The final program for the #include AIR robot
Dependencies: Biquad HIDScope QEI angleandposition controlandadjust mbed
Fork of includeair by
main.cpp
- Committer:
- Gerth
- Date:
- 2015-10-29
- Revision:
- 41:e9fd0670f70c
- Parent:
- 40:8b25c0531340
- Child:
- 42:386fc2fcfb22
File content as of revision 41:e9fd0670f70c:
#include "mbed.h" #include "QEI.h" #include "HIDScope.h" #include "Biquad.h" #include "controlandadjust.h" #include "angleandposition.h" ///////////////////////////////////////////////info out HIDScope scope(6);// number of hidscope channels Ticker scope_ticker;//ticker for the scope const double scope_frequency=200; //HIDscope frequency Timer checktimer;// timer to check how much time it takes to run the control loop, to see if the frequencies are not too high volatile double checktimervalue=0; // make a variable to store the time the loop has taken Serial pc(USBTX,USBRX);// serial connection to pc DigitalOut ledred(LED_RED);// leds on the k64f board DigitalOut ledgreen(LED_GREEN); DigitalOut ledblue(LED_BLUE); /////////////////////////////////////////////ENCODERS const double cpr_sensor=32; //counts per rotation of the sensor const double cpr_shaft=cpr_sensor*131;//counts per rotation of the outputshaft QEI encoder1(D13,D12,NC,cpr_sensor);/// encoders on motors X2 encoding QEI encoder2(D10,D11,NC,cpr_sensor);// first is pin a, pin b and the second is pin b, pin a so the encoders give positive rotation when the pod is moved forward const double PIE=3.14159265359; // pi, for calculations const double counttorad=((2*PIE)/cpr_shaft);// to convert counts to rotation in rad /////////////////////////////////CALIBRATION (MODE) const double radpersec_calibrate=0.1*PIE;// speed of arms when in calibration mode int modecounter=1;//counter in which mode the robot is const double readbuttoncalibrate_frequency=50;//frequency at which the buttons are read when in calibration mode const double ledblink_frequency=4;//frequency at which the green led and leds on top blink when in resp button or calibration mode DigitalIn changemodebutton(PTA4);// button to change mode (sw3) Ticker readbuttoncalibrate_ticker;//ticker for reading out the buttons when calibrating Ticker ledblink_ticker;// ticker for blinking the leds DigitalIn buttonR(D2);//rigth button on biorobotics shield DigitalIn buttonL(D3);//left button on biorobotics shield /////////////////READSIGNAL const double readsignal_frequency=100;//frequency at wich the filtered emg signal is sampled to be 0 or 1 Ticker readsignal_ticker; // ticker for reading the signal of the emg DigitalOut led1(PTC12);// rigth led on biorobotics shield DigitalOut led2(D9);//left led on biorobotics shield //////////////////////////////////CONTROLLER const double control_frequency=250;// frequency at which the controller is called //controller constants float Kp_shoot=6; float Ki_shoot=2; float Kd_shoot=0.5; float Kp_move=2; float Ki_move=1.25; float Kd_move=0.05; controlandadjust mycontroller(2,control_frequency); // make a controller, value in brackets is errorband in degrees and controller frequency Ticker control_ticker;//ticker for the controller const double Ts_control=1.0/control_frequency;//sample time of the controller double error1=0,//controller error storage variables error2=0; InterruptIn valuechangebutton(PTC6);//button to change filter gains per arm via Serial //safetyandthreshold AnalogIn safety_pot(A3);//pot 2, used for the safety cutoff value for the pwm AnalogIn threshold_pot(A2);//pot1, used to adjust threshold if signal differs per person Ticker