New reference frame: y=0 is now at table height.
Dependencies: HIDScope MODSERIAL QEI biquadFilter mbed
Fork of prog_forwardkin_feedback_copy by
main.cpp
- Committer:
- GerhardBerman
- Date:
- 2016-10-17
- Revision:
- 5:37e230689418
- Parent:
- 4:19e376d31380
- Child:
- 6:3c4f3f2ce54f
File content as of revision 5:37e230689418:
#include "mbed.h" #include <math.h> #include "MODSERIAL.h" #include "QEI.h" #include "HIDScope.h" #include "BiQuad.h" //set pins DigitalIn encoder1A (D13); //Channel A van Encoder 1 DigitalIn encoder1B (D12); //Channel B van Encoder 1 DigitalOut led1 (D11); DigitalOut led2 (D10); AnalogIn potMeter1(A2); AnalogIn potMeter2(A1); DigitalOut motor1DirectionPin(D7); PwmOut motor1MagnitudePin(D6); DigitalIn button1(D5); //set settings Serial pc(USBTX,USBRX); Ticker MeasureTicker, BiQuadTicker; //, TimeTracker; // sampleT; HIDScope scope(2); //set datatypes int counts = 0; double DerivativeCounts; float error_prev = 0; float IntError = 0; float t_sample = 0.01; //seconds int countsPrev = 0; float referenceVelocity = 0; float bqcDerivativeCounts = 0; const float PI = 3.141592653589793; //float Potmeter1 = potMeter1.read(); //float Potmeter2 = potMeter2.read(); const int cw = 0; //values for cw and ccw are inverted!! cw=0 and ccw=1 const int ccw = 1; //set BiQuad BiQuadChain bqc; BiQuad bq1(0.0186, 0.0743, 0.1114, 0.0743, 0.0186); //get numbers from butter filter MATLAB BiQuad bq2(1.0000, -1.5704, 1.2756, -0.4844, 0.0762); //set go-Ticker settings volatile bool MeasureTicker_go=false, BiQuadTicker_go=false, FeedbackTicker_go=false, TimeTracker_go=false; // sampleT_go=false; void MeasureTicker_act(){MeasureTicker_go=true;}; // Activates go-flags void BiQuadTicker_act(){BiQuadTicker_go=true;}; void FeedbackTicker_act(){FeedbackTicker_go=true;}; void TimeTracker_act(){TimeTracker_go=true;}; //void sampleT_act(){sampleT_go=true;}; //define encoder counts and degrees QEI Encoder(D12, D13, NC, 32); // turns on encoder const int counts_per_revolution = 4200; //counts per motor axis revolution const int inverse_gear_ratio = 131; //const float motor_axial_resolution = counts_per_revolution/(2*PI); const float resolution = counts_per_revolution/(2*PI/inverse_gear_ratio); //87567.0496892 counts per radian, encoder axis float GetReferencePosition() { // Returns reference position in rad. // Positive value means clockwise rotation. const float maxPosition = 2*PI; //6.283185307179586; // in radians float Potmeter1 = potMeter1.read(); float referencePosition = Potmeter1 * maxPosition; //Potmeter1 * maxPosition; //refpos in radians pc.printf("Max Position: %f rad \r\n", maxPosition); pc.printf("Potmeter1, refpos: %f \r\n", Potmeter1); pc.printf("Motor Axis Ref Position: %f rad \r\n", referencePosition); return referencePosition; } float FeedForwardControl(float referencePosition) { float EncoderPosition = counts/resolution; //position in radians, encoder axis float Position = EncoderPosition*inverse_gear_ratio; //position in radians, motor axis // linear feedback control scope.set(0,referencePosition); scope.set(1,Position); scope.send(); float error = referencePosition - Position; // 'error' in radians float Kp = 1; //potMeter2.read(); float IntError = IntError + error*t_sample; float maxKi = 0.2; float Ki = potMeter2.read()*maxKi; //float DerivativeError = (error_prev + error)/t_sample; float maxKd = 0.2; //float Kd = potMeter2.read()*maxKd; float motorValue = error * Kp + IntError * Ki; //+ DerivativeError * Kd; pc.printf("Motor Axis Position: %f rad \r\n", Position); pc.printf("Counts encoder: %i rad \r\n", counts); pc.printf("Kp: %f \r\n", Kp); pc.printf("MotorValue: %f \r\n", motorValue); error_prev = error; return