updated test

Dependencies:   TextLCD mbed

Fork of CE713-V01 by malcolm lear

Revision:
0:4bc9e88c2cff
Child:
1:76c4a55fbac4
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/main.cpp	Mon Oct 30 11:27:45 2017 +0000
@@ -0,0 +1,278 @@
+// Device Drivers for Labmbed Board
+
+#include "mbed.h"
+#include "TextLCD.h"
+
+TextLCD lcd(p15, p16, p17, p18, p19, p20);            // LCD: RS, E, D4-D7
+SPI spi(p5, p6, p7);                                  // SPI: MOSI, MISO, SCLK (MISO not used with LCD)
+DigitalOut lat(p8);                                   // data latch for LED driver TLC59281
+DigitalOut Sel0(p26);                                 // input select bits:
+DigitalOut Sel1(p25);                                 //  "
+DigitalOut Sel2(p24);                                 //  "
+DigitalIn In0(p14);                                   // input from switches, keypad etc
+DigitalIn In1(p13);                                   //  "
+DigitalIn In2(p12);                                   //  "
+DigitalIn In3(p11);                                   //  "
+I2C i2c(p9, p10);                                     // I2C: SDA, SCL pins
+PwmOut servo1(p21);                                   // Servo 1 PWM pin
+PwmOut servo2(p22);                                   // Servo 2 PWM pin
+DigitalOut Trigger(p28);                              // Ultrasonic rangefinder trigger pin
+DigitalIn  Echo(p27);                                 // Ultrasonic rangefinder echo pin
+Timer Sonar;                                          // Ultrasonic timer
+
+// global variables
+short LEDbits = 0;                                    // global led status used for readback
+const int TMP102Addr = 0x92;                          // TMP102 temperature I2C address
+const int MPU6050Addr = 0xd0;                         // MPU-6050 accelerometer and Gyro I2C address
+float Acceleration[3];                                // MPU-6050 x,y,z acceleration values in 1G floating point
+float GyroRate[3];                                    // MPU-6050 x,y,z gyrorates in degrees per second
+float GyroOffset[3];                                  // MPU-6050 x,y,z gyrorates compensation
+char AReg[] = { 0x3b, 0x3d, 0x3f };                   // MPU-6050 I2C x,y,z accelerometer data registers
+char GReg[] = { 0x43, 0x45, 0x47 };                   // MPU-6050 I2C x,y,z gyro data registers
+
+void Servo1(float s) {                                // range +-1
+    s=s+1;
+    if (s>=0 && s<=2) {
+        servo1.pulsewidth(s/2000+0.001);
+    }
+}
+
+void Servo2(float s) {                                // range +-1
+    s=s+1;
+    if (s>=0 && s<=2) {
+        servo2.pulsewidth(s/2000+0.001);
+    }
+}
+
+void InitServos() {
+    servo1.period(0.02);
+    servo2.period(0.02);
+    Servo1(0);                                        // initiate servo 1 to centre position
+    Servo2(0);                                        // initiate servo 1 to centre position
+}
+
+int ReadSonar() {
+    Trigger = 1;                                      // set sonar trigger pulse high
+    Sonar.reset();                                    // reset sonar timer
+    wait_us(10.0);                                    // 10 us pulse
+    Trigger = 0;                                      // set sonar trigger pulse low
+    while (Echo == 0) {};                             // wait for echo high (8 cycles have been transmitted)
+    Sonar.start();                                    // echo high so start timer
+    while (Echo == 1) {};                             // wait for echo low
+    Sonar.stop();                                     // echo low so stop timer
+    return (Sonar.read_us()*10)/58;                   // read timer and scale to mm
+}
+
+void InitLEDs() {
+    lat = 0;                                          // latch must start low
+    spi.format(16,0);                                 // SPI 16 bit data, low state, high going clock
+    spi.frequency(1000000);                           // 1MHz clock rate
+}
+
+void SetLEDs(short ledall) {
+    LEDbits = ledall;                                 // update global led status
+    spi.write((LEDbits & 0x03ff) | ((LEDbits & 0xa800) >> 1) | ((LEDbits & 0x5400) << 1));
+    lat = 1;                                          // latch pulse start 
+    lat = 0;                                          // latch pulse end
+}
+
+void SetLED(short LEDNo, short LEDState) {
+    LEDNo = ((LEDNo - 1) & 0x0007) + 1;               // limit led number
+    LEDState = LEDState & 0x0003;                     // limit led state
+    LEDNo = (8 - LEDNo) * 2;                          // offset of led state in 'LEDbits'
+    LEDState = LEDState << LEDNo;
+    short statemask = ((0x0003 << LEDNo) ^ 0xffff);   // mask used to clear led state
+    LEDbits = ((LEDbits & statemask) | LEDState);     // clear and set led state
+    SetLEDs(LEDbits);
+}
+
+short ReadLED(short LEDNo) {
+    LEDNo = ((LEDNo - 1) & 0x0007) + 1;               // limit led number
+    LEDNo = (8 - LEDNo) * 2;                          // offset of led state in 'LEDbits'