safetyandthreshold_ticker; // ticker to read potmeters const double safetyandthreshold_frequency=1; // frequency for the ticker double threshold_value=1;//initial threshold value ////////////////////////////////FILTER const double filter_frequency=500; // frequency at which the emg signal is filtered #include "filtervalues.h"// call the values for the biquads these are in a separate file to keep this code readable Ticker filter_ticker;//Ticker for the filter Biquad myfilter1;// make filter for signal 1 Biquad myfilter2;//make filter for signal 2 AnalogIn emg1_input(A0);//input for first emg signal AnalogIn emg2_input(A1);//input for second emg signal volatile double filteredsignal1=0;//the first filtered emg signal volatile double filteredsignal2=0;//the second filtered emg signal double filter_extragain1=1,filter_extragain2=1; // this is a factor to increase the gain per arm, adustable via serial //////////////////////////////// POSITION AND ANGLE const double safetymarginfield=0.05; //adjustable, tweak for maximum but safe range const double mm_per_sec_emg=0.1;// move the pod 100 mm per sec if muscle is flexed const double y_start=0.225;//starting y position of the pod const double y_punch=0.473;// position to where there is punched const double timetoshoot=0.35;// time it can take to shoot const double timetogoback=1;// time it can take to go back after shooting volatile double desired_position=0;//desired x position double desired_angle1=0; //desired angle of arm 1 (calculated with anglepos) double desired_angle2=0; // desired anvle of arm 2 (calculated with anglepos) const double fieldwidth=0.473; // width of the field const double maxdisplacement=((fieldwidth/2)-safetymarginfield); //so the pod doesn't hit the edges of the playfield angleandposition anglepos;// initiate the angle and position calculation library const double radtodeg=(180/PIE); // to convert radians to degrees /////////////////////////////////////////////////////////DEMO MODE const double demo_safety=0.1; const double demo_x_edge_rigth=(fieldwidth/2)-demo_safety; const double demo_x_edge_left=-((fieldwidth/2)-demo_safety); const double demo_y_back=0.1+demo_safety; const double demo_y_front=y_punch; const double demo_length_vector=1000; const int demo_length_vector_int=demo_length_vector; const double demo_total_time=10; const double demo_x_step=(demo_x_edge_rigth-demo_x_edge_left)/(0.25*demo_length_vector); const double demo_y_step=(demo_y_front-demo_y_back)/(0.25*demo_length_vector); int demo_step=(0.125*demo_length_vector); double x_demo[demo_length_vector_int]; double y_demo[demo_length_vector_int]; Ticker demo_next_step_ticker; const double demo_next_step_frequency=(demo_length_vector/demo_total_time); //////////////////////GO FLAGS AND ACTIVATION FUNCTIONS volatile bool scopedata_go=false, control_go=false, filter_go=false, safetyandthreshold_go=false, readsignal_go=false, switchedmode=true, readbuttoncalibrate_go=false, ledblink_go=false, demo_next_step_go=false; void scopedata_activate() { scopedata_go=true; } void control_activate() { control_go=true; } void filter_activate() { filter_go=true; } void safetyandthreshold_activate() { safetyandthreshold_go=true; } void readsignal_activate() { readsignal_go=true; } void readbuttoncalibrate_activate() { readbuttoncalibrate_go=true; } void ledblink_activate() { ledblink_go=true; } void demo_next_step_activate() { demo_next_step_go=true; } ////////////////////////FUNCTIONS //gather data and send to scope void scopedata(double wanted_y) { scope.set(0,desired_position); // desired x position