New reference frame: y=0 is now at table height.
Dependencies: HIDScope MODSERIAL QEI biquadFilter mbed
Fork of prog_forwardkin_feedback_copy by
main.cpp
- Committer:
- GerhardBerman
- Date:
- 2016-11-05
- Revision:
- 43:2b2e0bff0b39
- Parent:
- 41:68b170829965
- Child:
- 44:43f200e04903
File content as of revision 43:2b2e0bff0b39:
#include "mbed.h" #include <math.h> #include "MODSERIAL.h" #include "QEI.h" #include "HIDScope.h" #include "BiQuad.h" /* THINGS TO CONSIDER - Line 234, 239: motor action of motor 1 is inverted because it is mounted opposite to motor 2 in the tower. Check if the clockwise directions of the motors correspond to the positive q1, q2-directions (both counterclockwise) in the original IK-sketch. - Line 244,257: motor values have been scaled down for safety at first test, restore after testing to get proper action. - Set angle and length boundaries!! - Set robot constants (lengths etc.) - Set EMGgain and thresholds - Add tower height to ReferencePosition_y and Position_y AND inverse kinematics calculation! - Add (lower) boundaries to TotalErrors - MotorGain could change due to arm weight!! - Arms should be placed manually into reference position. */ //set pins DigitalIn encoder1A (D13); //Channel A van Encoder 1 DigitalIn encoder1B (D12); //Channel B van Encoder 1 DigitalIn encoder2A (D11); //Channel A van Encoder 2, kan niet op D15 DigitalIn encoder2B (D10); //Channel B van Encoder 2, kan niet op D14 //DigitalOut led1 (D11); //DigitalOut led2 (D10); //AnalogIn potMeter1(A2); //AnalogIn potMeter2(A1); DigitalOut motor1DirectionPin(D7); PwmOut motor1MagnitudePin(D6); DigitalOut motor2DirectionPin(D4); PwmOut motor2MagnitudePin(D5); DigitalIn button1(D3); DigitalIn button2(D9); AnalogIn emg0( A0 ); AnalogIn emg1( A1 ); DigitalOut ledGrn(LED_GREEN); DigitalOut ledRed(LED_RED); DigitalOut ledBlue(LED_BLUE); //library settings Serial pc(USBTX,USBRX); Ticker MeasureTicker, BiQuadTicker; //, TimeTracker; // sampleT; HIDScope scope(6); //initial values float dx; float dy; double DerivativeCounts; //float referenceVelocity = 0; //float bqcDerivativeCounts = 0; const float PI = 3.141592653589793; const int cw = 0; //values for cw and ccw are inverted!! cw=0 and ccw=1 const int ccw = 1; //set lengths (VALUES HAVE TO BE CHANGED) //float x0 = 1.0; float L0 = 0.232; float L1 = 0.45; float L2 = 0.35; float TowerHeight = 0.232; //height of motor axes above table surface! float StampHeight = 0.056; // height of end effector float y_stampup = 0.1; //height stamp while not stamping: 10cm above table surface float y_stampdown = -0.04; //height stamp while stamping: at table surface //set initial conditions float biceps_l = 0; float biceps_r = 0; float ReferencePosition_x = 0.35; //L2; float ReferencePosition_y = L1 + TowerHeight - StampHeight; float ReferencePosition_xnew = 0.35; //L2; float ReferencePosition_ynew = L1 + TowerHeight - StampHeight; float Position_x = 0.0; float Position_y = 0.0; float q1 = 0; float q2 = PI/2; float q1_ref = 0; float q2_ref = 0; float q1start = 0; float q12start = PI/2; float