+    short LEDState = (LEDbits >> LEDNo) & 0x0003;     // shift selected led state into ls 2 bits
+    return LEDState;                                  // return led state
+}
+
+short ReadLEDs() {
+    return LEDbits;                                   // return led status
+}
+
+void SelInput(short Input) {
+    Sel0 = Input & 0x0001;                            // set sel[0:2] pins
+    Sel1 = (Input >> 1) & 0x0001;                     //
+    Sel2 = (Input >> 2) & 0x0001;                     //
+}
+
+short ReadSwitches() {
+    SelInput(5);                                      // select least significant 4 switches in[3:0]
+    short Switches = In0 + (In1 << 1) + (In2 << 2) + (In3 << 3);
+    SelInput(4);                                      // select most significant 4 switches in[3:0]
+    return (Switches + (In0 << 4) + (In1 << 5) + (In2 << 6) + (In3 << 7));
+}
+
+short ReadSwitch(short SwitchNo) {
+    SwitchNo = ((SwitchNo - 1) & 0x0007) + 1;         // limit switch number
+    SwitchNo = 8 - SwitchNo;                          // offset of switch state in ReadSwitches()
+    short SwitchState = ReadSwitches();               // read switch states
+    SwitchState = SwitchState >> SwitchNo;            // shift selected switch state into ls bit
+    return (SwitchState & 0x0001);                    // mask out and return switch state 
+}
+
+short ReadKeys() {
+    SelInput(0);                                      // select Keypad top row 
+    short Keys = (In0 << 15) + (In1 << 14) + (In2 << 13) + (In3 << 12);
+    SelInput(1);                                      // select Keypad second row
+    Keys += (In0 << 3) + (In1 << 6) + (In2 << 9) + (In3 << 11);   
+    SelInput(2);                                      // select Keypad third row
+    Keys += (In0 << 2) + (In1 << 5) + (In2 << 8) + In3;  
+    SelInput(3);                                      // select Keypad forth row
+    Keys += (In0 << 1) + (In1 << 4) + (In2 << 7) + (In3 << 10);
+    return (Keys ^ 0xffff);                           // return inverted (Key press active high)
+}
+
+short ReadKey(short KeyNo) {
+    KeyNo = KeyNo & 0x000f;                           // limit key number 0 to 15 (0 to F)
+    short KeyState = ReadKeys();                      // read key states
+    KeyState = KeyState >> KeyNo;                     // shift selected key state into ls bit
+    return (KeyState & 0x0001);                       // mask out and return key state     
+}
+
+int FindKeyNo() {
+    short KeyNo;
+    short KeyPressed = -1;                            // set KeyPressed to -1 (no key pressed)
+    short KeyState = ReadKeys();                      // read key states
+    for (KeyNo= 0; KeyNo < 16; KeyNo++ ) {            // check all 16 Keys
+        if (KeyState & 0x0001) {                      // check key state
+            if (KeyPressed == -1) {                   // check if key already found
+                KeyPressed = KeyNo;                   // update KeyPressed
+            }
+            else {
+                return -1;                            // 2 or more keys pressed
+            }
+        }
+        KeyState = KeyState >> 1;                     // shift to check next key
+    }
+    return KeyPressed;                                // return KeyPressed
+}
+
+char FindKeyChar() {
+    short KeyNo;
+    char KeyChar = ' ';                               // set KeyChar to ' ' (no key pressed)
+    KeyNo = FindKeyNo();                              // find key pressed
+    if (KeyNo < 10 && KeyNo >= 0) {
+        KeyChar = (char) KeyNo + 0x30;                // convert char 0-9 to ascii string '0'-'9'
+    }
+    if (KeyNo > 9 && KeyNo < 16) {
+        KeyChar = (char) KeyNo + 0x37;                // convert char 10-15 to ascii string 'A'-'F'
+    }
+    return KeyChar;                                   // return key pressed
+}
+
+float ReadTemp() {
+    char Cmd[3];
+    Cmd[0] = 0x01;                                    // pointer register value
+    Cmd[1] = 0x60;                                    // byte 1 of the configuration register
+    Cmd[2] = 0xa0;                                    // byte 2 of the configuration register
+    i2c.write(TMP102Addr, Cmd, 3);                    // select configuration register and write 0x60a0 to it
+    wait(0.5);                                        // ensure conversion time
+    Cmd[0] = 0x00;                                    // pointer register value
+    i2c.write(TMP102Addr, Cmd, 1);                    // select temperature register
+    i2c.read(TMP102Addr, Cmd, 2);                     // read 16-bit temperature register 
+    return (float((Cmd[0] << 8) | Cmd[1]) / 256);     // divide by 256 and return temperature
+}
+
+signed short ReadMPU6050(int RegAddr) {
+    char Cmd[3];
+    Cmd[0] = RegAddr;                                 // register address
+    i2c.write(MPU6050Addr, Cmd, 1);                   // select register to read
+    i2c.read(MPU6050Addr, Cmd, 2);                    // read 2 bytes from register
