A fork of Erik Olieman's bootloader for the KL05Z32. The bootloader is placed in the 29th sector allowing for 28kB of program memory. The 32nd sector is left empty after the bootloader to allow for use of the non volatile storage without the risk of overwriting it during serial firmware update.

Dependencies:   mbed-dev

Fork of Bootloader_K64F by Erik -

This is a simple boot loader which resides at the end of the flash banks of your uController. It has be ported to work with the KL05Z. Porting the code to another Free scale uController requires the following changes:

Step 1 Change the address of the following function address

If your uController of choice has a flash size other than 32kB then you will likely want to change the addresses of following functions (current addresses displayed).

bootloader.cpp
0x7000 bootloader
0x7080 setupserial
0x70A0 write

FreescaleIAP.cpp
0x7268 erase_sector
0x7300 program_flash
0x7500 flash_size
0x7600 program_word
0x7700 run_command
0x7800 check_boundary
0x7900 check_align
0x7A00 verify_erased
0x7B00 check_error

Step 2 Follow the serial_api HAL file of your target

You will be unable to access anything that you don't define yourself in the bootloader. For this reason you need to create a function for serial. Look up and follow your target's serial_api.c file.

__attribute__((section(".ARM.__at_0x7080"))) static void setupserial(void) {
        //Setup USBRX/USBTX pins (PTB1/PTB2)
        //Enable Port B Clock
        SIM->SCGC5 |= 1 <<SIM_SCGC5_PORTB_SHIFT;                   
        //Select MCGFLLCLK clock
        SIM->SOPT2 |= 1 <<SIM_SOPT2_UART0SRC_SHIFT;
        //Select Pins PB1 & PB2 to their ALT3 function (RX & TX respectively)
        PORTB->PCR[1] = (PORTB->PCR[1] & ~0x700) | (3 << 8);
        PORTB->PCR[2] = (PORTB->PCR[2] & ~0x700) | (3 << 8);
        //Set UART0 Clock to be enabled
        SIM->SCGC4 |= SIM_SCGC4_UART0_MASK;
        //Set UART Baud Rate Register
        //Value's gathered expirimentally   
        UART0->BDH = 1;
        UART0->BDL = 56;   
        //Enable UART0
        UART0->C2 |= (UARTLP_C2_RE_MASK | UARTLP_C2_TE_MASK);
}

To set the correct baudrate you need to determine the right values for BDH & BDL registers for your clock speed. An easy way to do that is by simply printing them with the clock speed that you want like so:

#include "mbed.h"

Serial pc(USBTX, USBrX);

int main()
{
    while (1) {
        pc.printf("BDH: %d \n", UART0->BDH); // print the value of BDH Register
        pc.printf("BDL: %d \n", UART0->BDL); // print the value of BDL Register
        pc.printf("SOPT2: %d \n", SIM->SOPT2); // print the value of SOPT2 Register
        pc.printf("SCGC5: %d \n", SIM->SCGC5); // print the value of SCGC5 Register
        pc.printf("SCGC4: %d \n", SIM->SCGC4); // print the value of SCGC4 Register
        pc.printf("C2: %d \n", UART0->C2); // print the value of C2 Register
        pc.printf("C4: %d \n", UART0->C4); // print the value of C4 Register
        wait(.5);
    }
}

Step 3 Include bootloader.cpp in your first firmware

Before you can update firmware using serial you first must update the firmware using SWD along with the bootloader included in your binary.

#include "mbed.h"
extern void bootloader(void);
//...
main(){
//...
bootloader();
}

Step 4 Include reference to bootloader in serial updates

Once the bootloader is on the uControler you should not include the bootloader in binaries that you want to update over serial. Instead you can access the bootloader by using the following:

#include "mbed.h"

void *(*bootloader)(void) = (void *(*)(void))0x7001; //Address of bootloader + 1 (For some reason)
//...
main(){
//...
bootloader();
}

IF YOU ARE PROGRAMMING USING A PROGRAMMER (SWD OR JTAG) AND NOT SERIAL MAKE SURE TO INCLUDE THE BOOTLOADER OR OTHERWISE IT WILL MOST LIKELY BE ERASED OR OVERWRITTEN

