A fork of Erik Olieman's bootloader for the KL05Z32. The bootloader is placed in the 29th sector allowing for 28kB of program memory. The 32nd sector is left empty after the bootloader to allow for use of the non volatile storage without the risk of overwriting it during serial firmware update.

Dependencies:   mbed-dev

Fork of Bootloader_K64F by Erik -

This is a simple boot loader which resides at the end of the flash banks of your uController. It has be ported to work with the KL05Z. Porting the code to another Free scale uController requires the following changes:

Step 1 Change the address of the following function address

If your uController of choice has a flash size other than 32kB then you will likely want to change the addresses of following functions (current addresses displayed).

bootloader.cpp
0x7000 bootloader
0x7080 setupserial
0x70A0 write

FreescaleIAP.cpp
0x7268 erase_sector
0x7300 program_flash
0x7500 flash_size
0x7600 program_word
0x7700 run_command
0x7800 check_boundary
0x7900 check_align
0x7A00 verify_erased
0x7B00 check_error

Step 2 Follow the serial_api HAL file of your target

You will be unable to access anything that you don't define yourself in the bootloader. For this reason you need to create a function for serial. Look up and follow your target's serial_api.c file.

__attribute__((section(".ARM.__at_0x7080"))) static void setupserial(void) {
        //Setup USBRX/USBTX pins (PTB1/PTB2)
        //Enable Port B Clock
        SIM->SCGC5 |= 1 <<SIM_SCGC5_PORTB_SHIFT;                   
        //Select MCGFLLCLK clock
        SIM->SOPT2 |= 1 <<SIM_SOPT2_UART0SRC_SHIFT;
        //Select Pins PB1 & PB2 to their ALT3 function (RX & TX respectively)
        PORTB->PCR[1] = (PORTB->PCR[1] & ~0x700) | (3 << 8);
        PORTB->PCR[2] = (PORTB->PCR[2] & ~0x700) | (3 << 8);
        //Set UART0 Clock to be enabled
        SIM->SCGC4 |= SIM_SCGC4_UART0_MASK;
        //Set UART Baud Rate Register
        //Value's gathered expirimentally   
        UART0->BDH = 1;
        UART0->BDL = 56;   
        //Enable UART0
        UART0->C2 |= (UARTLP_C2_RE_MASK | UARTLP_C2_TE_MASK);
}

To set the correct baudrate you need to determine the right values for BDH & BDL registers for your clock speed. An easy way to do that is by simply printing them with the clock speed that you want like so:

#include "mbed.h"

Serial pc(USBTX, USBrX);

int main()
{
    while (1) {
        pc.printf("BDH: %d \n", UART0->BDH); // print the value of BDH Register
        pc.printf("BDL: %d \n", UART0->BDL); // print the value of BDL Register
        pc.printf("SOPT2: %d \n", SIM->SOPT2); // print the value of SOPT2 Register
        pc.printf("SCGC5: %d \n", SIM->SCGC5); // print the value of SCGC5 Register
        pc.printf("SCGC4: %d \n", SIM->SCGC4); // print the value of SCGC4 Register
        pc.printf("C2: %d \n", UART0->C2); // print the value of C2 Register
        pc.printf("C4: %d \n", UART0->C4); // print the value of C4 Register
        wait(.5);
    }
}

Step 3 Include bootloader.cpp in your first firmware

Before you can update firmware using serial you first must update the firmware using SWD along with the bootloader included in your binary.

#include "mbed.h"
extern void bootloader(void);
//...
main(){
//...
bootloader();
}

Step 4 Include reference to bootloader in serial updates

Once the bootloader is on the uControler you should not include the bootloader in binaries that you want to update over serial. Instead you can access the bootloader by using the following:

#include "mbed.h"

void *(*bootloader)(void) = (void *(*)(void))0x7001; //Address of bootloader + 1 (For some reason)
//...
main(){
//...
bootloader();
}

IF YOU ARE PROGRAMMING USING A PROGRAMMER (SWD OR JTAG) AND NOT SERIAL MAKE SURE TO INCLUDE THE BOOTLOADER OR OTHERWISE IT WILL MOST LIKELY BE ERASED OR OVERWRITTEN

Committer:
Sissors
Date:
Sun Apr 24 12:49:11 2016 +0000
Revision:
11:a7a0730e20db
Child:
12:beaae3757b7d
Undo my accidental failure

