Nieuwe kinematica + potmeter
Dependencies: HIDScope MODSERIAL QEI biquadFilter mbed
Fork of Project_script_union_potmeter by
Diff: main.cpp
- Revision:
- 30:8191e8541a0a
- Parent:
- 29:df10cb76ef26
- Child:
- 31:481ad25a40c3
diff -r df10cb76ef26 -r 8191e8541a0a main.cpp --- a/main.cpp Thu Nov 01 08:21:31 2018 +0000 +++ b/main.cpp Thu Nov 01 12:46:20 2018 +0000 @@ -22,11 +22,11 @@ InterruptIn button1 (D10); InterruptIn button2 (D11); -DigitalOut directionpin1 (D7); -DigitalOut directionpin2 (D4); +DigitalOut directionpin1 (D4); +DigitalOut directionpin2 (D7); -PwmOut pwmpin1 (D6); -PwmOut pwmpin2 (D5); +PwmOut pwmpin1 (D5); +PwmOut pwmpin2 (D6); DigitalOut ledr (LED_RED); DigitalOut ledb (LED_BLUE); @@ -34,21 +34,18 @@ MODSERIAL pc(USBTX, USBRX); //Serial communication to see if the code works step by step, turn on if hidscope is off -QEI encoder1 (D9, D8, NC, 8400,QEI::X4_ENCODING); -QEI encoder2 (D12, D13, NC, 8400,QEI::X4_ENCODING); +QEI encoder1 (D9, D8, NC, 8400 , QEI::X4_ENCODING); +QEI encoder2 (D12, D13, NC, 8400 , QEI::X4_ENCODING); //HIDScope scope( 6 ); //HIDScope set to 3x2 channels for 3 muscles, raw data + filtered //Tickers Ticker func_tick; -Ticker engine_control1_tick; -Ticker engine_control2_tick; -Ticker encoder1_read_tick; -Ticker encoder2_read_tick; + //Global variables -const float T = 0.002f; //Ticker period Deze wordt ook gebruikt in de PID, moet die niet anders??? -const float T2 = 0.1f; +const float T = 0.02f; //Ticker period Deze wordt ook gebruikt in de PID, moet die niet anders??? +const float T2 = 0.02f; // Inverse Kinematica variables const double L1 = 0.208; // Hoogte van tafel tot joint 1 @@ -61,8 +58,8 @@ // Variërende variabelen inverse kinematics: double q1ref = 0.0; // Huidige motorhoek van joint 1 zoals bepaald uit referentiesignaal --> checken of het goede type is double q2ref = 0.0; // Huidige motorhoek van joint 2 zoals bepaald uit referentiesignaal --> checken of het goede type is -double v_x=0.0; // Desired velocity end effector in x direction --> Determined by EMG signals -double v_y=0.0; // Desired velocity end effector in y direction --> Determined by EMG signals +double v_x; // Desired velocity end effector in x direction --> Determined by EMG signals +double v_y; // Desired velocity end effector in y direction --> Determined by EMG signals double Lq1; // Translatieafstand als gevolg van motor rotation joint 1 double Cq2; // Joint angle of the system (corrected for gear ratio 1:5) @@ -75,7 +72,7 @@ //Variables PID controller double PI = 3.14159; -double Kp1 = 1.0; //Motor 1 eerst 17.5 , nu 1 +double Kp1 = 17.5; //Motor 1 eerst 17.5 , nu 1 double Ki1 = 1.02; double Kd1 = 23.2; double encoder_radians1=0; @@ -83,7 +80,7 @@ double err_prev1 = 0; -double Kp2 = 1.0; //Motor 2 eerst 17.5, nu 1 +double Kp2 = 17.5; //Motor 2 eerst 17.5, nu 1 double Ki2 = 1.02; double Kd2 = 23.2; double encoder_radians2=0; @@ -103,82 +100,84 @@ //---------PID controller motor 1 + motor control 1 & 2-----------------------------------------------------------// double PID_control(double err, const double Kp, const double Ki, const double Kd, double &err_integral, double &err_prev) { - pc.printf("ik doe het, PDI 1\n\r"); - - err_integral = 0; - err_prev = err; // initialization with this value only done once! - - static BiQuad LowPassFilter(0.0640, 0.1279, 0.0640, -1.1683, 0.4241); + pc.printf("ik doe het, PDI \n\r"); - // Proportional part: - double u_k = Kp * err; + err_integral = 0; + err_prev = err; // initialization with this value only done once! + + static BiQuad LowPassFilter(0.0640, 0.1279, 0.0640, -1.1683, 0.4241); - /* Integral part - err_integral = err_integral + err * T; - double u_i = Ki * err_integral; + // Proportional part: + double u_k = Kp * err; - // Derivative part - double err_derivative = (err - err_prev)/T; - double filtered_err_derivative = LowPassFilter.step(err_derivative); - double u_d = Kd * filtered_err_derivative; - err_prev = err; - */ + //Integral part + err_integral = err_integral + err * T; + double u_i = Ki * err_integral; + + // Derivative part + double err_derivative = (err - err_prev)/T; + double filtered_err_derivative = LowPassFilter.step(err_derivative); + double u_d = Kd * filtered_err_derivative; + err_prev = err; + + + // Sum all parts and return it + return u_k + u_i + u_d; + } - // Sum all parts and return it - return u_k; //+ u_i + u_d; -} - -void engine_control1() //Engine 1 is rotational engine, connected with left side pins +void engine_control1() //Engine 1 is translational engine, connected