q1Encoder = 0; float q12Encoder = 0; float q12Out = 0; float q1_error_prev = 0; float q2_error_prev = 0; float DerTotalError1 = 0; float DerTotalError2 = 0; float q1IntError = 0; float q2IntError = 0; float TotalError1_prev = 0; float TotalError2_prev = 0; float motorValue1 = 0.0; float motorValue2 = 0.0; int counts1 = 0; int counts2 = 0; int counts1Prev = 0; int counts2Prev = 0; double envelopeL = 0; double envelopeR = 0; //set constant or variable values (VALUES HAVE TO BE EDITED) int T=0; //EMG 'switch' variable double threshold_l=0.09; //left arm EMG threshold double threshold_r = 0.08; //right arm EMG threshold float EMGgain = 1.0; float dy_stampdown = 2.0; //0.05; //5 cm movement downward to stamp float MotorGain = 8.4; // rad/s for PWM, is max motor speed (motor value of 1) float Motor1ExtraGain = 1.0; float MotorMaxSpeed = 0.1; //define a maximum PWM speed for the motor float t_sample = 0.01; //seconds const float maxStampDistance = 0.7; //0.66; const float minStampDistance = 0.3; float Kp = 4.0;//potMeter2.read(); float Ki = 0.04; //0.01*Kp; //potMeter2.read(); float Kd = 0.02; //0.1;(unstable!) //0.05; //0.02; //0.04*Kp; //potMeter2.read(); float N = 25; //N=1/Tf, Higher N is faster derivative action but more sensitive to noise. float q1_refOutNew = 0; float q1_refOutMin = 0; //Physical min angle 0.00 radians + 0.1 rad float q1_refOutMax = 1.37; //Physical max angle 1.47 radians - 0.1 rad float q2_refOutNew = 0; float q2_refOutMin = 0.91; //Physical min angle 0.81 radians + 0.1 rad float q2_refOutMax = 2.07; //Physical max angle 2.17 radians - 0.1 rad float TotalError1= 0; float TotalError2= 0; float TotalErrorMin= 0; //set BiQuad BiQuadChain bqc; BiQuad bq1(0.0186, 0.0743, 0.1114, 0.0743, 0.0186); //get numbers from butter filter MATLAB BiQuad bq2(1.0000, -1.5704, 1.2756, -0.4844, 0.0762); BiQuad pidf; BiQuadChain bcq1R; BiQuadChain bcq2R; // Notch filter wo=50; bw=wo/35 BiQuad bq1R(9.9110e-01,-1.6036e+00,9.9110e-01,-1.6036e+00,9.8221e-01); // High pass Butterworth filter 2nd order, Fc=10; BiQuad bq2R(9.1497e-01,-1.8299e+00,9.1497e-01,-1.8227e+00,8.3718e-01); // Low pass Butterworth filter 2nd order, Fc = 8; BiQuad bq3R(1.3487e-03,2.6974e-03,1.3487e-03,-1.8935e+00,8.9886e-01); BiQuadChain bcq1L; BiQuadChain bcq2L; // Notch filter wo=50; bw=wo/35 BiQuad bq1L(9.9110e-01,-1.6036e+00,9.9110e-01,-1.6036e+00,9.8221e-01); // High pass Butterworth filter 2nd order, Fc=10; BiQuad bq2L(9.1497e-01,-1.8299e+00,9.1497e-01,-1.8227e+00,8.3718e-01); // Low pass Butterworth filter 2nd order, Fc = 8; BiQuad bq3L(1.3487e-03,2.6974e-03,1.3487e-03,-1.8935e+00,8.9886e-01); // In the following: R is used for right arm, L is used for left arm! //set go-Ticker settings volatile bool MeasureTicker_go=false, BiQuadTicker_go=false, FeedbackTicker_go=false, TimeTracker_go=false; // sampleT_go=false; void MeasureTicker_act(){MeasureTicker_go=true;}; // Activates go-flags void BiQuadTicker_act(){BiQuadTicker_go=true;}; void FeedbackTicker_act(){FeedbackTicker_go=true;}; void TimeTracker_act(){TimeTracker_go=true;}; //void