Nieuwe kinematica + potmeter
Dependencies: HIDScope MODSERIAL QEI biquadFilter mbed
Fork of Project_script_union_potmeter by
main.cpp
- Committer:
- MarijkeZondag
- Date:
- 2018-11-01
- Revision:
- 30:8191e8541a0a
- Parent:
- 29:df10cb76ef26
- Child:
- 31:481ad25a40c3
File content as of revision 30:8191e8541a0a:
#include "mbed.h" #include "MODSERIAL.h" #include "BiQuad.h" #include "HIDScope.h" #include <math.h> #include "QEI.h" //ATTENTION: set mBed to version 151 // set QEI to version 0, (gebruiken wij (nog) niet, is voor encoder) // set MODSERIAL to version 44 // set HIDScope to version 7 // set biquadFilter to version 7 AnalogIn potmeter1 (A0); //First raw EMG signal input AnalogIn potmeter2 (A1); //Second raw EMG signal input InterruptIn encoderA1 (D9); InterruptIn encoderB1 (D8); InterruptIn encoderA2 (D12); InterruptIn encoderB2 (D13); InterruptIn button1 (D10); InterruptIn button2 (D11); DigitalOut directionpin1 (D4); DigitalOut directionpin2 (D7); PwmOut pwmpin1 (D5); PwmOut pwmpin2 (D6); DigitalOut ledr (LED_RED); DigitalOut ledb (LED_BLUE); DigitalOut ledg (LED_GREEN); MODSERIAL pc(USBTX, USBRX); //Serial communication to see if the code works step by step, turn on if hidscope is off QEI encoder1 (D9, D8, NC, 8400 , QEI::X4_ENCODING); QEI encoder2 (D12, D13, NC, 8400 , QEI::X4_ENCODING); //HIDScope scope( 6 ); //HIDScope set to 3x2 channels for 3 muscles, raw data + filtered //Tickers Ticker func_tick; //Global variables const float T = 0.02f; //Ticker period Deze wordt ook gebruikt in de PID, moet die niet anders??? const float T2 = 0.02f; // Inverse Kinematica variables const double L1 = 0.208; // Hoogte van tafel tot joint 1 //const double L2 = 0.288; // Hoogte van tafel tot joint 2 const double L3 = 0.212; // Lengte van de arm const double L4 = 0.089; // Afstand van achterkant base tot joint 1 //const double L5 = 0.030; // Afstand van joint 1 naar joint 2 const double r_trans = 0.035; // Kan gebruikt worden om om te rekenen van translation naar shaft rotation // Variërende variabelen inverse kinematics: double q1ref = 0.0; // Huidige motorhoek van joint 1 zoals bepaald uit referentiesignaal --> checken of het goede type is double q2ref = 0.0; // Huidige motorhoek van joint 2 zoals bepaald uit referentiesignaal --> checken of het goede type is double v_x; // Desired velocity end effector in x direction --> Determined by EMG signals double v_y; // Desired velocity end effector in y direction --> Determined by EMG signals double Lq1; // Translatieafstand als gevolg van motor rotation joint 1 double Cq2; // Joint angle of the system (corrected for gear ratio 1:5) double q1_dot=0.0; // Benodigde hoeksnelheid van motor 1 om v_des te bereiken double q2_dot=0.0; // Benodigde hoeksnelheid van motor 2 om v_des te bereiken double q1_ii=0.0; // Reference signal for motorangle q1ref double q2_ii=0.0; // Reference signal for motorangle q2ref //Variables PID controller double PI = 3.14159; double Kp1 = 17.5; //Motor 1 eerst 17.5 , nu 1 double Ki1 = 1.02; double Kd1 = 23.2; double encoder_radians1=0; double err_integral1 = 0; double err_prev1 = 0; double Kp2 = 17.5; //Motor 2 eerst 17.5, nu 1 double Ki2 = 1.02; double Kd2 = 23.2; double encoder_radians2=0; double err_integral2 = 0; double err_prev2 = 0; int start_control = 0; double emg_cal = 1; //--------------Functions----------------------------------------------------------------------------------------------------------------------------// //------------------ Filter EMG + Calibration EMG --------------------------------// //---------PID controller motor 1 + motor control 1 & 2-----------------------------------------------------------// double PID_control(double err, const double Kp, const double Ki, const double Kd, double &err_integral, double &err_prev) { pc.printf("ik doe het, PDI \n\r"); err_integral = 0; err_prev = err; // initialization with this value only done once! static BiQuad LowPassFilter(0.0640, 0.1279, 0.0640, -1.1683, 0.4241); // Proportional part: double u_k = Kp * err; //Integral part err_integral = err_integral + err * T; double u_i = Ki * err_integral; // Derivative part double err_derivative = (err - err_prev)/T; double filtered_err_derivative = LowPassFilter.step(err_derivative); double u_d = Kd * filtered_err_derivative; err_prev = err; // Sum all parts and return it return u_k + u_i + u_d; } void engine_control1() //Engine 1 is translational engine, connected with left side pins { //pc.printf("ik doe het, engine control 1\n\r"); encoder_radians1 = encoder1.getPulses()*(2*PI)/8400.0; pc.printf("encoder1 %d \n\r",encoder1.getPulses()); pc.printf("encoder_radians1 %f \n\r",encoder_radians1); double err1 = q1ref - encoder_radians1; pc.printf("err1 = %f\n\r",err1); double u1 = PID_control(err1, Kp1, Ki1, Kd1, err_integral1, err_prev1); //PID controller function call pc.printf("u1 = %f\n\r",u1); if(encoder1.getPulses()<12000 && encoder1.getPulses()>-1) //limits translation in counts, eerst 12600 { pwmpin1 = fabs(u1); //u_total moet nog geschaald worden om in de motor gevoerd te worden!!! directionpin1.write(u1<0); } else { pwmpin1 = 0; } } void engine_control2() //Engine 2 is rotational engine, connected with right side wires { encoder_radians2 = encoder2.getPulses()*(2*PI)/8400.0; pc.printf("encoder2 %f \n\r",encoder2.getPulses()); pc.printf("encoder_radians2 %d \n\r",encoder_radians2); double err2 = q2ref - encoder_radians2; pc.printf("err2 = %f\n\r",err2); double u2 = PID_control(err2, Kp2, Ki2, Kd2, err_integral2, err_prev2); //PID controller function call pc.printf("u2 = %f\n\r",u2); if(encoder2.getPulses()<5250 && encoder2.getPulses()>-5250) //limits rotation, in counts { pwmpin2 = fabs(u2); //u_total moet nog geschaald worden om in de motor gevoerd te worden!!! directionpin2.write(u2>0); } else { pwmpin2 = 0; } } //------------------ Inversed Kinematics --------------------------------// void inverse_kinematics(double v_x, double v_y) { pc.printf("v_x is %f en v_y is %f\n\r",v_x, v_y); Lq1 = q1ref*r_trans; Cq2 = q2ref/5.0; q1_dot = v_x + (v_y*(L1 + L3*sin(Cq2)))/(L4 + Lq1 + L3*cos(Cq2)); q2_dot = v_y/(L4 + Lq1 + L3*cos(Cq2)); q1_ii = q1ref + (q1_dot/r_trans)*T; q2_ii = q2ref + (q2_dot*5.0)*T; q1ref = q1_ii; q2ref = q2_ii; pc.printf("q1ref is %f en q2ref is %f\n\r",q1ref, q2ref); //start_control = 1; engine_control1(); engine_control2(); } void v_des_calculate_qref() { double m1 = (potmeter1*2.0)-1.0; double m2 = (potmeter2*2.0)-1.0; if(m1>0.5) //If the filtered EMG signal of muscle 1 is higher than the threshold, motor 1 will turn { v_x = 0.5; //beweging in +x direction v_y = 0.0; ledr = 0; //red ledb = 1; ledg = 1; } else if(m2>0.5) //If the filtered EMG signal of muscle 2 is higher than the threshold, motor 1 and 2 will turn { v_y = 0.5; //beweging in +y direction v_x = 0.0; ledr = 1; //green ledb = 1; ledg = 0; } else if(m1 < -0.5) //If the filtered EMG signal of muscle 0 is higher than the threshold, motor1 will turn in 1 direction { v_x = -0.5; v_y = 0; ledr = 1; //Blue ledb = 0; ledg = 1; } else if(m2 < -0.5) //If the filtered EMG signal of muscle 0 is higher than the threshold, motor1 will turn in 1 direction { v_x = 0; v_y = -0.5; ledr = 1; //Blue ledb = 0; ledg = 1; } else //If not higher than the threshold, motors will not turn at all { v_x = 0; v_y = 0; ledr = 0; //white ledb = 0; ledg = 0; //pwmpin1 = 0; //pwmpin2 = 0; } inverse_kinematics(v_x, v_y); //Call inverse kinematics function } //------------------ Start main function --------------------------// int main() { pc.baud(115200); pc.printf("Hello World!\r\n"); //Serial communication only works if hidscope is turned off. pwmpin1.period_us(60); //60 microseconds PWM period, 16.7 kHz func_tick.attach(&v_des_calculate_qref,T2); //v_des determined every T while(true) { //engine_control1_tick.attach(&engine_control1,T2); //engine_control2_tick.attach(&engine_control2,T2); // HIDScope_tick.attach(&HIDScope_sample,T); //EMG signals raw + filtered to HIDScope every T sec. pc.printf("Encoder engine 1 %d\n\r",encoder2.getPulses()); pc.printf("Encoder engine 2 %d\n\r",encoder1.getPulses()); wait(0.1f); } }