Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: HIDScope MODSERIAL QEI mbed
Fork of prog_pract3 by
main.cpp
- Committer:
- GerhardBerman
- Date:
- 2016-10-10
- Revision:
- 7:ec9ce9b90006
- Parent:
- 6:84a01494d836
File content as of revision 7:ec9ce9b90006:
#include "mbed.h"
#include <math.h>
#include "MODSERIAL.h"
#include "QEI.h"
#include "HIDScope.h"
DigitalIn encoder1A (D13); //Channel A van Encoder 1
DigitalIn encoder1B (D12); //Channel B van Encoder 1
DigitalOut led1 (D11);
DigitalOut led2 (D10);
AnalogIn potMeterIn(PTB2);
DigitalIn button1(D5);
DigitalOut motor1DirectionPin(D7);
PwmOut motor1MagnitudePin(D6);
Serial pc(USBTX,USBRX);
Ticker MeasureTicker, TimeTracker, sampleT;
HIDScope scope(2);
float referenceVelocity = 0;
volatile int counts;
volatile float DerivativeCounts;
volatile int countsPrev = 0;
volatile bool MeasureTicker_go=false, TimeTracker_go=false, sampleT_go=false;
void MeasureTicker_act(){MeasureTicker_go=true;}; // Activates go-flags
void TimeTracker_act(){TimeTracker_go=true;};
void sampleT_act(){sampleT_go=true;};
float GetReferenceVelocity()
{
// Returns reference velocity in rad/s.
// Positive value means clockwise rotation.
const float maxVelocity = 8.4; // in rad/s of course!
if (button1 == 0){
led1=1;
led2=0;
// Counterclockwise rotation
referenceVelocity = potMeterIn * maxVelocity;
}
else {
led1=0;
led2=1;
// Clockwise rotation
referenceVelocity = -1*potMeterIn * maxVelocity;
}
return referenceVelocity;
}
float FeedForwardControl(float referenceVelocity)
{
// very simple linear feed-forward control
const float MotorGain=8.4; // unit: (rad/s) / PWM
volatile float motorValue = referenceVelocity / MotorGain;
return motorValue;
}
void SetMotor1(float motorValue)
{
// Given -1<=motorValue<=1, this sets the PWM and direction
// bits for motor 1. Positive value makes motor rotating
// clockwise. motorValues outside range are truncated to
// within range
if (motorValue >=0) motor1DirectionPin=1;
else motor1DirectionPin=0;
if (fabs(motorValue)>1) motor1MagnitudePin = 1;
else motor1MagnitudePin = fabs(motorValue);
}
void EncoderHIDScope() // encoder in HIDScope zetten
{
QEI Encoder(D12, D13, NC, 32);
counts = Encoder.getPulses(); // gives position
scope.set(0, counts);
DerivativeCounts = (counts-countsPrev)/0.001;
scope.set(1, DerivativeCounts);
countsPrev = counts;
scope.send();
}
void MeasureAndControl(void)
{
// This function measures the potmeter position, extracts a
// reference velocity from it, and controls the motor with
// a simple FeedForward controller. Call this from a Ticker.
volatile float referenceVelocity = GetReferenceVelocity();
volatile float motorValue = FeedForwardControl(referenceVelocity);
SetMotor1(motorValue);
EncoderHIDScope();
//pc.printf("MotorValue: %f rad/s \r\n", motorValue);
}
void TimeTrackerF(){
wait(1);
float Potmeter = potMeterIn.read();
pc.printf("Reference velocity: %f rad/s \r\n", referenceVelocity);
pc.printf("Potmeter: %f rad/s \r\n", Potmeter);
//pc.printf("MotorValue: %f rad/s \r\n", motorValue);
pc.printf("Encoder counts: %i \r\n", countsPrev);
}
int main()
{
//Initialize
led1=0;
led2=0;
counts;
//float Potmeter = potMeterIn.read();
MeasureTicker.attach(&MeasureTicker_act, 0.01f);
TimeTracker.attach(&TimeTracker_act, 0.3f);
pc.baud(115200);
QEI Encoder(D12, D13, NC, 32); // turns on encoder
sampleT.attach(&sampleT_act, 0.001f);
//pc.printf("Reference velocity: %f rad/s \r\n", referenceVelocity);
//pc.printf("Potmeter: %f rad/s \r\n", Potmeter);
while(1)
{
if (MeasureTicker_go){
MeasureTicker_go=false;
MeasureAndControl();
//counts = Encoder.getPulses(); // gives position
//pc.printf("Encoder counts: %i \r\n", counts);
}
if (TimeTracker_go){
TimeTracker_go=false;
TimeTrackerF();
}
if (sampleT_go){
sampleT_go=false;
EncoderHIDScope();
}
}
}