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Sissors 11:a7a0730e20db 1 #include "mbed.h"
Sissors 11:a7a0730e20db 2 #include "FreescaleIAP.h"
Sissors 11:a7a0730e20db 3
Sissors 11:a7a0730e20db 4 //Could be nicer, but for now just erase all preceding sectors
Sissors 11:a7a0730e20db 5 #define NUM_SECTORS 15
Sissors 11:a7a0730e20db 6 #define TIMEOUT 10000000
Sissors 11:a7a0730e20db 7 #define BUFFER_SIZE 16
Sissors 11:a7a0730e20db 8
Sissors 11:a7a0730e20db 9 void setupserial();
Sissors 11:a7a0730e20db 10 void write(char *value);
Sissors 11:a7a0730e20db 11
Sissors 11:a7a0730e20db 12 __attribute__((section(".ARM.__at_0x10000"))) void bootloader(void)
Sissors 11:a7a0730e20db 13 {
Sissors 11:a7a0730e20db 14 setupserial();
Sissors 11:a7a0730e20db 15 write("\n\n\rBootloader\r\n");
Sissors 11:a7a0730e20db 16 write("Continue? (y/n)");
Sissors 11:a7a0730e20db 17
Sissors 11:a7a0730e20db 18 //Wait until data arrived, if it is 'y', continue
Sissors 11:a7a0730e20db 19 while(!(UART0->S1 & UART_S1_RDRF_MASK));
Sissors 11:a7a0730e20db 20 if (UART0->D != 'y')
Sissors 11:a7a0730e20db 21 return;
Sissors 11:a7a0730e20db 22
Sissors 11:a7a0730e20db 23 //Erase all sectors we use for the user program
Sissors 11:a7a0730e20db 24 write("Erasing sectors!\r\n");
Sissors 11:a7a0730e20db 25 for (int i = 0; i<NUM_SECTORS; i++)
Sissors 11:a7a0730e20db 26 erase_sector(SECTOR_SIZE * i);
Sissors 11:a7a0730e20db 27
Sissors 11:a7a0730e20db 28 write("Done erasing, send file!\r\n");
Sissors 11:a7a0730e20db 29
Sissors 11:a7a0730e20db 30
Sissors 11:a7a0730e20db 31 char buffer[BUFFER_SIZE];
Sissors 11:a7a0730e20db 32 uint32_t count = 0;
Sissors 11:a7a0730e20db 33 uint8_t buffercount = 0;
Sissors 11:a7a0730e20db 34 uint32_t timeout = 0;
Sissors 11:a7a0730e20db 35
Sissors 11:a7a0730e20db 36 //Wait until data is sent
Sissors 11:a7a0730e20db 37 while(!(UART0->S1 & UART_S1_RDRF_MASK));
Sissors 11:a7a0730e20db 38
Sissors 11:a7a0730e20db 39 //Data receive loop
Sissors 11:a7a0730e20db 40 while(1) {
Sissors 11:a7a0730e20db 41 //Check if there is new data
Sissors 11:a7a0730e20db 42 if (UART0->S1 & UART_S1_RDRF_MASK) {
Sissors 11:a7a0730e20db 43 //Place data in buffer
Sissors 11:a7a0730e20db 44 buffer[buffercount] = UART0->D;
Sissors 11:a7a0730e20db 45 buffercount++;
Sissors 11:a7a0730e20db 46
Sissors 11:a7a0730e20db 47 //Reset timeout
Sissors 11:a7a0730e20db 48 timeout = 0;
Sissors 11:a7a0730e20db 49
Sissors 11:a7a0730e20db 50 //We write per BUFFER_SIZE chars
Sissors 11:a7a0730e20db 51 if (buffercount == BUFFER_SIZE) {
Sissors 11:a7a0730e20db 52 //NMI Handler is at bytes 8-9-10-11, we overwrite this to point to bootloader function
Sissors 11:a7a0730e20db 53 if (count == 0) {
Sissors 11:a7a0730e20db 54 buffer[8] = 0x01;
Sissors 11:a7a0730e20db 55 buffer[9] = 0x00;
Sissors 11:a7a0730e20db 56 buffer[10] = 0x01;
Sissors 11:a7a0730e20db 57 buffer[11] = 0x00;
Sissors 11:a7a0730e20db 58 }
Sissors 11:a7a0730e20db 59
Sissors 11:a7a0730e20db 60 //Program the buffer into the flash memory
