The final program for the #include AIR robot
Dependencies: Biquad HIDScope QEI angleandposition controlandadjust mbed
Fork of includeair by
main.cpp
- Committer:
- Gerth
- Date:
- 2015-10-19
- Revision:
- 15:17de575b7385
- Parent:
- 14:4c4f45a1dd23
- Child:
- 16:63320b8f79c2
File content as of revision 15:17de575b7385:
#include "mbed.h" #include "QEI.h" #include "HIDScope.h" #include "Biquad.h" #include "controlandadjust.h" //info out HIDScope scope(6); Ticker scope_ticker; const double scope_frequency=500; Serial pc(USBTX,USBRX); DigitalOut ledred(LED1); DigitalOut ledgreen(LED2); DigitalOut ledblue(LED3); ////////////////ENCODERS const float cpr_sensor=32; const float cpr_shaft=cpr_sensor*131; QEI encoder1(D12,D13,NC,cpr_sensor);/// maybe use Encoder in stead of QEI, because Encoder had setposition QEI encoder2(D10,D11,NC,cpr_sensor); const double PIE=3.14159265359; const float counttorad=((2*PIE)/cpr_shaft); /////////////////////////////////CALIBRATION (MODE) int modecounter=1; DigitalIn changemodebutton(PTA4); Ticker readbuttoncalibrate_ticker; const double readbuttoncalibrate_frequency=10; Ticker ledblink_ticker; const double ledblink_frequency=4; const double radpersec_calibrate=0.1*PIE; DigitalIn buttonR(D2); DigitalIn buttonL(D3); //////////////////////////////////CONTROLLER controlandadjust mycontroller; // make a controller //controller constants float Kp=0.5; float Ki=0.01; float Kd=0.001; Ticker control_ticker; const double control_frequency=25; const double Ts_control=1.0/control_frequency; float error1_int=0;// storage variables for the errors float error2_int=0; float error1_prev=0; float error2_prev=0; InterruptIn valuechangebutton(PTC6);//button to change controller constants //safetyandthreshold AnalogIn safety_pot(A3);//pot 2, used for the safety cutoff value for the pwm AnalogIn threshold_pot(A2);//pot1, used to adjust threshold if signal differs per person Ticker safetyandthreshold_ticker; // ticker to read potmeters const double safetyandthreshold_frequency=1; // frequency for the ticker float threshold_value=1;//initial threshold value ////////////////////////////////FILTER #include "filtervalues.h" Ticker filter_ticker; const double filter_frequency=500; Biquad myfilter1; Biquad myfilter2; AnalogIn emg1_input(A0); AnalogIn emg2_input(A1); double filteredsignal1=0; double filteredsignal2=0; float filter_extragain=1; /////////////////READSIGNAL Ticker readsignal_ticker; const double readsignal_frequency=25; DigitalOut led1(PTC12); DigitalOut led2(D9); //////////////////////////////// POSITION AND ANGLE SHIZZLE float desired_position=0; float desired_angle[]= {0,0}; float mm_per_sec_emg=50;// move the pod 50 mm per sec if muscle is flexed float fieldwidth=473; float safetymarginfield=75; //adjustable, tweak for maximum but safe range float maxdisplacement=((fieldwidth/2)-safetymarginfield); //so the pod doesn't hit the edges of the playfield float rad_per_sec_emg=0.25*PIE;// THIS ONE IS NOT NESSECARY FOR ACTUAL PROGRAM //////////////////////GO FLAGS AND ACTIVATION FUNCTIONS volatile bool scopedata_go=false, control_go=false, filter_go=false, safetyandthreshold_go=false, readsignal_go=false, switchedmode=true, readbuttoncalibrate_go=false, ledblink_go=false; void scopedata_activate() { scopedata_go=true; } void control_activate() { control_go=true; } void filter_activate() { filter_go=true; } void safetyandthreshold_activate() { safetyandthreshold_go=true; } void readsignal_activate() { readsignal_go=true; } void readbuttoncalibrate_activate() { readbuttoncalibrate_go=true; } void ledblink_activate() { ledblink_go=true; } ////////////////////////FUNCTIONS //gather data and send to scope void scopedata() { scope.set(0,desired_angle[0]); scope.set(1,counttorad*encoder1.getPulses()); scope.set(2,mycontroller.motor1pwm()); scope.set(3,desired_angle[1]); scope.set(4,counttorad*encoder2.getPulses()); scope.set(5,filteredsignal1); scope.send(); } //read potmeters and adjust the safetyfactor and threshold void safetyandthreshold() { mycontroller.cutoff((ceil (10*safety_pot.read()) )/10); // adjust the safetyfactor value between 0 and 1 rounded to 1 decimal threshold_value=((ceil (10*threshold_pot.read()) )/10); // adjust the threshold value between 0 and 1 rounded to 1 decimal } /////filter void filtereverything() { //filter_timer.reset(); // filter_timer.start(); //pass1 so f1 double pass1_emg1 = myfilter1.filter(emg1_input.read(), v1_f1_emg1 , v2_f1_emg1 , a1_f1 , a2_f1 , b0_f1 , b1_f1 , b2_f1); double pass1_emg2 = myfilter2.filter(emg2_input.read(), v1_f1_emg2 , v2_f1_emg2 , a1_f1 , a2_f1 , b0_f1 , b1_f1 , b2_f1); //pass2 so f2 double pass2_emg1 = myfilter1.filter(pass1_emg1, v1_f2_emg1 , v2_f2_emg1 , a1_f2 , a2_f2 , b0_f2 , b1_f2 , b2_f2); double pass2_emg2 = myfilter2.filter(pass1_emg2, v1_f2_emg2 , v2_f2_emg2 , a1_f2 , a2_f2 , b0_f2 , b1_f2 , b2_f2); //pass3 so f3 double pass3_emg1 = myfilter1.filter(pass2_emg1, v1_f3_emg1 , v2_f3_emg1 , a1_f3 , a2_f3 , b0_f3 , b1_f3 , b2_f3); double pass3_emg2 = myfilter2.filter(pass2_emg2, v1_f3_emg2 , v2_f3_emg2 , a1_f3 , a2_f3 , b0_f3 , b1_f3 , b2_f3); //pass4 so f4 double pass4_emg1 = myfilter1.filter(pass3_emg1, v1_f4_emg1 , v2_f4_emg1 , a1_f4 , a2_f4 , b0_f4 , b1_f4 , b2_f4); double pass4_emg2 = myfilter2.filter(pass3_emg2, v1_f4_emg2 , v2_f4_emg2 , a1_f4 , a2_f4 , b0_f4 , b1_f4 , b2_f4); //pass5 so f5 double pass5_emg1 = myfilter1.filter(pass4_emg1, v1_f5_emg1 , v2_f5_emg1 , a1_f5 , a2_f5 , b0_f5 , b1_f5 , b2_f5); double pass5_emg2 = myfilter2.filter(pass4_emg2, v1_f5_emg2 , v2_f5_emg2 , a1_f5 , a2_f5 , b0_f5 , b1_f5 , b2_f5); ///// take absolute value double pass5_emg1_abs=(fabs(pass5_emg1)); double pass5_emg2_abs=(fabs(pass5_emg2)); //pass6 so f6 double pass6_emg1 = myfilter1.filter(pass5_emg1_abs, v1_f6_emg1 , v2_f6_emg1 , a1_f6 , a2_f6 , b0_f6 , b1_f6 , b2_f6); double pass6_emg2 = myfilter2.filter(pass5_emg2_abs, v1_f6_emg2 , v2_f6_emg2 , a1_f6 , a2_f6 , b0_f6 , b1_f6 , b2_f6); //pass7 so f7 double pass7_emg1 = myfilter1.filter(pass6_emg1, v1_f7_emg1 , v2_f7_emg1 , a1_f7 , a2_f7 , b0_f7 , b1_f7 , b2_f7); double pass7_emg2 = myfilter2.filter(pass6_emg2, v1_f7_emg2 , v2_f7_emg2 , a1_f7 , a2_f7 , b0_f7 , b1_f7 , b2_f7); filteredsignal1=(pass7_emg1*9e11*filter_extragain); filteredsignal2=(pass7_emg2*9e11*filter_extragain); //filter_timer.stop(); } //adjust controller values when sw2 is pressed void valuechange() { mycontroller.STOP(); pc.printf("KP is now %f, enter new value\n",Kp); pc.scanf("%f", &Kp); pc.printf("KI is now %f, enter new value\n",Ki); pc.scanf("%f", &Ki); pc.printf("KD is now %f, enter new value\n",Kd); pc.scanf("%f", &Kd); pc.printf("Extra gain is now %f, enter new value\n",filter_extragain); pc.scanf("%f", &filter_extragain); } const float schiethoek=0.35*PIE; const float schiettijd=0.5; void shoot() // THIS NEEDS ADJUSTMEND { pc.printf("SHOOT\n"); //hoeken groter maken desired_angle[0]-=schiethoek; desired_angle[1]+=schiethoek; Timer schiettimer; schiettimer.reset(); schiettimer.start(); float pass=0; while(schiettimer.read()<=schiettijd) { // errors berekenen en naar de controller passen float error1=(desired_angle[0]-counttorad*encoder1.getPulses()); float error2=(desired_angle[1]-counttorad*encoder2.getPulses()); mycontroller.PI(error1, error2, Kp, Ki, Ts_control, error1_int, error2_int); scopedata(); wait (Ts_control-(schiettimer.read()-Ts_control*pass)); // even wachten anders wordt de while loop te snel doorlopen en gaan de motoren wak ledblue=!ledblue; pass++; } schiettimer.stop(); ledblue=0; //terug na schieten desired_angle[0]+=schiethoek; desired_angle[1]-=schiethoek; } void readsignal() { //check if pod has to shoot if (filteredsignal1>=threshold_value && filteredsignal2>=threshold_value) { led1=led2=1; shoot(); // check if pod has to move to the right } else if (filteredsignal1>=threshold_value && filteredsignal2<=threshold_value) { led1=1; led2=0; desired_position += (rad_per_sec_emg/readsignal_frequency);// move desiredposition right ADJUS TO MM IN LAST VERSEION if (desired_position>=maxdisplacement) {//check if the pod doesnt move too far and hit the edge