scope.set(1,wanted_y); // desired y position scope.set(2,filteredsignal1); // filterded emg signal rigth arm scope.set(3,filteredsignal2); // filtered emg signal left arm scope.set(4,threshold_value); // threshold value scope.set(5,mycontroller.motor1pwm()); //pwm signal send to motor 1 scope.send(); // send info to HIDScope server } //read potmeters and adjust the safetyfactor and threshold void safetyandthreshold() { mycontroller.cutoff((ceil (10*safety_pot.read()) )/10); // adjust the safetyfactor value between 0 and 1 rounded to 1 decimal threshold_value=((ceil (100*threshold_pot.read()) )/100); // adjust the threshold value between 0 and 1 rounded to 2 decimals } /////filter void filtereverything(bool makeempty) { //pass1 so f1 double pass1_emg1 = myfilter1.filter(emg1_input.read(), v1_f1_emg1 , v2_f1_emg1 , a1_f1 , a2_f1 , b0_f1 , b1_f1 , b2_f1); double pass1_emg2 = myfilter2.filter(emg2_input.read(), v1_f1_emg2 , v2_f1_emg2 , a1_f1 , a2_f1 , b0_f1 , b1_f1 , b2_f1); //pass2 so f2 double pass2_emg1 = myfilter1.filter(pass1_emg1, v1_f2_emg1 , v2_f2_emg1 , a1_f2 , a2_f2 , b0_f2 , b1_f2 , b2_f2); double pass2_emg2 = myfilter2.filter(pass1_emg2, v1_f2_emg2 , v2_f2_emg2 , a1_f2 , a2_f2 , b0_f2 , b1_f2 , b2_f2); //pass3 so f3 double pass3_emg1 = myfilter1.filter(pass2_emg1, v1_f3_emg1 , v2_f3_emg1 , a1_f3 , a2_f3 , b0_f3 , b1_f3 , b2_f3); double pass3_emg2 = myfilter2.filter(pass2_emg2, v1_f3_emg2 , v2_f3_emg2 , a1_f3 , a2_f3 , b0_f3 , b1_f3 , b2_f3); //pass4 so f4 double pass4_emg1 = myfilter1.filter(pass3_emg1, v1_f4_emg1 , v2_f4_emg1 , a1_f4 , a2_f4 , b0_f4 , b1_f4 , b2_f4); double pass4_emg2 = myfilter2.filter(pass3_emg2, v1_f4_emg2 , v2_f4_emg2 , a1_f4 , a2_f4 , b0_f4 , b1_f4 , b2_f4); //pass5 so f5 double pass5_emg1 = myfilter1.filter(pass4_emg1, v1_f5_emg1 , v2_f5_emg1 , a1_f5 , a2_f5 , b0_f5 , b1_f5 , b2_f5); double pass5_emg2 = myfilter2.filter(pass4_emg2, v1_f5_emg2 , v2_f5_emg2 , a1_f5 , a2_f5 , b0_f5 , b1_f5 , b2_f5); ///// take absolute value double pass5_emg1_abs=(fabs(pass5_emg1)); double pass5_emg2_abs=(fabs(pass5_emg2)); //pass6 so f6 double pass6_emg1 = myfilter1.filter(pass5_emg1_abs, v1_f6_emg1 , v2_f6_emg1 , a1_f6 , a2_f6 , b0_f6 , b1_f6 , b2_f6); double pass6_emg2 = myfilter2.filter(pass5_emg2_abs, v1_f6_emg2 , v2_f6_emg2 , a1_f6 , a2_f6 , b0_f6 , b1_f6 , b2_f6); //pass7 so f7 double pass7_emg1 = myfilter1.filter(pass6_emg1, v1_f7_emg1 , v2_f7_emg1 , a1_f7 , a2_f7 , b0_f7 , b1_f7 , b2_f7); double pass7_emg2 = myfilter2.filter(pass6_emg2, v1_f7_emg2 , v2_f7_emg2 , a1_f7 , a2_f7 , b0_f7 , b1_f7 , b2_f7); filteredsignal1=(pass7_emg1*9e11*filter_extragain1);//this is needed to make the signal ~1 when flexed filteredsignal2=(pass7_emg2*9e11*filter_extragain2);// filter_extragain is adjusted via serial if (makeempty==true) {//this is needed so the filtered value is not high after shooting basically it resets the filter pass1_emg1 = pass1_emg2 =pass2_emg1 =pass2_emg2 =pass3_emg1 = pass3_emg2 =pass4_emg1 =pass4_emg2 =pass5_emg1 =pass5_emg2 =0; pass5_emg1_abs=pass5_emg2_abs=pass6_emg1 =pass6_emg2 =pass7_emg1=pass7_emg2 =filteredsignal1=filteredsignal2=0; v1_f1_emg1=v1_f1_emg2=v1_f2_emg1=v1_f2_emg2=v1_f3_emg1=v1_f3_emg2=v1_f4_emg1=v1_f4_emg2=v1_f5_emg1=0; v1_f5_emg2=v1_f6_emg1=v1_f6_emg2=v1_f7_emg1=v1_f7_emg2=0; } } //adjust controller values when sw2 is pressed void valuechange() { mycontroller.STOP(); // stop motors pc.printf("Extra gain for rigth arm is now %f, enter new value\n",filter_extragain1); // print extra gain for rigth arm pc.scanf("%f", &filter_extragain1); //read the input from serial and write to