+    return ((Cmd[0] << 8) | Cmd[1]);                  // return signed 16 bit value
+}
+
+void CalibrateGyros() {
+    short a,b;
+    for(a=0; a<3; a++) {
+        GyroOffset[a] = 0;                            // clear gyro calibration offsets
+        for(b=0; b<1000; b++) {
+            GyroOffset[a] = GyroOffset[a] + (float)ReadMPU6050(GReg[a]);
+            wait_ms(1);                               // wait for next sample
+        }  
+        GyroOffset[a] = GyroOffset[a]/1000;           // find average over 1000 samples
+    }
+}
+   
+void InitMotion() {
+    char Cmd[3];
+    Cmd[0] = 0xa1;                                    // config register address
+    Cmd[1] = 0x06;                                    // accelerometer and gyro bandwidth = 5Hz
+    i2c.write(MPU6050Addr, Cmd, 2);                   // write data to config register      
+    Cmd[0] = 0x6b;                                    // power management register address
+    Cmd[1] = 0x00;                                    // data
+    i2c.write(MPU6050Addr, Cmd, 2);                   // write data to power management register   
+    Cmd[0] = 0x1b;                                    // gyro configuration register address
+    Cmd[1] = 0x08;                                    // no gyro self test, +-500 full scale
+    i2c.write(MPU6050Addr, Cmd, 2);                   // write data to gyro configuration register
+    Cmd[0] = 0x19;                                    // sample rate register address
+    Cmd[1] = 0x07;                                    // sample rate = gyro output rate / 8
+    i2c.write(MPU6050Addr, Cmd, 2);                   // write data to sample rate register    
+    CalibrateGyros();           
+}
+
+void ReadMotion() {
+    short a;                                          // Acceleration is in G where 1G = 9.81 ms/s
+    for(a=0; a<3; a++) {                              // GyroRate is in degrees per second
+        Acceleration[a] =  (float)ReadMPU6050(AReg[a]) / 16384;      
+        GyroRate[a] = ((float)ReadMPU6050(GReg[a]) - GyroOffset[a]) / 66.5;
+    }
+} 
+
+int main() {
+    
+    float spos = 0;                                   // Test servo position
+    InitLEDs();
+    InitMotion();
+    InitServos();
+  
+    while(1) {
+        int a,b;
+        for (b = 0; b < 4; b++ ) {                    // select all 4 led states
+            for (a = 1; a < 9; a++ ) {                // set all 8 leds to selected state
+                SetLED (a,b);                         // set led 'a' to state 'b'
+                wait(.05);                            // wait 0.05 second
+            }
+        }
+        for (a= 1; a < 9; a++ ) {                     // map Switch states to led's
+            SetLED (a,(ReadSwitch(a) + 1));           //
+            wait(.05);                                // wait 0.05 second
+        }
+        float temp = ReadTemp();                      // get temperature
+        lcd.cls();                                    // clear lcd
+        lcd.printf("Temp = %f\n", temp);              // print temperature
+        wait(1);                                      // wait 1 second
+        lcd.cls();                                    // clear lcd
+        int swch = ReadSwitches();                    // look at Switch states   
+        lcd.printf("Switches = %d\n", swch);          // print result
+        char Key = FindKeyChar();                     // look for Key pressed
+        lcd.printf("Key = %c\n", Key);                // print result
+        wait(1);                                      // wait 1 second
+        lcd.cls();                                    // clear lcd
+        int dist = ReadSonar();                       // get distance
+        lcd.printf("Distance = %d\n", dist);          // print result
+        lcd.printf("Servo = %f\n", spos);             // print servo pos
+        wait(1);                                      // wait 1 second
+        ReadMotion();                                 // read new data in from the MPU-6050
+        lcd.cls();                                    // clear lcd
+        lcd.locate(0,0);                              // print at start of first line
+        lcd.printf("x%.1f y%.1f z%.1f", Acceleration[0], Acceleration[1], Acceleration[2]);
+        lcd.locate(0,1);                              // print at start of second line
+        lcd.printf("x%.1f y%.1f z%.1f", GyroRate[0], GyroRate[1], GyroRate[2]);               
+        wait(.4);                                     // wait 0.4 second
+        if (spos < 1) {                               // is servo at upper limit of 1
+          spos += .1;                                 // increment servo position
+        }                                             //
+        else {                                        // was at upper limit so
+          spos = -1;                                  // reset servo position
+        }                                             //
+        Servo1(spos);                                 // update servo
+    }
+}