sampleT_act(){sampleT_go=true;}; //define encoder counts and degrees QEI Encoder1(D12, D13, NC, 32); // turns on encoder QEI Encoder2(D10, D11, NC, 32); // turns on encoder const int counts_per_revolution = 4200; //counts per motor axis revolution const int inverse_gear_ratio = 131; const float resolution = counts_per_revolution/(2*PI/inverse_gear_ratio); //87567.0496892 counts per radian, encoder axis void FilteredSample(int &Tout, double &envelopeLout, double &envelopeRout) { double inLout = emg0.read(); double inRout = emg1.read(); double outRfilter1 = bcq1R.step(inRout); double outRrect= fabs(outRfilter1); envelopeRout = bcq2R.step(outRrect); double outLfilter1 = bcq1L.step(inLout); double outLrect = fabs(outLfilter1); envelopeLout = bcq2L.step(outLrect); double biceps_l = (double) envelopeLout * EMGgain; //emg0.read(); //velocity or reference position change, EMG with a gain double biceps_r = (double) envelopeRout * EMGgain; //emg1.read(); if (biceps_l > threshold_l && biceps_r > threshold_r){ //both arms activated: stamp moves down Tout = -2; } else if (biceps_l > threshold_l && biceps_r <= threshold_r){ //arm 1 activated, move left Tout = -1; } else if (biceps_l <= threshold_l && biceps_r > threshold_r){ //arm 1 activated, move right Tout = 1; } else{ //wait(0.2); Tout = 0; } // scope.set(0, inLout); // scope.set(1, inRout); } void GetReferenceKinematics1(float &q1Out, float &q2Out, float &q1_refOut, float &q2_refOut){ //get joint positions q feedback from encoder float Encoder1Position = counts1/resolution; //angular position in radians, encoder axis float Encoder2Position = -1*counts2/resolution; //NEGATIVE! q1Encoder = Encoder1Position*inverse_gear_ratio; q12Encoder = Encoder2Position*inverse_gear_ratio; q1Out = q1start + q1Encoder; //angular position in radians, motor axis q12Out = q12start + q12Encoder; //encoder 2 gives sum of both angles! q2Out = q12Out - q1Out; float q1deg = q1Out*360/2/PI; float q2deg = q2Out*360/2/PI; /* //get end effector position feedback with Brockett float Position_x = ((L2 + x0)*(cos(q1)*cos(q2) - sin(q1)*sin(q2)) - L0*sin(q1) + (cos(q1)*sin(q2) + cos(q2)*sin(q1))*(L0 + L1) - cos(q1)*(L1*sin(q1) + L1*cos(q1)*sin(q2) - L1*cos(q2)*sin(q1)) - sin(q1)*(L1*cos(q1)*cos(q2) - L1*cos(q1) + L1*sin(q1)*sin(q2))); //calculate end effector x-position from motor angles with Brockett, rx float Position_y = (L0 - (L2 + x0)*(cos(q1)*sin(q2) + cos(q2)*sin(q1)) - L0*cos(q1) - cos(q1)*(L1*cos(q1)*cos(q2) - L1*cos(q1) + L1*sin(q1)*sin(q2)) + (cos(q1)*cos(q2) - sin(q1)*sin(q2))*(L0 + L1) + sin(q1)*(L1*sin(q1) + L1*cos(q1)*sin(q2) - L1*cos(q2)*sin(q1))); //calculate end effector y-position from motor angles with Brockett, ry */ //get end effector position feedback with trigonometry Position_x = (L1*sin(q1) + L2*sin(q1+q2)); Position_y = (L1*cos(q1) + L2*cos(q1+q2)) + TowerHeight - StampHeight; //float PositionVector = sqrt(pow(Position_x,2)+pow(Position_y,2)); /* if (Position_y < (0.5*TowerHeight)){ wait(1.0); ReferencePosition_ynew = L1 + TowerHeight - StampHeight; //Reset vertical position after stamping } else{ */ //get velocity vector v = (Pe*- Pe) = [0; dx; dy] from EMG biceps_l = !button1.read() * EMGgain; //emg0.read(); //velocity or reference position change, EMG with a gain biceps_r = !button2.read() * EMGgain; //emg1.read(); if (T == -2){ //both arms activated: stamp moves down //led1 = 1; //led2 = 1; ReferencePosition_xnew = ReferencePosition_x; ReferencePosition_ynew = ReferencePosition_y - 0.015; //ReferencePosition_y - dy_stampdown; //into stamping vertical position ~the stamp down action } else if (T==-1){ //arm 1 activated, move left //led1 = 1; //led2 = 0; ReferencePosition_xnew = ReferencePosition_x - 0.0009; //biceps_l; ReferencePosition_ynew = y_stampup; //ReferencePosition_y; /* PositionError_x = ReferencePosition_x - Position_x; //Position error in dx,dy PositionError_y = ReferencePosition_y - Position_y; //Position error in dx,dy dx = PositionError_x; dy = PositionError_y; q1_dotOut = dy*(((x0 + L1*cos(q1))*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1)) - (x0*(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + L0*L0 + x0*x0 + 2*L0*L1*sin(q1) + 2*L1*x0*cos(q1) + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1))) - dx*(((L0 + L1*sin(q1))*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1)) - (L0*(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + L0*L0 + x0*x0 + 2*L0*L1*sin(q1) + 2*L1*x0*cos(q1) + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1))); q2_dotOut = dy*((x0*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(L1*L1*pow(cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*pow(L1,2)*x0*cos(q1)*sin(q1)) - ((x0 + L1*cos(q1))*(pow(L0,2) + pow(x0,2) + 1))/(pow(L1*cos(q1),2)) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*pow(L1,2)*x0*cos(q1)*sin(q1)) - dx*((L0*(L0*L0+L1*sin(q1)*L0+x0*x0+L1*cos(q1)*x0+1))/(pow(L1*cos(q1),2)+pow(L1*sin(q1),2)+pow(L1*x0*sin(q1),2)+pow(L0*L1*cos(q1),2)-2*L0*L1*L1*x0*cos(q1)*sin(q1))-((L0 + L1*sin(q1))*(L0*L0 + x0*x0 + 1))/(pow(L1*cos(q1),2)+pow(L1*sin(q1),2)+pow(L1*x0*sin(q1),2)+pow(L0*L1*cos(q1),2)-2*L0*L1*L1*x0*cos(q1)*sin(q1))); */ } else if (T==1){ //arm 1 activated, move right //led1 = 0; //led2 = 1; ReferencePosition_xnew = ReferencePosition_x + 0.0009; //biceps_r; ReferencePosition_ynew = y_stampup; //ReferencePosition_y; /*PositionError_x = ReferencePosition_x - Position_x; //Position error in dx,dy PositionError_y = ReferencePosition_y - Position_y; //Position error in dx,dy dx = PositionError_x; dy = PositionError_y; q1_dotOut = dy*(((x0 + L1*cos(q1))*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1)) - (x0*(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + L0*L0 + x0*x0 + 2*L0*L1*sin(q1) + 2*L1*x0*cos(q1) + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1))) - dx*(((L0 + L1*sin(q1))*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1)) - (L0*(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + L0*L0 + x0*x0 + 2*L0*L1*sin(q1) + 2*L1*x0*cos(q1) + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1))); q2_dotOut = dy*((x0*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(L1*L1*pow(cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*pow(L1,2)*x0*cos(q1)*sin(q1)) - ((x0 + L1*cos(q1))*(pow(L0,2) + pow(x0,2) + 1))/(pow(L1*cos(q1),2)) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*pow(L1,2)*x0*cos(q1)*sin(q1)) - dx*((L0*(L0*L0+L1*sin(q1)*L0+x0*x0+L1*cos(q1)*x0+1))/(pow(L1*cos(q1),2)+pow(L1*sin(q1),2)+pow(L1*x0*sin(q1),2)+pow(L0*L1*cos(q1),2)-2*L0*L1*L1*x0*cos(q1)*sin(q1))-((L0 + L1*sin(q1))*(L0*L0 + x0*x0 + 1))/(pow(L1*cos(q1),2)+pow(L1*sin(q1),2)+pow(L1*x0*sin(q1),2)+pow(L0*L1*cos(q1),2)-2*L0*L1*L1*x0*cos(q1)*sin(q1))); */ } else{ //T==0 //led1 = 0; //led2 = 0; //ReferencePosition_xnew = ReferencePosition_x; ReferencePosition_ynew = y_stampup; //ReferencePosition_y; // } // } //check position boundaries if (ReferencePosition_xnew > maxStampDistance){ ReferencePosition_x = maxStampDistance; // - 0.1; ReferencePosition_y = y_stampup; pc.printf("Target too far! \r\n"); } else if (ReferencePosition_xnew < minStampDistance){ ReferencePosition_x = minStampDistance; // + 0.1; ReferencePosition_y = y_stampup; pc.printf("Target too close! \r\n"); } else if (ReferencePosition_ynew < y_stampdown){ ReferencePosition_x = ReferencePosition_xnew; // + 0.1; ReferencePosition_y = y_stampdown; pc.printf("Target too close! \r\n"); } else { ReferencePosition_x = ReferencePosition_xnew; ReferencePosition_y = ReferencePosition_ynew; } float PointPositionArm2_x = ReferencePosition_x; float PointPositionArm2_y = ReferencePosition_y - TowerHeight + StampHeight; float PointVectorArm2 = sqrt(pow(PointPositionArm2_x,2)+pow(PointPositionArm2_y,2)); //calculate reference joint angles for the new reference position float alpha = atan(PointPositionArm2_y/PointPositionArm2_x); float beta = acos((L2*L2-L1*L1-pow(PointVectorArm2,2))/(-2*L1*PointVectorArm2)); q1_refOutNew = PI/2 - (alpha+beta); q2_refOutNew = PI - asin(PointVectorArm2*sin(beta)/L2); //check angle boundaries if (q1_refOutNew < q1_refOutMin){ q1_refOut = q1_refOutMin; pc.printf("\r\n Under q1 angle boundaries\r\n"); } else if (q1_refOutNew > q1_refOutMax){ q1_refOut = q1_refOutMax; pc.printf("\r\n Above q1 angle boundaries\r\n"); } else { q1_refOut = q1_refOutNew; } if (q2_refOutNew < q2_refOutMin){ q2_refOut = q2_refOutMin; pc.printf("\r\n Under q2 angle boundaries"); } else if (q2_refOutNew > q2_refOutMax){ q2_refOut = q2_refOutMax; pc.printf("\r\n Above q2 angle boundaries"); } else { q2_refOut = q2_refOutNew; } //update joint angles //q1Out = q1Out + q1_dotOut; //in radians //q2Out = q2Out + q2_dotOut; pc.baud(115200); pc.printf("posX: %f ",Position_x); pc.printf("posY: %f ",Position_y); pc.printf("refX: %f ",ReferencePosition_xnew); pc.printf("refY: %f ",ReferencePosition_ynew); pc.printf("q1: %f ", q1Out); pc.printf("q1ref: %f ", q1_refOut); pc.printf("q2: %f ", q2Out); pc.printf("q2ref: %f ", q2_refOut); pc.printf("q1deg: %f ", q1deg); pc.printf("q2deg: %f \r\n", q2deg); scope.set(0, ReferencePosition_xnew); scope.set(1, ReferencePosition_ynew); scope.set(2, envelopeL); scope.set(3, envelopeR); scope.set(4, T); scope.send(); /* pc.printf("dx: %f \r\n", dx); pc.printf("dy: %f \r\n", dy); pc.printf("q1: %f \r\n", q1Out); pc.printf("q1_dot: %f \r\n", q1_dotOut); pc.printf("q2: %f \r\n", q2Out); pc.printf("q2_dot: %f \r\n", q2_dotOut); pc.printf("Counts1: %f \r\n", counts1); pc.printf("Encoder1: %f \r\n", Encoder1Position); pc.printf("Motor1: %f \r\n", q1Out); pc.printf("Counts2: %f \r\n", counts2); pc.printf("Encoder2: %f \r\n", Encoder2Position); pc.printf("Motor2: %f \r\n", q2Out); */ } void FeedbackControl1(float q1_ref, float q2_ref, float q1, float q2, float &motorValue1Out, float &motorValue2Out){ // linear feedback control float q1_error = q1_ref - q1; //referencePosition1 - Position1; // proportional angular error in radians float q2_error = q2_ref - q2; //referencePosition1 - Position1; // proportional angular error in radians float TotalError1 = pidf.step(q1_error); float TotalError2 = pidf.step(q2_error); /* float q1IntError = q1IntError + q1_error*t_sample; // integrated error in radians float q2IntError = q2IntError + q2_error*t_sample; // integrated error in radians //float maxKi = 0.2; float Ki = 0.04*Kp; //0.01*Kp; //potMeter2.read(); float q1DerivativeError = (q1_error - q1_error_prev)/t_sample; // derivative of error in radians float q2DerivativeError = (q2_error_prev + q2_error)/t_sample; // derivative of error in radians //float maxKd = 0.2; float Kd = 0.0; //0.04*Kp; //potMeter2.read(); //scope.set(0,referencePosition1); //scope.set(1,Position1); //scope.set(2,Ki); //scope.send(); TotalError1 = q1_error * Kp + q1IntError * Ki + q1DerivativeError * Kd; //total controller output in radians = motor input TotalError2 = q2_error * Kp + q2IntError * Ki + q2DerivativeError * Kd; //total controller output in radians = motor input */ /* if (fabs(TotalError1) < TotalErrorMin) { TotalError1=0; } else { TotalError1=TotalError1; } if (fabs(TotalError2) < TotalErrorMin) { TotalError2=0; } else { TotalError2=TotalError2; } */ /* DerTotalError1 = (TotalError1 - TotalError1_prev)/t_sample; DerTotalError1 = (TotalError1 - TotalError1_prev)/t_sample; motorValue1Out = DerTotalError1/MotorGain; motorValue2Out = DerTotalError2/MotorGain; */ motorValue1Out = Motor1ExtraGain*(TotalError1/MotorGain); motorValue2Out = TotalError2/MotorGain; /* scope.set(0,q1_ref); scope.set(1,q1); scope.set(2,q2_ref); scope.set(3,q2); scope.set(4,motorValue1Out); scope.set(5,motorValue2Out); scope.send(); */ /* pc.printf("E1: %f ", q1_error); pc.printf("IE1: %f ", q1IntError); pc.printf("DE1: %f ", q2DerivativeError); pc.printf("E2: %f ", q2_error); pc.printf("IE2: %f ", q2IntError); pc.printf("DE2: %f ", q2DerivativeError); */ //pc.printf("TE1: %f ", TotalError1); //pc.printf("TE2: %f ", TotalError2); pc.printf("M1: %f \r\n", motorValue1Out); pc.printf("M2: %f \r\n", motorValue2Out); q1_error_prev = q1_error; q2_error_prev = q2_error; TotalError1_prev = TotalError1; TotalError2_prev = TotalError2; } void SetMotor1(float motorValue1, float motorValue2) { // Given -1<=motorValue<=1, this sets the PWM and direction // bits for motor 1. Positive value makes motor rotating // clockwise. motorValues outside range are truncated to // within range //control motor 1 if (motorValue1 >=0) //clockwise rotation {motor1DirectionPin=cw; //inverted due to opposite (to other motor) build-up in tower //led1=1; //led2=0; } else //counterclockwise rotation {motor1DirectionPin=ccw; //inverted due to opposite (to other motor) build-up in tower //led1=0; //led2=1; } if (fabs(motorValue1)>MotorMaxSpeed){ motor1MagnitudePin = MotorMaxSpeed; } else{ motor1MagnitudePin = fabs(motorValue1); //fabs(motorValue1); } //control motor 2 if (motorValue2 >=0) //clockwise rotation {motor2DirectionPin=cw; //action is ccw, due to faulty motor2DirectionPin (inverted) //led1=1; //led2=0; } else //counterclockwise rotation {motor2DirectionPin=ccw; //action is cw, due to faulty motor2DirectionPin (inverted) //led1=0; //led2=1; } if (fabs(motorValue2)>MotorMaxSpeed){ motor2MagnitudePin = MotorMaxSpeed; } else{ motor2MagnitudePin = fabs(motorValue2); } float ReadDir1 = motor1DirectionPin.read(); float ReadDir2 = motor2DirectionPin.read(); pc.printf("M1 dir: %f \r\n", ReadDir1); pc.printf("M2 dir: %f \r\n", ReadDir2); } void MeasureAndControl() { // This function measures the EMG of both arms, calculates via IK what // the joint positions should be, and controls the motor with // a Feedback controller. This is called from a Ticker. FilteredSample(T, envelopeL, envelopeR); GetReferenceKinematics1(q1, q2, q1_ref, q2_ref); FeedbackControl1( q1_ref, q2_ref, q1, q2, motorValue1, motorValue2); SetMotor1(motorValue1, motorValue2); } void TimeTrackerF(){ //wait(1); //float Potmeter1 = potMeter1.read(); //float referencePosition1 = GetReferencePosition(); //pc.printf("TTReference Position: %d rad \r\n", referencePosition1); //pc.printf("TTPotmeter1, for refpos: %f \r\n", Potmeter1); //pc.printf("TTPotmeter2, Kp: %f \r\n", Potmeter2); //pc.printf("TTCounts: %i \r\n", counts1); } /* void BiQuadFilter(){ //this function creates a BiQuad filter for the DerivativeCounts //double in=DerivativeCounts(); bqcDerivativeCounts=bqc.step(DerivativeCounts); //return(bqcDerivativeCounts); } */ int main() { //Initialize //int led1val = led1.read(); //int led2val = led2.read(); pc.baud(115200); pc.printf("Test putty IK"); ledRed=1; ledBlue=1; ledRed=0; //red bcq1R.add(&bq1R).add(&bq2R); //set BiQuad chains bcq2R.add(&bq3R); bcq1L.add(&bq1L).add(&bq2L); bcq2L.add(&bq3L); counts1 = Encoder1.getPulses(); // gives position of encoder counts2 = Encoder2.getPulses(); // gives position of encoder wait(20.0); MeasureTicker.attach(&MeasureTicker_act, 0.002); //0.1f); //bqc.add(&bq1).add(&bq2); //set BiQuad chain pidf.PIDF( Kp, Ki, Kd, N, t_sample ); //set PID filter while(1) { if (MeasureTicker_go){ MeasureTicker_go=false; ledGrn = 1; ledBlue = 0; MeasureAndControl(); counts1 = Encoder1.getPulses(); // gives position of encoder counts2 = Encoder2.getPulses(); // gives position of encoder //pc.printf("counts1: %i ", counts1); //pc.printf("counts2: %i \r\n", counts2); ledBlue = 1; ledGrn = 0; } /* if (BiQuadTicker_go){ BiQuadTicker_go=false; BiQuadFilter(); } */ } }