Working, but boundaries not yet tested
Dependencies: HIDScope MODSERIAL QEI biquadFilter mbed
Fork of prog_inversekin_feedback by
Revision 19:cba54636bd62, committed 2016-10-25
- Comitter:
- GerhardBerman
- Date:
- Tue Oct 25 13:37:22 2016 +0000
- Parent:
- 18:d2cfd07ae88a
- Commit message:
- Working, but boundaries not yet tested
Changed in this revision
main.cpp | Show annotated file Show diff for this revision Revisions of this file |
--- a/main.cpp Mon Oct 24 09:07:07 2016 +0000 +++ b/main.cpp Tue Oct 25 13:37:22 2016 +0000 @@ -13,9 +13,10 @@ in the original IK-sketch. - Line 244,257: motor values have been scaled down for safety at first test, restore after testing to get proper action. -- Set angle boundaries!! +- Set angle and length boundaries!! - Set robot constants (lengths etc.) - Set EMGgain and thresholds +- Add tower height to ReferencePosition_y and Position_y */ //set pins @@ -25,8 +26,8 @@ DigitalIn encoder2B (D10); //Channel B van Encoder 2, kan niet op D14 //DigitalOut led1 (D11); //DigitalOut led2 (D10); -AnalogIn potMeter1(A2); -AnalogIn potMeter2(A1); +//AnalogIn potMeter1(A2); +//AnalogIn potMeter2(A1); DigitalOut motor1DirectionPin(D7); PwmOut motor1MagnitudePin(D6); DigitalOut motor2DirectionPin(D4); @@ -39,31 +40,6 @@ Ticker MeasureTicker, BiQuadTicker; //, TimeTracker; // sampleT; //HIDScope scope(4); -//set initial conditions -float biceps_l = 0; -float biceps_r = 0; -float ReferencePosition_x = 0; -float ReferencePosition_y = 0; -float Position_x = 0; -float Position_y = 0; -float PositionError_x = 0; -float PositionError_y = 0; -float error1_prev = 0; -float error2_prev = 0; -float IntError1 = 0; -float IntError2 = 0; -float q1 = 0; -float q2 = 0; -//set initial conditions for function references - float q1_dot = 0.0; - float q2_dot = 0.0; - float motorValue1 = 0.0; - float motorValue2 = 0.0; -int counts1 = 0; -int counts2 = 0; -int counts1Prev = 0; -int counts2Prev = 0; - //set constant or variable values float EMGgain = 1.0; double DerivativeCounts; @@ -73,15 +49,53 @@ float L2 = 1.0; float dx; float dy; -float dy_stampdown = 0.05; //5 cm movement downward to stamp - +float dy_stampdown = 2.0; //0.05; //5 cm movement downward to stamp +float motorMaxGain1 = 0.1; +float motorMaxGain2 = 0.1; float t_sample = 0.01; //seconds -float referenceVelocity = 0; -float bqcDerivativeCounts = 0; +//float referenceVelocity = 0; +//float bqcDerivativeCounts = 0; const float PI = 3.141592653589793; const int cw = 0; //values for cw and ccw are inverted!! cw=0 and ccw=1 const int ccw = 1; +const float maxStampDistance = 1.5; +//set initial conditions +float biceps_l = 0; +float biceps_r = 0; + +float ReferencePosition_x = L2; +float ReferencePosition_y = L1; +float ReferencePosition_xnew = 0; +float ReferencePosition_ynew = 0; +float Position_x = 0.0; +float Position_y = 0.0; +float q1 = 0; +float q2 = 0; +float q1_ref = 0; +float q2_ref = 0; +float q1start = 0; +float q2start = PI/2; + +float q1_refOutNew = 0; +float q1_refOutMin = 0; //WRONG values +float q1_refOutMax = PI; //WRONG values +float q2_refOutNew = 0; +float q2_refOutMin = 0; //WRONG values +float q2_refOutMax = PI; //WRONG values + +float q1_error_prev = 0; +float q2_error_prev = 0; +float q1IntError = 0; +float q2IntError = 0; + +float motorValue1 = 0.0; +float