Committer:
Dot
Date:
Sat Jul 16 18:20:22 2016 +0000
Revision:
13:d187850a6f6f
Parent:
12:beaae3757b7d
Child:
14:5df65dc9d98e
Brought in UART0_S1_RDRF_MASK & UART0_S1_TDRE_MASK definitions.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Sissors 11:a7a0730e20db 1 #include "mbed.h"
Sissors 11:a7a0730e20db 2 #include "FreescaleIAP.h"
Sissors 11:a7a0730e20db 3
Sissors 11:a7a0730e20db 4 //Could be nicer, but for now just erase all preceding sectors
Dot 12:beaae3757b7d 5 #define NUM_SECTORS 30
Sissors 11:a7a0730e20db 6 #define TIMEOUT 10000000
Sissors 11:a7a0730e20db 7 #define BUFFER_SIZE 16
Sissors 11:a7a0730e20db 8
Sissors 11:a7a0730e20db 9 void setupserial();
Sissors 11:a7a0730e20db 10 void write(char *value);
Dot 12:beaae3757b7d 11 /*KL64 Memory Locations
Dot 12:beaae3757b7d 12 0x10000
Dot 12:beaae3757b7d 13 0x10080
Dot 12:beaae3757b7d 14 0x100A0
Dot 12:beaae3757b7d 15 */
Dot 12:beaae3757b7d 16 /*KL05 32kB Memmory Map
Dot 12:beaae3757b7d 17 0x0000 : 0x7FFF
Dot 12:beaae3757b7d 18 32 1kB Flash Secotrs
Dot 12:beaae3757b7d 19 [1:30] Program Memory
Dot 12:beaae3757b7d 20 [31] Bootloader
Dot 12:beaae3757b7d 21 [32] Flash Storage
Dot 12:beaae3757b7d 22 0x7C00 Sector 31 Start Addr
Dot 12:beaae3757b7d 23 0x7800 Sector 32 Start Addr
Sissors 11:a7a0730e20db 24
Dot 12:beaae3757b7d 25 0x7C00 bootloader
Dot 12:beaae3757b7d 26 0x7C80 setupserial
Dot 12:beaae3757b7d 27 0x7CA0
Dot 12:beaae3757b7d 28 */
Dot 13:d187850a6f6f 29 #define UART_S1_RDRF_MASK 0x20u
Dot 13:d187850a6f6f 30 #define UART_S1_TDRE_MASK 0x80u
Dot 13:d187850a6f6f 31
Dot 12:beaae3757b7d 32 //KL05 Version
Dot 12:beaae3757b7d 33 __attribute__((section(".ARM.__at_0x7C00"))) void bootloader(void)
Sissors 11:a7a0730e20db 34 {
Sissors 11:a7a0730e20db 35 setupserial();
Sissors 11:a7a0730e20db 36 write("\n\n\rBootloader\r\n");
Sissors 11:a7a0730e20db 37 write("Continue? (y/n)");
Sissors 11:a7a0730e20db 38
Sissors 11:a7a0730e20db 39 //Wait until data arrived, if it is 'y', continue
Sissors 11:a7a0730e20db 40 while(!(UART0->S1 & UART_S1_RDRF_MASK));
Sissors 11:a7a0730e20db 41 if (UART0->D != 'y')
Sissors 11:a7a0730e20db 42 return;
Sissors 11:a7a0730e20db 43
Sissors 11:a7a0730e20db 44 //Erase all sectors we use for the user program
Sissors 11:a7a0730e20db 45 write("Erasing sectors!\r\n");
Sissors 11:a7a0730e20db 46 for (int i = 0; i<NUM_SECTORS; i++)
Sissors 11:a7a0730e20db 47 erase_sector(SECTOR_SIZE * i);
Sissors 11:a7a0730e20db 48
Sissors 11:a7a0730e20db 49 write("Done erasing, send file!\r\n");
Sissors 11:a7a0730e20db 50
Sissors 11:a7a0730e20db 51
Sissors 11:a7a0730e20db 52 char buffer[BUFFER_SIZE];
Sissors 11:a7a0730e20db 53 uint32_t count = 0;
Sissors 11:a7a0730e20db 54 uint8_t buffercount = 0;
Sissors 11:a7a0730e20db 55 uint32_t timeout = 0;
Sissors 11:a7a0730e20db 56
Sissors 11:a7a0730e20db 57 //Wait until data is sent
Sissors 11:a7a0730e20db 58 while(!(UART0->S1 & UART_S1_RDRF_MASK));
Sissors 11:a7a0730e20db 59
Sissors 11:a7a0730e20db 60 //Data receive loop
Sissors 11:a7a0730e20db 61 while(1) {
Sissors 11:a7a0730e20db 62 //Check if there is new data
Sissors 11:a7a0730e20db 63 if (UART0->S1 & UART_S1_RDRF_MASK) {
Sissors 11:a7a0730e20db 64 //Place data in buffer
Sissors 11:a7a0730e20db 65 buffer[buffercount] = UART0->D;
Sissors 11:a7a0730e20db 66 buffercount++;
Sissors 11:a7a0730e20db 67
Sissors 11:a7a0730e20db 68 //Reset timeout
Sissors 11:a7a0730e20db 69 timeout = 0;
Sissors 11:a7a0730e20db 70
Sissors 11:a7a0730e20db 71 //We write per BUFFER_SIZE chars