with left side pins { - //while(start_control == 1) - //{ - pc.printf("ik doe het, engine control 1\n\r"); + //pc.printf("ik doe het, engine control 1\n\r"); encoder_radians1 = encoder1.getPulses()*(2*PI)/8400.0; + pc.printf("encoder1 %d \n\r",encoder1.getPulses()); + pc.printf("encoder_radians1 %f \n\r",encoder_radians1); double err1 = q1ref - encoder_radians1; + pc.printf("err1 = %f\n\r",err1); double u1 = PID_control(err1, Kp1, Ki1, Kd1, err_integral1, err_prev1); //PID controller function call - if(encoder1.getPulses()<5250 && encoder1.getPulses()>-5250) //limits rotation, in counts + pc.printf("u1 = %f\n\r",u1); + + if(encoder1.getPulses()<12000 && encoder1.getPulses()>-1) //limits translation in counts, eerst 12600 { - pwmpin1 = 0.5; //u_total moet nog geschaald worden om in de motor gevoerd te worden!!! - directionpin1.write(0); + pwmpin1 = fabs(u1); //u_total moet nog geschaald worden om in de motor gevoerd te worden!!! + directionpin1.write(u1<0); } else { pwmpin1 = 0; } - - // break; - //} } -void engine_control2() //Engine 2 is translational engine, connected with right side wires +void engine_control2() //Engine 2 is rotational engine, connected with right side wires { - pc.printf("ik doe het, engine control 2\n\r"); - encoder_radians2 = encoder2.getPulses()*(2*PI)/8400.0; + pc.printf("encoder2 %f \n\r",encoder2.getPulses()); + pc.printf("encoder_radians2 %d \n\r",encoder_radians2); double err2 = q2ref - encoder_radians2; + pc.printf("err2 = %f\n\r",err2); double u2 = PID_control(err2, Kp2, Ki2, Kd2, err_integral2, err_prev2); //PID controller function call - - if(encoder2.getPulses()<12600 && encoder2.getPulses()>-1) //limits translation in counts + pc.printf("u2 = %f\n\r",u2); + + if(encoder2.getPulses()<5250 && encoder2.getPulses()>-5250) //limits rotation, in counts { - pwmpin2 = 1; //u_total moet nog geschaald worden om in de motor gevoerd te worden!!! - directionpin2.write(0); + pwmpin2 = fabs(u2); //u_total moet nog geschaald worden om in de motor gevoerd te worden!!! + directionpin2.write(u2>0); } else { pwmpin2 = 0; } - } //------------------ Inversed Kinematics --------------------------------// -void inverse_kinematics() +void inverse_kinematics(double v_x, double v_y) { - pc.printf("ik doe het, inverse kinematics\n\r"); + pc.printf("v_x is %f en v_y is %f\n\r",v_x, v_y); + Lq1 = q1ref*r_trans; Cq2 = q2ref/5.0; @@ -191,6 +190,10 @@ q1ref = q1_ii; q2ref = q2_ii; + + pc.printf("q1ref is %f en q2ref is %f\n\r",q1ref, q2ref); + + //start_control = 1; engine_control1(); engine_control2(); @@ -203,14 +206,17 @@ if(m1>0.5) //If the filtered EMG signal of muscle 1 is higher than the threshold, motor 1 will turn { - v_x = 0.5f; //beweging in +x direction + v_x = 0.5; //beweging in +x direction + v_y = 0.0; ledr = 0; //red ledb = 1; ledg = 1; + } else if(m2>0.5) //If the filtered EMG signal of muscle 2 is higher than the threshold, motor 1 and 2 will turn { - v_y = 0.5f; //beweging in +y direction + v_y = 0.5; //beweging in +y direction + v_x = 0.0; ledr = 1; //green ledb = 1; ledg = 0; @@ -218,7 +224,7 @@ else if(m1 < -0.5) //If the filtered EMG signal of muscle 0 is higher than the threshold, motor1 will turn in 1 direction { - v_x = -0.5f; + v_x = -0.5; v_y = 0; ledr = 1; //Blue ledb = 0; @@ -228,12 +234,13 @@ else if(m2 < -0.5) //If the filtered EMG signal of muscle 0 is higher than the threshold, motor1 will turn in 1 direction { v_x = 0; - v_y = -0.5f; + v_y = -0.5; ledr = 1; //Blue ledb = 0; ledg = 1; } + else //If not higher than the threshold, motors will not turn at all { v_x = 0; @@ -244,8 +251,8 @@ //pwmpin1 = 0; //pwmpin2 = 0; } - - inverse_kinematics(); //Call inverse kinematics function + + inverse_kinematics(v_x, v_y); //Call inverse kinematics function } @@ -254,20 +261,22 @@ int main() { - wait(1.0f); pc.baud(115200); pc.printf("Hello World!\r\n"); //Serial communication only works if hidscope is turned off. pwmpin1.period_us(60); //60 microseconds PWM period, 16.7 kHz func_tick.attach(&v_des_calculate_qref,T2); //v_des determined every T + + + while(true) + { //engine_control1_tick.attach(&engine_control1,T2); //engine_control2_tick.attach(&engine_control2,T2); // HIDScope_tick.attach(&HIDScope_sample,T); //EMG signals raw + filtered to HIDScope every T sec. - - while(true) - { - pc.printf("encoder1 %d\n\r",encoder1.getPulses()); - pc.printf("Encoder2 %d\n\r",encoder2.getPulses()); + + pc.printf("Encoder engine 1 %d\n\r",encoder2.getPulses()); + pc.printf("Encoder engine 2 %d\n\r",encoder1.getPulses()); + wait(0.1f); } }