motorValue2 = 0.0; +int counts1 = 0; +int counts2 = 0; +int counts1Prev = 0; +int counts2Prev = 0; + //set BiQuad BiQuadChain bqc; BiQuad bq1(0.0186, 0.0743, 0.1114, 0.0743, 0.0186); //get numbers from butter filter MATLAB @@ -101,30 +115,36 @@ const int counts_per_revolution = 4200; //counts per motor axis revolution const int inverse_gear_ratio = 131; -//const float motor_axial_resolution = counts_per_revolution/(2*PI); const float resolution = counts_per_revolution/(2*PI/inverse_gear_ratio); //87567.0496892 counts per radian, encoder axis -void GetReferenceKinematics1(float &q1Out, float &q2Out, float &q1_dotOut, float &q2_dotOut){ +void GetReferenceKinematics1(float &q1Out, float &q2Out, float &q1_refOut, float &q2_refOut){ - //get joint positions q from encoder - float Encoder1Position = counts1/resolution; //position in radians, encoder axis + //get joint positions q feedback from encoder + float Encoder1Position = counts1/resolution; //angular position in radians, encoder axis float Encoder2Position = counts2/resolution; + + q1Out = q1start + Encoder1Position*inverse_gear_ratio; //angular position in radians, motor axis + q2Out = q2start + Encoder2Position*inverse_gear_ratio; - q1Out = Encoder1Position*inverse_gear_ratio; //position in radians, motor axis - q2Out = Encoder2Position*inverse_gear_ratio; + /* + //get end effector position feedback with Brockett float Position_x = ((L2 + x0)*(cos(q1)*cos(q2) - sin(q1)*sin(q2)) - L0*sin(q1) + (cos(q1)*sin(q2) + cos(q2)*sin(q1))*(L0 + L1) - cos(q1)*(L1*sin(q1) + L1*cos(q1)*sin(q2) - L1*cos(q2)*sin(q1)) - sin(q1)*(L1*cos(q1)*cos(q2) - L1*cos(q1) + L1*sin(q1)*sin(q2))); //calculate end effector x-position from motor angles with Brockett, rx float Position_y = (L0 - (L2 + x0)*(cos(q1)*sin(q2) + cos(q2)*sin(q1)) - L0*cos(q1) - cos(q1)*(L1*cos(q1)*cos(q2) - L1*cos(q1) + L1*sin(q1)*sin(q2)) + (cos(q1)*cos(q2) - sin(q1)*sin(q2))*(L0 + L1) + sin(q1)*(L1*sin(q1) + L1*cos(q1)*sin(q2) - L1*cos(q2)*sin(q1))); //calculate end effector y-position from motor angles with Brockett, ry - + */ + //get end effector position feedback with trigonometry + Position_x = (L1*sin(q1) + L2*sin(q1+q2)); + Position_y = (L1*cos(q1) + L2*cos(q1+q2)); + //float PositionVector = sqrt(pow(Position_x,2)+pow(Position_y,2)); //get velocity vector v = (Pe*- Pe) = [0; dx; dy] from EMG - biceps_l = EMGgain * !button1.read(); //emg0.read(); //velocity or reference position change, EMG with a gain - biceps_r = EMGgain * !button2.read(); //emg1.read(); + biceps_l = !button1.read() * EMGgain; //emg0.read(); //velocity or reference position change, EMG with a gain + biceps_r = !button2.read() * EMGgain; //emg1.read(); if (biceps_l > 0 && biceps_r > 0){ //both arms activated: stamp moves down //led1 = 1; //led2 = 1; - ReferencePosition_x = ReferencePosition_x; - ReferencePosition_y = ReferencePosition_y - dy_stampdown; //into stamping vertical position ~the stamp down action + ReferencePosition_xnew = ReferencePosition_x; + ReferencePosition_ynew = ReferencePosition_y - dy_stampdown; //into stamping vertical position ~the stamp down action /* wait(1); //lift stamp after stamping @@ -139,8 +159,8 @@ //arm 1 activated, move left //led1 = 1; //led2 = 0; - ReferencePosition_x = ReferencePosition_x - biceps_l; - ReferencePosition_y = ReferencePosition_y; + ReferencePosition_xnew = ReferencePosition_x - 0.2; //biceps_l; + ReferencePosition_ynew = ReferencePosition_y; /* PositionError_x = ReferencePosition_x - Position_x; //Position error in dx,dy PositionError_y = ReferencePosition_y - Position_y; //Position error in dx,dy @@ -155,8 +175,8 @@ //arm 1 activated, move right //led1 = 0; //led2 = 1; - ReferencePosition_x = ReferencePosition_x + biceps_r; - ReferencePosition_y = ReferencePosition_y; + ReferencePosition_xnew = ReferencePosition_x + 0.2; //biceps_r; + ReferencePosition_ynew = ReferencePosition_y; /*PositionError_x = ReferencePosition_x - Position_x; //Position error in dx,dy PositionError_y = ReferencePosition_y - Position_y; //Position error in dx,dy @@ -169,38 +189,64 @@ else{ //led1 = 0; //led2 = 0; + ReferencePosition_xnew = ReferencePosition_x; + ReferencePosition_ynew = ReferencePosition_y; + } + + float ReferenceVector = sqrt(pow(ReferencePosition_x,2)+pow(ReferencePosition_y,2)); + + //check position boundaries + if (ReferenceVector > maxStampDistance){ ReferencePosition_x = ReferencePosition_x; ReferencePosition_y = ReferencePosition_y; } - - //calculate joint angle differences - PositionError_x = ReferencePosition_x - Position_x; //Position error in dx,dy - PositionError_y = ReferencePosition_y - Position_y; //Position error in dx,dy + else if (ReferencePosition_ynew < 0){ + ReferencePosition_y = 0; //could also be little negative value to get more pressure on table + } + else { + ReferencePosition_x = ReferencePosition_xnew; + ReferencePosition_y = ReferencePosition_ynew; + + //calculate reference joint angles for the new reference position + float alpha = atan(ReferencePosition_y/ReferencePosition_x); + float beta = acos((L2*L2-L1*L1-pow(ReferenceVector,2))/(-2*L1*ReferenceVector)); + q1_refOutNew = PI/2 - (alpha+beta); + q2_refOutNew = PI - asin(ReferenceVector*sin(beta)/L2); + + //check angle boundaries + if (q1_refOutNew > q1_refOutMin && q1_refOutMax < q1_refOutMax){ + q1_refOut = q1_refOutNew; + } + else { + q1_refOut = q1_refOut; + } + if (q2_refOutNew > q2_refOutMin && q2_refOutMax < q2_refOutMax){ + q2_refOut = q2_refOutNew; + } + else { + q2_refOut = q2_refOut; + } - dx = PositionError_x; - dy = PositionError_y; - q1_dotOut = dy*(((x0 + L1*cos(q1))*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1)) - (x0*(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + L0*L0 + x0*x0 + 2*L0*L1*sin(q1) + 2*L1*x0*cos(q1) + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1))) - dx*(((L0 + L1*sin(q1))*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1)) - (L0*(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + L0*L0 + x0*x0 + 2*L0*L1*sin(q1) + 2*L1*x0*cos(q1) + 1))/(pow(L1*cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*L1*L1*x0*cos(q1)*sin(q1))); - q2_dotOut = dy*((x0*(L0*L0 + L1*sin(q1)*L0 + x0*x0 + L1*cos(q1)*x0 + 1))/(L1*L1*pow(cos(q1),2) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*pow(L1,2)*x0*cos(q1)*sin(q1)) - ((x0 + L1*cos(q1))*(pow(L0,2) + pow(x0,2) + 1))/(pow(L1*cos(q1),2)) + pow(L1*sin(q1),2) + pow(L1*x0*sin(q1),2) + pow(L0*L1*cos(q1),2) - 2*L0*pow(L1,2)*x0*cos(q1)*sin(q1)) - dx*((L0*(L0*L0+L1*sin(q1)*L0+x0*x0+L1*cos(q1)*x0+1))/(pow(L1*cos(q1),2)+pow(L1*sin(q1),2)+pow(L1*x0*sin(q1),2)+pow(L0*L1*cos(q1),2)-2*L0*L1*L1*x0*cos(q1)*sin(q1))-((L0 + L1*sin(q1))*(L0*L0 + x0*x0 + 1))/(pow(L1*cos(q1),2)+pow(L1*sin(q1),2)+pow(L1*x0*sin(q1),2)+pow(L0*L1*cos(q1),2)-2*L0*L1*L1*x0*cos(q1)*sin(q1))); - //update joint angles //q1Out = q1Out + q1_dotOut; //in radians //q2Out = q2Out + q2_dotOut; pc.baud(115200); - pc.printf("Reference_x: %f \r\n", ReferencePosition_x); - pc.printf("Position_x: %f \r\n", Position_x); - pc.printf("PositionError_x: %f \r\n", PositionError_x); - pc.printf("dx: %f \r\n", dx); - pc.printf("q1dotOut: %f \r\n", q1_dotOut); - pc.printf("q1Out: %f \r\n", q1Out); + pc.printf("biceps_l: %f \r\n", biceps_l); + pc.printf("biceps_r: %f \r\n", biceps_r); + pc.printf("Position_x: %f m\r\n", Position_x); + pc.printf("q1Out: %f rad \r\n", q1Out); + pc.printf("Reference_x: %f m \r\n", ReferencePosition_x); + pc.printf("q1refOut: %f rad\r\n", q1_refOut); + pc.printf("Position_y: %f m\r\n", Position_y); + pc.printf("q2Out: %f rad \r\n", q2Out); + pc.printf("Reference_y: %f m \r\n", ReferencePosition_y); + pc.printf("q2refOut: %f rad\r\n", q2_refOut); + pc.printf("alpha: %f rad \r\n", alpha); + pc.printf("beta: %f rad\r\n", beta); - pc.printf("Reference_y: %f \r\n", ReferencePosition_y); - pc.printf("Position_y: %f \r\n", Position_y); - pc.printf("PositionError_y: %f \r\n", PositionError_y); - pc.printf("dy: %f \r\n", dy); - pc.printf("q2dotOut: %f \r\n", q2_dotOut); - pc.printf("q2Out: %f \r\n", q2Out); + /* pc.printf("dx: %f \r\n", dx); pc.printf("dy: %f \r\n", dy); @@ -219,22 +265,22 @@ } -void FeedForwardControl1(float q1_dot, float q2_dot, float &motorValue1Out, float &motorValue2Out){ +void FeedForwardControl1(float q1_ref, float q2_ref, float q1, float q2, float &motorValue1Out, float &motorValue2Out){ //float Encoder1Position = counts1/resolution; //position in radians, encoder axis //float Position1 = Encoder1Position*inverse_gear_ratio; //position in radians, motor axis // linear feedback control - float error1 = q1_dot; //referencePosition1 - Position1; // proportional angular error in radians - float error2 = q2_dot; //referencePosition1 - Position1; // proportional angular error in radians + float q1_error = q1_ref - q1; //referencePosition1 - Position1; // proportional angular error in radians + float q2_error = q2_ref - q2; //referencePosition1 - Position1; // proportional angular error in radians float Kp = 1; //potMeter2.read(); - float IntError1 = IntError1 + error1*t_sample; // integrated error in radians - float IntError2 = IntError2 + error2*t_sample; // integrated error in radians + float q1IntError = q1IntError + q1_error*t_sample; // integrated error in radians + float q2IntError = q2IntError + q2_error*t_sample; // integrated error in radians //float maxKi = 0.2; float Ki = 0.1; //potMeter2.read(); - float DerivativeError1 = (error1_prev + error1)/t_sample; // derivative of error in radians - float DerivativeError2 = (error2_prev + error2)/t_sample; // derivative of error in radians + float q1DerivativeError = (q1_error_prev + q1_error)/t_sample; // derivative of error in radians + float q2DerivativeError = (q2_error_prev + q2_error)/t_sample; // derivative of error in radians //float maxKd = 0.2; float Kd = 0.0; //potMeter2.read(); @@ -243,22 +289,22 @@ //scope.set(2,Ki); //scope.send(); - motorValue1Out = error1 * Kp + IntError1 * Ki + DerivativeError1 * Kd; //total controller output = motor input - motorValue2Out = error2 * Kp + IntError2 * Ki + DerivativeError2 * Kd; //total controller output = motor input + motorValue1Out = q1_error * Kp + q1IntError * Ki + q1DerivativeError * Kd; //total controller output = motor input + motorValue2Out = q2_error * Kp + q2IntError * Ki + q2DerivativeError * Kd; //total controller output = motor input //pc.printf("Motor Axis Position: %f rad \r\n", Position1); //pc.printf("Counts encoder1: %i rad \r\n", counts1); //pc.printf("Kp: %f \r\n", Kp); //pc.printf("MotorValue: %f \r\n", motorValue1); - pc.printf("error1: %f \r\n", error1); - pc.printf("IntError1: %f \r\n", IntError1); - pc.printf("DerError1: %f \r\n", DerivativeError1); - pc.printf("error2: %f \r\n", error2); - pc.printf("IntError2: %f \r\n", IntError2); - pc.printf("DerError2: %f \r\n", DerivativeError2); + pc.printf("error1: %f \r\n", q1_error); + pc.printf("IntError1: %f \r\n", q1IntError); + pc.printf("DerError1: %f \r\n", q1DerivativeError); + pc.printf("error2: %f \r\n", q2_error); + pc.printf("IntError2: %f \r\n", q2IntError); + pc.printf("DerError2: %f \r\n", q2DerivativeError); - error1_prev = error1; - error2_prev = error1; + q1_error_prev = q1_error; + q2_error_prev = q2_error; //float biceps_l = !button1.read(); //float biceps_r = !button2.read(); @@ -279,17 +325,17 @@ // within range //control motor 1 if (motorValue1 >=0) //clockwise rotation - {motor1DirectionPin=ccw; //inverted due to opposite (to other motor) build-up in tower + {motor1DirectionPin=cw; //inverted due to opposite (to other motor) build-up in tower //led1=1; //led2=0; } else //counterclockwise rotation - {motor1DirectionPin=cw; //inverted due to opposite (to other motor) build-up in tower + {motor1DirectionPin=ccw; //inverted due to opposite (to other motor) build-up in tower //led1=0; //led2=1; } - if (fabs(motorValue1)>1) motor1MagnitudePin = 1; - else motor1MagnitudePin = 0.1*fabs(motorValue1); //fabs(motorValue1); + if (fabs(motorValue1)>1) motor1MagnitudePin = motorMaxGain1; + else motor1MagnitudePin = motorMaxGain1*fabs(motorValue1); //fabs(motorValue1); //control motor 2 if (motorValue2 >=0) //clockwise rotation {motor2DirectionPin=ccw; //action is cw, due to faulty motor2DirectionPin (inverted) @@ -301,8 +347,12 @@ //led1=0; //led2=1; } - if (fabs(motorValue2)>1) motor2MagnitudePin = 1; - else motor2MagnitudePin = 0.1*fabs(motorValue2); //fabs(motorValue1); + if (fabs(motorValue2)>1) motor2MagnitudePin = motorMaxGain2; + else motor2MagnitudePin = motorMaxGain2*fabs(motorValue2); //fabs(motorValue1); + float ReadMagn1 = motor1MagnitudePin.read(); + float ReadMagn2 = motor2MagnitudePin.read(); + pc.printf("motor1Magnitude: %f \r\n", ReadMagn1); + pc.printf("motor2Magnitude: %f \r\n", ReadMagn2); } void MeasureAndControl() @@ -310,8 +360,8 @@ // This function measures the EMG of both arms, calculates via IK what // the joint speeds should be, and controls the motor with // a Feedforward controller. This is called from a Ticker. - GetReferenceKinematics1(q1, q2, q1_dot, q2_dot); - FeedForwardControl1( q1_dot, q2_dot, motorValue1, motorValue2); + GetReferenceKinematics1(q1, q2, q1_ref, q2_ref); + FeedForwardControl1( q1_ref, q2_ref, q1, q2, motorValue1, motorValue2); SetMotor1(motorValue1, motorValue2); }