Sissors 11:a7a0730e20db 61 if (program_flash(count, buffer, BUFFER_SIZE) != 0) {
Sissors 11:a7a0730e20db 62 write("Error!\r\n");
Sissors 11:a7a0730e20db 63 break;
Sissors 11:a7a0730e20db 64 }
Sissors 11:a7a0730e20db 65
Sissors 11:a7a0730e20db 66 //Reset buffercount for next buffer
Sissors 11:a7a0730e20db 67 write("#");
Sissors 11:a7a0730e20db 68 buffercount = 0;
Sissors 11:a7a0730e20db 69 count += BUFFER_SIZE;
Sissors 11:a7a0730e20db 70 }
Sissors 11:a7a0730e20db 71 } else {
Sissors 11:a7a0730e20db 72 //No new data, increase timeout
Sissors 11:a7a0730e20db 73 timeout++;
Sissors 11:a7a0730e20db 74
Sissors 11:a7a0730e20db 75 //We have received no new data for a while, assume we are done
Sissors 11:a7a0730e20db 76 if (timeout > TIMEOUT) {
Sissors 11:a7a0730e20db 77 //If there is data left in the buffer, program it
Sissors 11:a7a0730e20db 78 if (buffercount != 0) {
Sissors 11:a7a0730e20db 79 for (int i = buffercount; i<BUFFER_SIZE; i++) {
Sissors 11:a7a0730e20db 80 buffer[i] = 0xFF;
Sissors 11:a7a0730e20db 81 }
Sissors 11:a7a0730e20db 82 program_flash(count, buffer, BUFFER_SIZE);
Sissors 11:a7a0730e20db 83 }
Sissors 11:a7a0730e20db 84 break; //We should be done programming :D
Sissors 11:a7a0730e20db 85 }
Sissors 11:a7a0730e20db 86 }
Sissors 11:a7a0730e20db 87 }
Sissors 11:a7a0730e20db 88 write("Done programming!\r\n");
Sissors 11:a7a0730e20db 89 NVIC_SystemReset();
Sissors 11:a7a0730e20db 90
Sissors 11:a7a0730e20db 91 //Shouldn't arrive here
Sissors 11:a7a0730e20db 92 while(1);
Sissors 11:a7a0730e20db 93 }
Sissors 11:a7a0730e20db 94
Sissors 11:a7a0730e20db 95 __attribute__((section(".ARM.__at_0x10080"))) static void setupserial(void) {
Sissors 11:a7a0730e20db 96 //Setup USBTX/USBRX pins (PTB16/PTB17)
Sissors 11:a7a0730e20db 97 SIM->SCGC5 |= 1 << SIM_SCGC5_PORTB_SHIFT;
Sissors 11:a7a0730e20db 98 PORTB->PCR[16] = (PORTB->PCR[16] & 0x700) | (3 << 8);
Sissors 11:a7a0730e20db 99 PORTB->PCR[17] = (PORTB->PCR[17] & 0x700) | (3 << 8);
Sissors 11:a7a0730e20db 100
Sissors 11:a7a0730e20db 101 //Setup UART (ugly, copied resulting values from mbed serial setup)
Sissors 11:a7a0730e20db 102 SIM->SCGC4 |= SIM_SCGC4_UART0_MASK;
Sissors 11:a7a0730e20db 103
Sissors 11:a7a0730e20db 104 UART0->BDH = 3;
Sissors 11:a7a0730e20db 105 UART0->BDL = 13;
Sissors 11:a7a0730e20db 106 UART0->C4 = 8;
Sissors 11:a7a0730e20db 107 UART0->C2 = 12; //Enables UART
Sissors 11:a7a0730e20db 108
Sissors 11:a7a0730e20db 109 }
Sissors 11:a7a0730e20db 110
Sissors 11:a7a0730e20db 111 __attribute__((section(".ARM.__at_0x100A0"))) static void write(char *value)
Sissors 11:a7a0730e20db 112 {
Sissors 11:a7a0730e20db 113 int i = 0;
Sissors 11:a7a0730e20db 114 //Loop through string and send everything
Sissors 11:a7a0730e20db 115 while(*(value+i) != '\0') {
Sissors 11:a7a0730e20db 116 while(!(UART0->S1 & UART_S1_TDRE_MASK));
Sissors 11:a7a0730e20db 117 UART0->D = *(value+i);
Sissors 11:a7a0730e20db 118 i++;
Sissors 11:a7a0730e20db 119 }
Sissors 11:a7a0730e20db 120 }