motorValue; } void SetMotor1(float motorValue) { // Given -1<=motorValue<=1, this sets the PWM and direction // bits for motor 1. Positive value makes motor rotating // clockwise. motorValues outside range are truncated to // within range if (motorValue >=0) {motor1DirectionPin=cw; led1=1; led2=0; } else {motor1DirectionPin=ccw; led1=0; led2=1; } if (fabs(motorValue)>1) motor1MagnitudePin = 1; else motor1MagnitudePin = fabs(motorValue); } void MeasureAndControl() { // This function measures the potmeter position, extracts a // reference position from it, and controls the motor with // a Feedback controller. Call this from a Ticker. float referencePosition = GetReferencePosition(); float motorValue = FeedForwardControl(referencePosition); SetMotor1(motorValue); } void TimeTrackerF(){ //wait(1); //float Potmeter1 = potMeter1.read(); float referencePosition = GetReferencePosition(); pc.printf("TTReference Position: %d rad \r\n", referencePosition); //pc.printf("TTPotmeter1, for refpos: %f \r\n", Potmeter1); //pc.printf("TTPotmeter2, Kp: %f \r\n", Potmeter2); pc.printf("TTCounts: %i \r\n", counts); } /* void sample() { int countsPrev = 0; QEI Encoder(D12, D13, NC, 32); counts = Encoder.getPulses(); // gives position //scope.set(0,counts); DerivativeCounts = (counts-countsPrev)/0.001; //scope.set(1,DerivativeCounts); countsPrev = counts; //scope.send(); pc.printf("Counts: %i rad/s \r\n", counts); pc.printf("Derivative Counts: %d rad/s \r\n", DerivativeCounts); } void BiQuadFilter(){ //this function creates a BiQuad filter for the DerivativeCounts //double in=DerivativeCounts(); bqcDerivativeCounts=bqc.step(DerivativeCounts); //return(bqcDerivativeCounts); } void MeasureP(){ double ref_position = Potmeter1; //reference position from potmeter int counts = Encoder.getPulses(); // gives position double position = counts/resolution; //position in radians double rotation = ref_position-position; //rotation is 'position error' in radians double movement = rotation/(2*PI); //movement in rotations double Kp = Potmeter2; } double P(double rotation, double Kp){ double P_output = Kp*movement; return P_output; } void MotorController(){ double output = P(rotation, Kp); if(rotation>0){ motor1DirectionPin.write(cw); motor1MagnitudePin.write(output); } if(rotation<0){ motor1DirectionPin.write(ccw); motor1MagnitudePin.write(-output); } } */ int main() { //Initialize led1=1; led2=1; pc.baud(115200); pc.printf("Test putty"); //float Potmeter = potMeterIn.read(); MeasureTicker.attach(&MeasureTicker_act, 0.01f); bqc.add(&bq1).add(&bq2); //BiQuadTicker.attach(&BiQuadTicker_act, 0.01f); //frequentie van 100 Hz //TimeTracker.attach(&TimeTracker_act, 1.0f); QEI Encoder(D12, D13, NC, 32); // turns on encoder //sampleT.attach(&sampleT_act, 0.1f); //pc.printf("Reference velocity: %f rad/s \r\n", referenceVelocity); //pc.printf("Potmeter: %f rad/s \r\n", Potmeter); while(1) { if (MeasureTicker_go){ MeasureTicker_go=false; MeasureAndControl(); counts = Encoder.getPulses(); // gives position of encoder pc.printf("Resolution: %f pulses/rad \r\n",resolution); } /* // Encoder part counts = Encoder.getPulses(); // gives position DerivativeCounts = ((double) counts-countsPrev)/0.01; scope.set(0,counts); scope.set(1,DerivativeCounts); //scope.set(1,bqcDerivativeCounts); scope.send(); countsPrev = counts; //pc.printf("Counts: %i rad/s \r\n", counts); //pc.printf("Derivative Counts: %f rad/s \r\n", DerivativeCounts); } if (BiQuadTicker_go){ BiQuadTicker_go=false; BiQuadFilter(); } if (FeedbackTicker_go){ FeedbackTicker_go=false; Feedback(); if (TimeTracker_go){ TimeTracker_go=false; TimeTrackerF(); } if (sampleT_go){ sampleT_go=false; sample(); }*/ } }