Sissors 11:a7a0730e20db 72 if (buffercount == BUFFER_SIZE) {
Sissors 11:a7a0730e20db 73 //NMI Handler is at bytes 8-9-10-11, we overwrite this to point to bootloader function
Sissors 11:a7a0730e20db 74 if (count == 0) {
Sissors 11:a7a0730e20db 75 buffer[8] = 0x01;
Sissors 11:a7a0730e20db 76 buffer[9] = 0x00;
Sissors 11:a7a0730e20db 77 buffer[10] = 0x01;
Sissors 11:a7a0730e20db 78 buffer[11] = 0x00;
Sissors 11:a7a0730e20db 79 }
Sissors 11:a7a0730e20db 80
Sissors 11:a7a0730e20db 81 //Program the buffer into the flash memory
Sissors 11:a7a0730e20db 82 if (program_flash(count, buffer, BUFFER_SIZE) != 0) {
Sissors 11:a7a0730e20db 83 write("Error!\r\n");
Sissors 11:a7a0730e20db 84 break;
Sissors 11:a7a0730e20db 85 }
Sissors 11:a7a0730e20db 86
Sissors 11:a7a0730e20db 87 //Reset buffercount for next buffer
Sissors 11:a7a0730e20db 88 write("#");
Sissors 11:a7a0730e20db 89 buffercount = 0;
Sissors 11:a7a0730e20db 90 count += BUFFER_SIZE;
Sissors 11:a7a0730e20db 91 }
Sissors 11:a7a0730e20db 92 } else {
Sissors 11:a7a0730e20db 93 //No new data, increase timeout
Dot 12:beaae3757b7d 94 timeout++;
Sissors 11:a7a0730e20db 95 //We have received no new data for a while, assume we are done
Sissors 11:a7a0730e20db 96 if (timeout > TIMEOUT) {
Sissors 11:a7a0730e20db 97 //If there is data left in the buffer, program it
Sissors 11:a7a0730e20db 98 if (buffercount != 0) {
Sissors 11:a7a0730e20db 99 for (int i = buffercount; i<BUFFER_SIZE; i++) {
Sissors 11:a7a0730e20db 100 buffer[i] = 0xFF;
Sissors 11:a7a0730e20db 101 }
Sissors 11:a7a0730e20db 102 program_flash(count, buffer, BUFFER_SIZE);
Sissors 11:a7a0730e20db 103 }
Sissors 11:a7a0730e20db 104 break; //We should be done programming :D
Sissors 11:a7a0730e20db 105 }
Sissors 11:a7a0730e20db 106 }
Sissors 11:a7a0730e20db 107 }
Sissors 11:a7a0730e20db 108 write("Done programming!\r\n");
Sissors 11:a7a0730e20db 109 NVIC_SystemReset();
Sissors 11:a7a0730e20db 110
Sissors 11:a7a0730e20db 111 //Shouldn't arrive here
Sissors 11:a7a0730e20db 112 while(1);
Sissors 11:a7a0730e20db 113 }
Sissors 11:a7a0730e20db 114
Dot 12:beaae3757b7d 115 __attribute__((section(".ARM.__at_0x7C80"))) static void setupserial(void) {
Sissors 11:a7a0730e20db 116 //Setup USBTX/USBRX pins (PTB16/PTB17)
Sissors 11:a7a0730e20db 117 SIM->SCGC5 |= 1 << SIM_SCGC5_PORTB_SHIFT;
Sissors 11:a7a0730e20db 118 PORTB->PCR[16] = (PORTB->PCR[16] & 0x700) | (3 << 8);
Sissors 11:a7a0730e20db 119 PORTB->PCR[17] = (PORTB->PCR[17] & 0x700) | (3 << 8);
Sissors 11:a7a0730e20db 120
Sissors 11:a7a0730e20db 121 //Setup UART (ugly, copied resulting values from mbed serial setup)
Sissors 11:a7a0730e20db 122 SIM->SCGC4 |= SIM_SCGC4_UART0_MASK;
Sissors 11:a7a0730e20db 123
Sissors 11:a7a0730e20db 124 UART0->BDH = 3;
Sissors 11:a7a0730e20db 125 UART0->BDL = 13;
Sissors 11:a7a0730e20db 126 UART0->C4 = 8;
Sissors 11:a7a0730e20db 127 UART0->C2 = 12; //Enables UART
Sissors 11:a7a0730e20db 128
Sissors 11:a7a0730e20db 129 }
Sissors 11:a7a0730e20db 130
Dot 12:beaae3757b7d 131 __attribute__((section(".ARM.__at_0x7CA0"))) static void write(char *value)
Sissors 11:a7a0730e20db 132 {
Sissors 11:a7a0730e20db 133 int i = 0;
Sissors 11:a7a0730e20db 134 //Loop through string and send everything
Sissors 11:a7a0730e20db 135 while(*(value+i) != '\0') {
Sissors 11:a7a0730e20db 136 while(!(UART0->S1 & UART_S1_TDRE_MASK));
Sissors 11:a7a0730e20db 137 UART0->D = *(value+i);
Sissors 11:a7a0730e20db 138 i++;
Sissors 11:a7a0730e20db 139 }
Sissors 11:a7a0730e20db 140 }