filter_extragain1 pc.printf("Extra gain for left arm is now %f, enter new value\n",filter_extragain2); // print extra gain for left arm pc.scanf("%f", &filter_extragain2);//read the input from serial and write to filter_extragain2 } // shoot the pod forward void shoot() { ledgreen=1; double time=0; double stepsize=(0.5*PIE)/(timetoshoot*control_frequency); //calculate stepsize double profile_angle=0;// used for the profilie double x_punch=anglepos.angletoposition(counttorad*encoder1.getPulses(),counttorad*encoder2.getPulses());// calculate actual x positon from the encoder angles double y_during_punch=y_start;//set initial y value to baseline Timer shoottimer; // make a timer shoottimer.reset(); shoottimer.start(); //forward while (time<=timetoshoot) { ledblue=!ledblue; // blink blue led (very fast, so not noticable blinking) profile_angle+=stepsize; // add stepsize to angle y_during_punch=(y_punch-y_start)*(1-cos(profile_angle))+y_start; // calculate y position for shooting if (y_during_punch>=y_punch) {//to check if y position is not bigger than y_punch for safety y_during_punch=y_punch; } else { y_during_punch=y_during_punch; } desired_angle1=anglepos.positiontoangle1(x_punch,y_during_punch);// calculate desired angles desired_angle2=anglepos.positiontoangle2(x_punch,y_during_punch); error1=(desired_angle1-counttorad*encoder1.getPulses());//calculate errors error2=(desired_angle2-counttorad*encoder2.getPulses()); mycontroller.PID(error1,error2,Kp_shoot,Ki_shoot,Kd_shoot);;// send errors to controller scopedata(y_during_punch);//send data to hidscope WARING lower freqyency than normal time+=(Ts_control);// add time it should take to calculated time filtereverything(true);//set al filter variables to 0 wait(time-shoottimer.read());// IMPORTANT wait until the loop has taken the time it should need, // if this is not done the loop wil go to fast and the motors can't keep up // this is because the control loop takes far less time than Ts_control } //back time=0; // reset time shoottimer.reset();//reset timer stepsize=(PIE)/(timetogoback*control_frequency);//calculate stepsize profile_angle=0;//reset angle for the displacement profile desired_position=0;// set desired x position to 0, so the robot is in the middle in front of the goal after shooting while (time<=timetogoback) { ledblue=!ledblue;// blink blue led profile_angle+=stepsize; // add stepsize to y position y_during_punch=0.5*(y_punch-y_start)*(1+cos(profile_angle))+y_start; // calculate y position for shooting if (y_during_punch<=y_start) {//to check if y position is not smaller than y_start for safety y_during_punch=y_start; } else { y_during_punch=y_during_punch; } desired_angle1=anglepos.positiontoangle1(desired_position,y_during_punch);// calculate desired angles desired_angle2=anglepos.positiontoangle2(desired_position,y_during_punch); error1=(desired_angle1-counttorad*encoder1.getPulses());//calculate errors error2=(desired_angle2-counttorad*encoder2.getPulses()); mycontroller.PID(error1,error2,Kp_shoot,Ki_shoot,Kd_shoot);;// send errors to controller scopedata(y_during_punch);//send data to hidscope WARING lower freqyency than normal time+=(Ts_control);// add time it should take to calculated time filtereverything(false);//start filtering the signal (lower frewquency than normal) wait(time-shoottimer.read());// IMPORTANT wait until the loop has taken the time it should need, if this is not done the loop wil go to fast and the motors can't keep up } shoottimer.stop(); ledblue=1; // blue led off ledgreen=0; // green led on } ////////////////////////////////////////////////////READ EMG AND MOVE DESIRED POSITION void readsignal() { //check if pod has to shoot if (filteredsignal1>=threshold_value && filteredsignal2>=threshold_value) { led1=led2=1; // ligth up both leds shoot(); // check if pod has to move to the right } else if (filteredsignal1>=threshold_value && filteredsignal2<=threshold_value) { led1=1;// ligth up rigth led led2=0; desired_position += (mm_per_sec_emg/readsignal_frequency);// move desiredposition right if (desired_position>=maxdisplacement) {//check if the pod doesnt move too far and hit the edge desired_position=maxdisplacement; } else { desired_position=desired_position; } // check if pod has to move to the left } else if (filteredsignal1<=threshold_value && filteredsignal2>=threshold_value) { led1=0; // ligth up left led led2=1; desired_position -= (mm_per_sec_emg/readsignal_frequency);//move desiredposition left if (desired_position<=(-1*maxdisplacement)) {//check if the pod doesnt move too far and hit the edge desired_position=(-1*maxdisplacement); } else { desired_position=desired_position; } } else { led1=led2=0; } } ///////////////////////////////////////////////READ BUTTON AND MOVE DESIRED POSITION void readsignalbutton() // same as above, only with buttons as input { //write value of button to variable int buttonr=buttonR.read(); int buttonl=buttonL.read(); //check if pod has to shoot if (buttonr==0 && buttonl==0) { led1=led2=1; shoot(); // check if pod has to move to the right } else if (buttonr==0 && buttonl==1) { led1=1; led2=0; desired_position += (mm_per_sec_emg/readsignal_frequency);// move desiredposition right if (desired_position>=maxdisplacement) {//check if the pod doesnt move too far and hit the edge desired_position=maxdisplacement; } else { desired_position=desired_position; } // check if pod has to move to the left } else if (buttonr==1 && buttonl==0) { led1=0; led2=1; desired_position -= (mm_per_sec_emg/readsignal_frequency);//move desiredposition left if (desired_position<=(-1*maxdisplacement)) {//check if the pod doesnt move too far and hit the edge desired_position=(-1*maxdisplacement); } else { desired_position=desired_position; } } else { led1=led2=0; } } void changemode() //this makes the counter higher to switch between modes { mycontroller.STOP(); // stop the controller switchedmode=true; // set switchedmode to true so in the main loop some statements are executed modecounter++; // increase counter if (modecounter==6) { // reset counter if counter=6 modecounter=0; } else { modecounter=modecounter; } wait(1);// needed because else it is checked too fast if the button is pressed and modes change too fast // tried it with interruptin but didn't work, bt this works good } void demo_next_step() { if (demo_step>(demo_length_vector-2)) { demo_step=0; } else { demo_step++; } } ///////////////////////////////////////////////////MAIN int main() { //initiate tickers safetyandthreshold_ticker.attach(&safetyandthreshold_activate,1.0/safetyandthreshold_frequency); filter_ticker.attach(&filter_activate,1.0/filter_frequency); control_ticker.attach(&control_activate,1.0/control_frequency); scope_ticker.attach(&scopedata_activate,1.0/scope_frequency); readsignal_ticker.attach(&readsignal_activate, 1.0/readsignal_frequency); readbuttoncalibrate_ticker.attach(&readbuttoncalibrate_activate, 1.0/readbuttoncalibrate_frequency); ledblink_ticker.attach(&ledblink_activate, 1.0/ledblink_frequency); demo_next_step_ticker.attach(&demo_next_step_activate,1.0/demo_next_step_frequency); pc.baud(115200);//set baudrate to 115200 // make position