desired_position=maxdisplacement; } else { desired_position=desired_position; } // check if pod has to move to the left } else if (filteredsignal1<=threshold_value && filteredsignal2>=threshold_value) { led1=0; led2=1; desired_position -= (rad_per_sec_emg/readsignal_frequency);//move desiredposition left ADJUST TO MM IN FINAL VERSION if (desired_position<=(-1*maxdisplacement)) {//check if the pod doesnt move too far and hit the edge desired_position=(-1*maxdisplacement); } else { desired_position=desired_position; } } else { led1=led2=0; } desired_angle[0]=(desired_position);// REMOVE IN FINAL VERSION desired_angle[1]=desired_position;//REMOVE IN FINAL VERSION } void changemode() { mycontroller.STOP(); switchedmode=true; modecounter++; if (modecounter==4) { modecounter=0; } else { modecounter=modecounter; } wait(1); } int main() { //tickers safetyandthreshold_ticker.attach(&safetyandthreshold_activate,1.0/safetyandthreshold_frequency); filter_ticker.attach(&filter_activate,1.0/filter_frequency); control_ticker.attach(&control_activate,1.0/control_frequency); scope_ticker.attach(&scopedata_activate,1.0/scope_frequency); readsignal_ticker.attach(&readsignal_activate, 1.0/readsignal_frequency); readbuttoncalibrate_ticker.attach(&readbuttoncalibrate_activate, 1.0/readbuttoncalibrate_frequency); ledblink_ticker.attach(&ledblink_activate, 1.0/ledblink_frequency); ledred=0; ledgreen=0; ledblue=0; while(1) { if (changemodebutton==0) { changemode(); } if (scopedata_go==true) { scopedata(); scopedata_go=false; } if (safetyandthreshold_go==true) { safetyandthreshold(); safetyandthreshold_go=false; } ///////////////////////////////////////////NORMAL RUNNING MODE if(modecounter==0) { if (switchedmode==true) { encoder1.reset(); encoder2.reset(); pc.printf("Program running\n");// ledgreen=1; led1=led2=ledred=0; switchedmode=false; } if (filter_go==true) { filtereverything(); filter_go=false; } if (control_go==true) { float error1=(desired_angle[0]-counttorad*encoder1.getPulses()); float error2=(desired_angle[1]-counttorad*encoder2.getPulses()); mycontroller.PI(error1,error2,Kp,Ki,Ts_control,error1_int,error2_int); control_go=false; } if (readsignal_go==true) { readsignal(); readsignal_go=false; } valuechangebutton.fall(&valuechange); } ////////////////////////////////////////////////////CALIBRATE RIGHT ARM if (modecounter==1) { if(switchedmode==true) { pc.printf("Calibration mode! Use buttons to move rigth arm to 0 degrees\n"); switchedmode=false; ledred=1; led1=led2=ledgreen=0; } if (ledblink_go==true) { led1=!led1; } if (control_go==true) { float error1=(desired_angle[0]-counttorad*encoder1.getPulses()); float error2=0;// this is the error you want to use mycontroller.PI(error1,error2,Kp,Ki,Ts_control,error1_int,error2_int); control_go=false; } if (readbuttoncalibrate_go==true) { if (buttonR.read()==0 && buttonL.read()==1) { desired_angle[0] += (radpersec_calibrate/readbuttoncalibrate_frequency); readbuttoncalibrate_go=false; } if (buttonR.read()==1 && buttonL.read()==0) { desired_angle[0] -= (radpersec_calibrate/readbuttoncalibrate_frequency); readbuttoncalibrate_go=false; } } } ////////////////////////////////////////////CALIBRATE LEFT ARM if (modecounter==2) { if(switchedmode==true) { pc.printf("Calibration mode! Use buttons to move left arm to 0 degrees\n"); ledred=1; led1=led2=ledgreen=0; switchedmode=false; } if (ledblink_go==true) { led2=!led2; } if (control_go==true) { float error1=0; float error2=(desired_angle[1]-counttorad*encoder2.getPulses());// this is the error you want to use mycontroller.PI(error1,error2,Kp,Ki,Ts_control,error1_int,error2_int); control_go=false; } if (readbuttoncalibrate_go==true) { if (buttonR.read()==0 && buttonL.read()==1) { desired_angle[1] += (radpersec_calibrate/readbuttoncalibrate_frequency); readbuttoncalibrate_go=false; } if (buttonR.read()==1 && buttonL.read()==0) { desired_angle[1] -= (radpersec_calibrate/readbuttoncalibrate_frequency); readbuttoncalibrate_go=false; } } } if (modecounter==3) { if (ledblink==true) { ledgreen=!ledgreen; //buttoncontrolmode } } } }