ebe391b00 1141 delay(1);
JamB 0:801ebe391b00 1142
JamB 0:801ebe391b00 1143 if (timeout <= 0)
JamB 0:801ebe391b00 1144 return 255; //! Bad! 255 will be misinterpreted as a good value.
JamB 0:801ebe391b00 1145
JamB 0:801ebe391b00 1146 data = Wire.read(); // Fill Rx buffer with result
JamB 0:801ebe391b00 1147 return data; // Return data read from slave register
JamB 0:801ebe391b00 1148 */
JamB 0:801ebe391b00 1149 char data;
JamB 0:801ebe391b00 1150 char temp[1] = {subAddress};
JamB 0:801ebe391b00 1151
JamB 0:801ebe391b00 1152 i2c.write(address, temp, 1);
JamB 0:801ebe391b00 1153 //i2c.write(address & 0xFE);
JamB 0:801ebe391b00 1154 temp[1] = 0x00;
JamB 0:801ebe391b00 1155 i2c.write(address, temp, 1);
JamB 0:801ebe391b00 1156 //i2c.write( address | 0x01);
JamB 0:801ebe391b00 1157 int a = i2c.read(address, &data, 1);
JamB 0:801ebe391b00 1158 return data;
JamB 0:801ebe391b00 1159 }
JamB 0:801ebe391b00 1160
JamB 0:801ebe391b00 1161 uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count)
JamB 0:801ebe391b00 1162 {
JamB 0:801ebe391b00 1163 /*
JamB 0:801ebe391b00 1164 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
JamB 0:801ebe391b00 1165 Wire.beginTransmission(address); // Initialize the Tx buffer
JamB 0:801ebe391b00 1166 // Next send the register to be read. OR with 0x80 to indicate multi-read.
JamB 0:801ebe391b00 1167 Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer
JamB 0:801ebe391b00 1168
JamB 0:801ebe391b00 1169 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
JamB 0:801ebe391b00 1170 uint8_t i = 0;
JamB 0:801ebe391b00 1171 Wire.requestFrom(address, count); // Read bytes from slave register address
JamB 0:801ebe391b00 1172 while ((Wire.available() < count) && (timeout-- > 0))
JamB 0:801ebe391b00 1173 delay(1);
JamB 0:801ebe391b00 1174 if (timeout <= 0)
JamB 0:801ebe391b00 1175 return -1;
JamB 0:801ebe391b00 1176
JamB 0:801ebe391b00 1177 for (int i=0; i<count;)
JamB 0:801ebe391b00 1178 {
JamB 0:801ebe391b00 1179 if (Wire.available())
JamB 0:801ebe391b00 1180 {
JamB 0:801ebe391b00 1181 dest[i++] = Wire.read();
JamB 0:801ebe391b00 1182 }
JamB 0:801ebe391b00 1183 }
JamB 0:801ebe391b00 1184 return count;
JamB 0:801ebe391b00 1185 */
JamB 0:801ebe391b00 1186 int i;
JamB 0:801ebe391b00 1187 char temp_dest[count];
JamB 0:801ebe391b00 1188 char temp[1] = {subAddress};
JamB 0:801ebe391b00 1189 i2c.write(address, temp, 1);
JamB 0:801ebe391b00 1190 i2c.read(address, temp_dest, count);
JamB 0:801ebe391b00 1191
JamB 0:801ebe391b00 1192 //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion
JamB 0:801ebe391b00 1193 for (i=0; i < count; i++) {
JamB 0:801ebe391b00 1194 dest[i] = temp_dest[i];
JamB 0:801ebe391b00 1195 }
JamB 0:801ebe391b00 1196 return count;
JamB 0:801ebe391b00 1197 }