vectors for demo mode x_demo[0]=demo_x_edge_left; y_demo[0]=demo_y_front; for (int i=0; i<(0.25*demo_length_vector_int); i++) { x_demo[i+1]=x_demo[i]+demo_x_step; y_demo[i+1]=demo_y_front; } for (int i=(0.25*demo_length_vector_int); i<(0.5*demo_length_vector_int); i++) { x_demo[i+1]=demo_x_edge_rigth; y_demo[i+1]=y_demo[i]-demo_y_step; } for (int i=(0.5*demo_length_vector_int); i<(0.75*demo_length_vector_int); i++) { x_demo[i+1]=x_demo[i]-demo_x_step; y_demo[i+1]=demo_y_back; } for (int i=(0.75*demo_length_vector_int); i<(1*(demo_length_vector_int-1)); i++) { x_demo[i+1]=demo_x_edge_left; y_demo[i+1]=y_demo[i]+demo_y_step; } while(1) {// while (1) so continious loop valuechangebutton.fall(&valuechange);// used to change the filter gains checktimer.reset();// reset the timer to check the time it takes to run the entire control loop checktimer.start(); if (changemodebutton==0) {// check if the change mode button is pressed changemode();//call changemode } if (scopedata_go==true) {//send scopedata //TIME THIS LOOP TAKES: 0.000008 SEC (PEAKS AT 0.000015) scopedata(y_start);// call scopedata, use baseline as desired y position scopedata_go=false; } if (safetyandthreshold_go==true) {// check the potmeters //TIME THIS LOOP TAKES: 0.000032 SEC safetyandthreshold(); // read out the potmeters on top of the biorobotics board safetyandthreshold_go=false; } ///////////////////////////////////////////NORMAL RUNNING MODE if(modecounter==0) { if (switchedmode==true) { pc.printf("Program running\n");// print to serial ledgreen=0;// green led on led1=led2=ledred=ledblue=1;//rest of switchedmode=false; } if (filter_go==true) {// filter the emg signal // TIME THIS LOOP TAKES: 0.000173 SEC filtereverything(false); filter_go=false; } if (readsignal_go==true) {// check if signal is 0 or 1 and adjust wanted position // TIME THIS LOOP TAKES: 0.000005 SEC readsignal(); readsignal_go=false; } if (control_go==true) {// calculate angles from positions and send error to controller //TIME THIS LOOP TAKES: 0.000223 SEC desired_angle1=anglepos.positiontoangle1(desired_position,y_start); desired_angle2=anglepos.positiontoangle2(desired_position,y_start); double error1=(desired_angle1-counttorad*encoder1.getPulses()); double error2=(desired_angle2-counttorad*encoder2.getPulses()); mycontroller.PID(error1,error2,Kp_move,Ki_move,Kd_move); control_go=false; } } ////////////////////////////////////////////////////CALIBRATE RIGHT ARM if (modecounter==1) { if(switchedmode==true) { pc.printf("Calibration mode! Use buttons to move rigth arm to 0 degrees\n"); led1=led2=ledred=0; ledgreen=ledblue=1; switchedmode=false; } if (ledblink_go==true) { led1=!led1;// blink rigth led on biorobotics shield (because rigth arm is being calibrated) ledblink_go=false; } if (readbuttoncalibrate_go==true) {//check wich button is pressed and adjust wanted angle of rigth arm if (buttonR.read()==0 && buttonL.read()==1) { desired_angle1 += (radpersec_calibrate/readbuttoncalibrate_frequency); readbuttoncalibrate_go=false; } if (buttonR.read()==1 && buttonL.read()==0) { desired_angle1 -= (radpersec_calibrate/readbuttoncalibrate_frequency); readbuttoncalibrate_go=false; } } if (control_go==true) {// calculate errors and send them to controllers error1=(desired_angle1-counttorad*encoder1.getPulses()); error2=0;// only adjust rigth arm mycontroller.PI(error1,error2,Kp_move,Ki_move); control_go=false; } } ////////////////////////////////////////////CALIBRATE LEFT ARM if (modecounter==2) { if(switchedmode==true) { pc.printf("Calibration mode! Use buttons to move left arm to 0 