New reference frame: y=0 is now at table height.
Dependencies: HIDScope MODSERIAL QEI biquadFilter mbed
Fork of prog_forwardkin_feedback_copy by
main.cpp
- Committer:
- GerhardBerman
- Date:
- 2016-10-24
- Revision:
- 18:d2cfd07ae88a
- Parent:
- 17:91d20d362e72
- Child:
- 19:cba54636bd62
File content as of revision 18:d2cfd07ae88a:
#include "mbed.h" #include <math.h> #include "MODSERIAL.h" #include "QEI.h" #include "HIDScope.h" #include "BiQuad.h" /* THINGS TO CONSIDER - Line 234, 239: motor action of motor 1 is inverted because it is mounted opposite to motor 2 in the tower. Check if the clockwise directions of the motors correspond to the positive q1, q2-directions (both counterclockwise) in the original IK-sketch. - Line 244,257: motor values have been scaled down for safety at first test, restore after testing to get proper action. - Set angle boundaries!! - Set robot constants (lengths etc.) - Set EMGgain and thresholds */ //set pins DigitalIn encoder1A (D13); //Channel A van Encoder 1 DigitalIn encoder1B (D12); //Channel B van Encoder 1 DigitalIn encoder2A (D11); //Channel A van Encoder 2, kan niet op D15 DigitalIn encoder2B (D10); //Channel B van Encoder 2, kan niet op D14 //DigitalOut led1 (D11); //DigitalOut led2 (D10); AnalogIn potMeter1(A2); AnalogIn potMeter2(A1); DigitalOut motor1DirectionPin(D7); PwmOut motor1MagnitudePin(D6); DigitalOut motor2DirectionPin(D4); PwmOut motor2MagnitudePin(D5); DigitalIn button1(D3); DigitalIn button2(D9); //library settings Serial pc(USBTX,USBRX); Ticker MeasureTicker, BiQuadTicker; //, TimeTracker; // sampleT; //HIDScope scope(4); //set initial conditions float biceps_l = 0; float biceps_r = 0; float ReferencePosition_x = 0; float ReferencePosition_y = 0; float Position_x = 0; float Position_y = 0; float PositionError_x = 0; float PositionError_y = 0; float error1_prev = 0; float error2_prev = 0; float IntError1 = 0; float IntError2 = 0; float q1 = 0; float q2 = 0; //set initial conditions for function references float q1_dot = 0.0; float q2_dot = 0.0; float motorValue1 = 0.0; float motorValue2 = 0.0; int counts1 = 0; int counts2 = 0; int counts1Prev = 0; int counts2Prev = 0; //set constant or variable values float EMGgain = 1.0; double DerivativeCounts; float x0 = 1.0; float L0 = 1.0; float L1 = 1.0; float L2 = 1.0; float dx; float dy; float dy_stampdown = 0.05; //5 cm movement downward to stamp float t_sample = 0.01; //seconds float referenceVelocity = 0; float bqcDerivativeCounts = 0; const float PI = 3.141592653589793; const int cw = 0; //values for cw and ccw are inverted!! cw=0 and ccw=1 const int ccw = 1; //set BiQuad BiQuadChain bqc; BiQuad bq1(0.0186, 0.0743, 0.1114, 0.0743, 0.0186); //get numbers from butter filter MATLAB BiQuad bq2(1.0000, -1.5704, 1.2756, -0.4844, 0.0762); //set go-Ticker settings volatile bool MeasureTicker_go=false, BiQuadTicker_go=false, FeedbackTicker_go=false, TimeTracker_go=false; // sampleT_go=false; void MeasureTicker_act(){MeasureTicker_go=true;}; // Activates go-flags void BiQuadTicker_act(){BiQuadTicker_go=true;}; void FeedbackTicker_act(){FeedbackTicker_go=true;}; void TimeTracker_act(){TimeTracker_go=true;}; //void sampleT_act(){sampleT_go=true;}; //define encoder counts and degrees QEI Encoder1(D12, D13, NC, 32); // turns on encoder QEI Encoder2(D10, D11, NC, 32); // turns on encoder const int counts_per_revolution = 4200; //counts per motor axis revolution const int inverse_gear_ratio = 131; //const float motor_axial_resolution = counts_per_revolution/(2*PI); const float resolution = counts_per_revolution/(2*PI/inverse_gear_ratio); //87567.0496892 counts per radian, encoder axis void GetReferenceKinematics1(float &q1Out, float &q2Out, float &q1_dotOut, float &q2_dotOut){ //get joint positions q from encoder float Encoder1Position = counts1/resolution; //position in radians, encoder axis float Encoder2Position = counts2/resolution; q1Out = Encoder1Position*inverse_gear_ratio; //position in radians, motor axis q2Out = Encoder2Position*inverse_gear_ratio; float Position_x = ((L2 + x0)*(cos(q1)*cos(q2) - sin(q1)*sin(q2)) - L0*sin(q1) + (cos(q1)*sin(q2) + cos(q2)*sin(q1))*(L0 + L1) - cos(q1)*(L1*sin(q1) + L1*cos(q1)*sin(q2) - L1*cos(q2)*sin(q1)) - sin(q1)*(L1*cos(q1)*cos(q2) - L1*cos(q1) + L1*sin(q1)*sin(q2))); //calculate end effector x-position from motor angles with Brockett, rx float Position_y = (L0 - (L2 + x0)*(cos(q1)*sin(q2) + cos(q2)*sin(q1)) - L0*cos(q1) - cos(q1)*(L1*cos(q1)*cos(q2) - L1*cos(q1) + L1*sin(q1)*sin(q2)) + (cos(q1)*cos(q2) - sin(q1)*sin(q2))*(L0 + L1) + sin(q1)*(L1*sin(q1) + L1*cos(q1)*sin(q2) - L1*cos(q2)*sin(q1))); //calculate end effector y-position from motor angles with Brockett, ry //get velocity vector v = (Pe*- Pe) = [0; dx; dy] from EMG biceps_l = EMGgain * !button1.read(); //emg0.read(); //velocity or reference position change, EMG with a gain biceps_r = EMGgain * !button2.read(); //emg1.read(); if (biceps_l > 0 && biceps_r > 0){ //both arms activated: stamp moves down //led1 = 1; //led2 = 1; ReferencePosition_x = ReferencePosition_x; ReferencePosition_y = ReferencePosition_y - dy_stampdown; //into stamping vertical position ~the stamp down action /* wait(1); //lift stamp after stamping ReferencePosition_y = ReferencePosition_y - dy_stampdown; PositionError_y = ReferencePosition_y - Position_y; //Position error in dx,dy dy = PositionError_y; q1_dotOut = dy*(((x0 + L1*cos(q1))*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1)) - (x0*(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + L0*L0 + x0*x0 + 2*L0*L1*sin(q1) + 2*L1*x0*cos(q1) + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1))) - dx*(((L0 + L1*sin(q1))*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1)) - (L0*(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + L0*L0 + x0*x0 + 2*L0*L1*sin(q1) + 2*L1*x0*cos(q1) + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1))); q2_dotOut = dy*((x0*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(L1*L1*pow(cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*pow(L1,2)*x0*cos(q1)*sin(q1)) - ((x0 + L1*cos(q1))*(pow(L0,2) + pow(x0,2) + 1))/(pow(L1*cos(q1),2)) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*pow(L1,2)*x0*cos(q1)*sin(q1)) - dx*((L0*(L0*L0+L1*sin(q1)*L0+x0*x0+L1*cos(q1)*x0+1))/(pow(L1*cos(q1),2)+pow(L1*sin(q1),2)+pow(L1*x0*sin(q1),2)+pow(L0*L1*cos(q1),2)-2*L0*L1*L1*x0*cos(q1)*sin(q1))-((L0 + L1*sin(q1))*(L0*L0 + x0*x0 + 1))/(pow(L1*cos(q1),2)+pow(L1*sin(q1),2)+pow(L1*x0*sin(q1),2)+pow(L0*L1*cos(q1),2)-2*L0*L1*L1*x0*cos(q1)*sin(q1))); */ } else if (biceps_l > 0 && biceps_r <= 0){ //arm 1 activated, move left //led1 = 1; //led2 = 0; ReferencePosition_x = ReferencePosition_x - biceps_l; ReferencePosition_y = ReferencePosition_y; /* PositionError_x = ReferencePosition_x - Position_x; //Position error in dx,dy PositionError_y = ReferencePosition_y - Position_y; //Position error in dx,dy dx = PositionError_x; dy = PositionError_y; q1_dotOut = dy*(((x0 + L1*cos(q1))*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1)) - (x0*(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + L0*L0 + x0*x0 + 2*L0*L1*sin(q1) + 2*L1*x0*cos(q1) + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1))) - dx*(((L0 + L1*sin(q1))*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1)) - (L0*(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + L0*L0 + x0*x0 + 2*L0*L1*sin(q1) + 2*L1*x0*cos(q1) + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1))); q2_dotOut = dy*((x0*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(L1*L1*pow(cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*pow(L1,2)*x0*cos(q1)*sin(q1)) - ((x0 + L1*cos(q1))*(pow(L0,2) + pow(x0,2) + 1))/(pow(L1*cos(q1),2)) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*pow(L1,2)*x0*cos(q1)*sin(q1)) - dx*((L0*(L0*L0+L1*sin(q1)*L0+x0*x0+L1*cos(q1)*x0+1))/(pow(L1*cos(q1),2)+pow(L1*sin(q1),2)+pow(L1*x0*sin(q1),2)+pow(L0*L1*cos(q1),2)-2*L0*L1*L1*x0*cos(q1)*sin(q1))-((L0 + L1*sin(q1))*(L0*L0 + x0*x0 + 1))/(pow(L1*cos(q1),2)+pow(L1*sin(q1),2)+pow(L1*x0*sin(q1),2)+pow(L0*L1*cos(q1),2)-2*L0*L1*L1*x0*cos(q1)*sin(q1))); */ } else if (biceps_l <= 0 && biceps_r > 0){ //arm 1 activated, move right //led1 = 0; //led2 = 1; ReferencePosition_x = ReferencePosition_x + biceps_r; ReferencePosition_y = ReferencePosition_y; /*PositionError_x = ReferencePosition_x - Position_x; //Position error in dx,dy PositionError_y = ReferencePosition_y - Position_y; //Position error in dx,dy dx = PositionError_x; dy = PositionError_y; q1_dotOut = dy*(((x0 + L1*cos(q1))*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1)) - (x0*(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + L0*L0 + x0*x0 + 2*L0*L1*sin(q1) + 2*L1*x0*cos(q1) + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1))) - dx*(((L0 + L1*sin(q1))*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1)) - (L0*(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + L0*L0 + x0*x0 + 2*L0*L1*sin(q1) + 2*L1*x0*cos(q1) + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1))); q2_dotOut = dy*((x0*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(L1*L1*pow(cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*pow(L1,2)*x0*cos(q1)*sin(q1)) - ((x0 + L1*cos(q1))*(pow(L0,2) + pow(x0,2) + 1))/(pow(L1*cos(q1),2)) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*pow(L1,2)*x0*cos(q1)*sin(q1)) - dx*((L0*(L0*L0+L1*sin(q1)*L0+x0*x0+L1*cos(q1)*x0+1))/(pow(L1*cos(q1),2)+pow(L1*sin(q1),2)+pow(L1*x0*sin(q1),2)+pow(L0*L1*cos(q1),2)-2*L0*L1*L1*x0*cos(q1)*sin(q1))-((L0 + L1*sin(q1))*(L0*L0 + x0*x0 + 1))/(pow(L1*cos(q1),2)+pow(L1*sin(q1),2)+pow(L1*x0*sin(q1),2)+pow(L0*L1*cos(q1),2)-2*L0*L1*L1*x0*cos(q1)*sin(q1))); */ } else{ //led1 = 0; //led2 = 0; ReferencePosition_x = ReferencePosition_x; ReferencePosition_y = ReferencePosition_y; } //calculate joint angle differences PositionError_x = ReferencePosition_x - Position_x; //Position error in dx,dy PositionError_y = ReferencePosition_y - Position_y; //Position error in dx,dy dx = PositionError_x; dy = PositionError_y; q1_dotOut = dy*(((x0 + L1*cos(q1))*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1)) - (x0*(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + L0*L0 + x0*x0 + 2*L0*L1*sin(q1) + 2*L1*x0*cos(q1) + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1))) - dx*(((L0 + L1*sin(q1))*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1)) - (L0*(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + L0*L0 + x0*x0 + 2*L0*L1*sin(q1) + 2*L1*x0*cos(q1) + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1))); q2_dotOut = dy*((x0*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(L1*L1*pow(cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*pow(L1,2)*x0*cos(q1)*sin(q1)) - ((x0 + L1*cos(q1))*(pow(L0,2) + pow(x0,2) + 1))/(pow(L1*cos(q1),2)) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*pow(L1,2)*x0*cos(q1)*sin(q1)) - dx*((L0*(L0*L0+L1*sin(q1)*L0+x0*x0+L1*cos(q1)*x0+1))/(pow(L1*cos(q1),2)+pow(L1*sin(q1),2)+pow(L1*x0*sin(q1),2)+pow(L0*L1*cos(q1),2)-2*L0*L1*L1*x0*cos(q1)*sin(q1))-((L0 + L1*sin(q1))*(L0*L0 + x0*x0 + 1))/(pow(L1*cos(q1),2)+pow(L1*sin(q1),2)+pow(L1*x0*sin(q1),2)+pow(L0*L1*cos(q1),2)-2*L0*L1*L1*x0*cos(q1)*sin(q1))); //update joint angles //q1Out = q1Out + q1_dotOut; //in radians //q2Out = q2Out + q2_dotOut; pc.baud(115200); pc.printf("Reference_x: %f \r\n", ReferencePosition_x); pc.printf("Position_x: %f \r\n", Position_x); pc.printf("PositionError_x: %f \r\n", PositionError_x); pc.printf("dx: %f \r\n", dx); pc.printf("q1dotOut: %f \r\n", q1_dotOut); pc.printf("q1Out: %f \r\n", q1Out); pc.printf("Reference_y: %f \r\n", ReferencePosition_y); pc.printf("Position_y: %f \r\n", Position_y); pc.printf("PositionError_y: %f \r\n", PositionError_y); pc.printf("dy: %f \r\n", dy); pc.printf("q2dotOut: %f \r\n", q2_dotOut); pc.printf("q2Out: %f \r\n", q2Out); /* pc.printf("dx: %f \r\n", dx); pc.printf("dy: %f \r\n", dy); pc.printf("q1: %f \r\n", q1Out); pc.printf("q1_dot: %f \r\n", q1_dotOut); pc.printf("q2: %f \r\n", q2Out); pc.printf("q2_dot: %f \r\n", q2_dotOut); pc.printf("Counts1: %f \r\n", counts1); pc.printf("Encoder1: %f \r\n", Encoder1Position); pc.printf("Motor1: %f \r\n", q1Out); pc.printf("Counts2: %f \r\n", counts2); pc.printf("Encoder2: %f \r\n", Encoder2Position); pc.printf("Motor2: %f \r\n", q2Out); */ } void FeedForwardControl1(float q1_dot, float q2_dot, float &motorValue1Out, float &motorValue2Out){ //float Encoder1Position = counts1/resolution; //position in radians, encoder axis //float Position1 = Encoder1Position*inverse_gear_ratio; //position in radians, motor axis // linear feedback control float error1 = q1_dot; //referencePosition1 - Position1; // proportional angular error in radians float error2 = q2_dot; //referencePosition1 - Position1; // proportional angular error in radians float Kp = 1; //potMeter2.read(); float IntError1 = IntError1 + error1*t_sample; // integrated error in radians float IntError2 = IntError2 + error2*t_sample; // integrated error in radians //float maxKi = 0.2; float Ki = 0.1; //potMeter2.read(); float DerivativeError1 = (error1_prev + error1)/t_sample; // derivative of error in radians float DerivativeError2 = (error2_prev + error2)/t_sample; // derivative of error in radians //float maxKd = 0.2; float Kd = 0.0; //potMeter2.read(); //scope.set(0,referencePosition1); //scope.set(1,Position1); //scope.set(2,Ki); //scope.send(); motorValue1Out = error1 * Kp + IntError1 * Ki + DerivativeError1 * Kd; //total controller output = motor input motorValue2Out = error2 * Kp + IntError2 * Ki + DerivativeError2 * Kd; //total controller output = motor input //pc.printf("Motor Axis Position: %f rad \r\n", Position1); //pc.printf("Counts encoder1: %i rad \r\n", counts1); //pc.printf("Kp: %f \r\n", Kp); //pc.printf("MotorValue: %f \r\n", motorValue1); pc.printf("error1: %f \r\n", error1); pc.printf("IntError1: %f \r\n", IntError1); pc.printf("DerError1: %f \r\n", DerivativeError1); pc.printf("error2: %f \r\n", error2); pc.printf("IntError2: %f \r\n", IntError2); pc.printf("DerError2: %f \r\n", DerivativeError2); error1_prev = error1; error2_prev = error1; //float biceps_l = !button1.read(); //float biceps_r = !button2.read(); /* scope.set(0,q1); scope.set(1,q2); scope.set(2,biceps_l); scope.set(3,biceps_r); scope.send(); */ } void SetMotor1(float motorValue1, float motorValue2) { // Given -1<=motorValue<=1, this sets the PWM and direction // bits for motor 1. Positive value makes motor rotating // clockwise. motorValues outside range are truncated to // within range //control motor 1 if (motorValue1 >=0) //clockwise rotation {motor1DirectionPin=ccw; //inverted due to opposite (to other motor) build-up in tower //led1=1; //led2=0; } else //counterclockwise rotation {motor1DirectionPin=cw; //inverted due to opposite (to other motor) build-up in tower //led1=0; //led2=1; } if (fabs(motorValue1)>1) motor1MagnitudePin = 1; else motor1MagnitudePin = 0.1*fabs(motorValue1); //fabs(motorValue1); //control motor 2 if (motorValue2 >=0) //clockwise rotation {motor2DirectionPin=ccw; //action is cw, due to faulty motor2DirectionPin (inverted) //led1=1; //led2=0; } else //counterclockwise rotation {motor2DirectionPin=cw; //action is ccw, due to faulty motor2DirectionPin (inverted) //led1=0; //led2=1; } if (fabs(motorValue2)>1) motor2MagnitudePin = 1; else motor2MagnitudePin = 0.1*fabs(motorValue2); //fabs(motorValue1); } void MeasureAndControl() { // This function measures the EMG of both arms, calculates via IK what // the joint speeds should be, and controls the motor with // a Feedforward controller. This is called from a Ticker. GetReferenceKinematics1(q1, q2, q1_dot, q2_dot); FeedForwardControl1( q1_dot, q2_dot, motorValue1, motorValue2); SetMotor1(motorValue1, motorValue2); } void TimeTrackerF(){ //wait(1); //float Potmeter1 = potMeter1.read(); //float referencePosition1 = GetReferencePosition(); //pc.printf("TTReference Position: %d rad \r\n", referencePosition1); //pc.printf("TTPotmeter1, for refpos: %f \r\n", Potmeter1); //pc.printf("TTPotmeter2, Kp: %f \r\n", Potmeter2); //pc.printf("TTCounts: %i \r\n", counts1); } /* void BiQuadFilter(){ //this function creates a BiQuad filter for the DerivativeCounts //double in=DerivativeCounts(); bqcDerivativeCounts=bqc.step(DerivativeCounts); //return(bqcDerivativeCounts); } */ int main() { //Initialize //int led1val = led1.read(); //int led2val = led2.read(); pc.baud(115200); pc.printf("Test putty IK"); MeasureTicker.attach(&MeasureTicker_act, 0.1f); bqc.add(&bq1).add(&bq2); while(1) { if (MeasureTicker_go){ MeasureTicker_go=false; MeasureAndControl(); counts1 = Encoder1.getPulses(); // gives position of encoder counts2 = Encoder2.getPulses(); // gives position of encoder pc.printf("counts1: %i \r\n", counts1); pc.printf("counts2: %i \r\n", counts2); } /* if (BiQuadTicker_go){ BiQuadTicker_go=false; BiQuadFilter(); } */ } }