degrees\n"); led1=led2=ledred=0; ledgreen=ledblue=1; switchedmode=false; } if (ledblink_go==true) { led2=!led2;// blink left led on biorobotics shield (because left arm is being calibrated) ledblink_go=false; } if (readbuttoncalibrate_go==true) {// if (buttonR.read()==0 && buttonL.read()==1) {//check wich button is pressed and adjust wanted angle of left arm desired_angle2 += (radpersec_calibrate/readbuttoncalibrate_frequency); readbuttoncalibrate_go=false; } if (buttonR.read()==1 && buttonL.read()==0) { desired_angle2 -= (radpersec_calibrate/readbuttoncalibrate_frequency); readbuttoncalibrate_go=false; } } if (control_go==true) {// calculate errors and send to controller error1=0; // only adjus left arm error2=(desired_angle2-counttorad*encoder2.getPulses()); mycontroller.PI(error1,error2,Kp_move,Ki_move); control_go=false; } } ///////////////////////////////BUTTONCONTROLMODE if (modecounter==3) { if (switchedmode==true) { pc.printf("Buttonmode, you can use the buttons to control the robot\n"); led1=led2=0; ledred=ledblue=1; encoder1.reset();// reset encoders so they are at 0 degrees encoder2.reset(); desired_position=0;//set desired position to the middle of the field, where the pod actually is. switchedmode=false; } if (ledblink_go==true) { ledgreen=!ledgreen; // blink green led ledblink_go=false; } if (readsignal_go==true) {// read buttons and adjust wanted position readsignalbutton(); readsignal_go=false; } if (control_go==true) {// calculate wanted angles from position, errors and send to controller desired_angle1=anglepos.positiontoangle1(desired_position,y_start); desired_angle2=anglepos.positiontoangle2(desired_position,y_start); error1=(desired_angle1-counttorad*encoder1.getPulses()); error2=(desired_angle2-counttorad*encoder2.getPulses()); mycontroller.PID(error1,error2,Kp_move,Ki_move,Kd_move); control_go=false; } } ///////////////////////////////////DEMO MODE if (modecounter==4) { if (switchedmode==true) { pc.printf("Demo mode, the pod moves around the field\n"); demo_step=(0.125*demo_length_vector);// start in the middle of the playfield ledred=ledblue=ledgreen=1; led1=led2=0; switchedmode=false; } if (ledblink_go==true) { ledred=ledblue=ledgreen=!ledred;//blink all leds ledblink_go=false; } if (demo_next_step_go==true) { demo_next_step();// next step of the path pc.printf("step %d x %f y %f \n",demo_step,x_demo[demo_step],y_demo[demo_step] ); demo_next_step_go=false; } if (control_go==true) {// calculate wanted angles from position, errors and send to controller desired_angle1=anglepos.positiontoangle1(x_demo[demo_step],y_demo[demo_step]); desired_angle2=anglepos.positiontoangle2(x_demo[demo_step],y_demo[demo_step]); error1=(desired_angle1-counttorad*encoder1.getPulses()); error2=(desired_angle2-counttorad*encoder2.getPulses()); mycontroller.PID(error1,error2,Kp_move,Ki_move,Kd_move); control_go=false; } } //////////////////////////////////EMG GAIN AND THRESHOLD CALIBRATION MODE if(modecounter==5) { if (switchedmode==true) { pc.printf("Calibrate the EMG signals and threshold\n"); ledgreen=1; ledred=0; switchedmode=false; } if(ledblink_go==true) { ledgreen=!ledgreen; ledred=!ledred; ledblink_go=false; } if (filter_go==true) {// filter the emg signal // TIME THIS LOOP TAKES: 0.000173 SEC filtereverything(false); filter_go=false; } } checktimervalue=checktimer.read(); // write the time it has taken to a variable, so this variable can be displayed using hidschope. // if chectimer.read() is used in scopedata, the value is probably ~0 //because scopedata is called as one of the first functoins checktimer.stop(); } }