Allan Brignoli
/
Rome2_P6
gugus
Controller.cpp
- Committer:
- Brignall
- Date:
- 2018-05-18
- Revision:
- 0:1a0321f1ffbc
File content as of revision 0:1a0321f1ffbc:
/* * Controller.cpp * Copyright (c) 2018, ZHAW * All rights reserved. */ #include <cmath> #include "Controller.h" using namespace std; const float Controller::PERIOD = 0.001f; // period of control task, given in [s] const float Controller::PI = 3.14159265f; // the constant PI const float Controller::WHEEL_DISTANCE = 0.170f; // distance between wheels, given in [m] const float Controller::WHEEL_RADIUS = 0.0375f; // radius of wheels, given in [m] const float Controller::COUNTS_PER_TURN = 1200.0f; // resolution of encoder counter const float Controller::LOWPASS_FILTER_FREQUENCY = 300.0f; // frequency of lowpass filter for actual speed values, given in [rad/s] const float Controller::KN = 40.0f; // speed constant of motor, given in [rpm/V] const float Controller::KP = 0.2f; // speed controller gain, given in [V/rpm] const float Controller::MAX_VOLTAGE = 12.0f; // supply voltage for power stage in [V] const float Controller::MIN_DUTY_CYCLE = 0.02f; // minimum allowed value for duty cycle (2%) const float Controller::MAX_DUTY_CYCLE = 0.98f; // maximum allowed value for duty cycle (98%) const float Controller::SIGMA_TRANSLATION = 0.0001; // standard deviation of estimated translation per period, given in [m] const float Controller::SIGMA_ORIENTATION = 0.0002; // standard deviation of estimated orientation per period, given in [rad] const float Controller::SIGMA_DISTANCE = 0.01; // standard deviation of distance measurement, given in [m] const float Controller::SIGMA_GAMMA = 0.03; // standard deviation of angle measurement, given in [rad] /** * Creates and initializes a Controller object. * @param pwmLeft a pwm output object to set the duty cycle for the left motor. * @param pwmRight a pwm output object to set the duty cycle for the right motor. * @param counterLeft an encoder counter object to read the position of the left motor. * @param counterRight an encoder counter object to read the position of the right motor. */ Controller::Controller(PwmOut& pwmLeft, PwmOut& pwmRight, EncoderCounter& counterLeft, EncoderCounter& counterRight) : pwmLeft(pwmLeft), pwmRight(pwmRight), counterLeft(counterLeft), counterRight(counterRight) { // initialize periphery drivers pwmLeft.period(0.00005f); pwmLeft.write(0.5f); pwmRight.period(0.00005f); pwmRight.write(0.5f); // initialize local variables translationalMotion.setProfileVelocity(1.5f); translationalMotion.setProfileAcceleration(1.5f); translationalMotion.setProfileDeceleration(3.0f); rotationalMotion.setProfileVelocity(3.0f); rotationalMotion.setProfileAcceleration(15.0f); rotationalMotion.setProfileDeceleration(15.0f); translationalVelocity = 0.0f; rotationalVelocity = 0.0f; actualTranslationalVelocity = 0.0f; actualRotationalVelocity = 0.0f; previousValueCounterLeft = counterLeft.read(); previousValueCounterRight = counterRight.read(); speedLeftFilter.setPeriod(PERIOD); speedLeftFilter.setFrequency(LOWPASS_FILTER_FREQUENCY); speedRightFilter.setPeriod(PERIOD); speedRightFilter.setFrequency(LOWPASS_FILTER_FREQUENCY); desiredSpeedLeft = 0.0f; desiredSpeedRight = 0.0f; actualSpeedLeft = 0.0f; actualSpeedRight = 0.0f; x = 0.0f; y = 0.0f; alpha = 0.0f; p[0][0] = 0.001f; p[0][1] = 0.0f; p[0][2] = 0.0f; p[1][0] = 0.0f; p[1][1] = 0.001f; p[1][2] = 0.0f; p[2][0] = 0.0f; p[2][1] = 0.0f; p[2][2] = 0.001f; // start periodic task ticker.attach(callback(this, &Controller::run), PERIOD); } /** * Deletes the Controller object and releases all allocated resources. */ Controller::~Controller() { ticker.detach(); } /** * Sets the desired translational velocity of the robot. * @param velocity the desired translational velocity, given in [m/s]. */ void Controller::setTranslationalVelocity(float velocity) { this->translationalVelocity = velocity; } /** * Sets the desired rotational velocity of the robot. * @param velocity the desired rotational velocity, given in [rad/s]. */ void Controller::setRotationalVelocity(float velocity) { this->rotationalVelocity = velocity; } /** * Gets the actual translational velocity of the robot. * @return the actual translational velocity, given in [m/s]. */ float Controller::getActualTranslationalVelocity() { return actualTranslationalVelocity; } /** * Gets the actual rotational velocity of the robot. * @return the actual rotational velocity, given in [rad/s]. */ float Controller::getActualRotationalVelocity() { return actualRotationalVelocity; } /** * Sets the actual x coordinate of the robots position. * @param x the x coordinate of the position, given in [m]. */ void Controller::setX(float x) { this->x = x; } /** * Gets the actual x coordinate of the robots position. * @return the x coordinate of the position, given in [m]. */ float Controller::getX() { return x; } /** * Sets the actual y coordinate of the robots position. * @param y the y coordinate of the position, given in [m]. */ void Controller::setY(float y) { this->y = y; } /** * Gets the actual y coordinate of the robots position. * @return the y coordinate of the position, given in [m]. */ float Controller::getY() { return y; } /** * Sets the actual orientation of the robot. * @param alpha the orientation, given in [rad]. */ void Controller::setAlpha(float alpha) { this->alpha = alpha; } /** * Gets the actual orientation of the robot. * @return the orientation, given in [rad]. */ float Controller::getAlpha() { return alpha; } /** * Correct the pose with given actual and measured coordinates of a beacon. * @param xActual the actual x coordinate of the beacon, given in [m]. * @param yActual the actual y coordinate of the beacon, given in [m]. * @param xMeasured the x coordinate of the beacon measured with a sensor(i.e. a laser scanner), given in [m]. * @param yMeasured the y coordinate of the beacon measured with a sensor(i.e. a laser scanner), given in [m]. */ void Controller::correctPoseWithBeacon(float xActual, float yActual, float xMeasured, float yMeasured) { // create copies of current state and covariance matrix for Kalman filter P float x = this->x; float y = this->y; float alpha = this->alpha; float p[3][3]; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { p[i][j] = this->p[i][j]; } } // calculate covariance matrix of innovation S float s[2][2]; float r = sqrt((xActual-x)*(xActual-x)+(yActual-y)*(yActual-y)); s[0][0] = 1.0f/r/r*(p[1][0]*xActual*yActual+p[1][1]*yActual*yActual+r*r*SIGMA_DISTANCE*SIGMA_DISTANCE+p[0][0]*(xActual-x)*(xActual-x)-p[1][0]*yActual*x+p[0][1]*(xActual-x)*(yActual-y)-p[1][0]*xActual*y-2.0f*p[1][1]*yActual*y+p[1][0]*x*y+p[1][1]*y*y); s[0][1] = -(1.0f/r/r/r*(-p[1][1]*xActual*yActual+p[1][0]*yActual*yActual-p[0][2]*xActual*r*r-p[1][2]*yActual*r*r-p[0][1]*(xActual-x)*(xActual-x)+p[1][1]*yActual*x+p[0][2]*r*r*x+p[0][0]*(xActual-x)*(yActual-y)+p[1][1]*xActual*y-2.0f*p[1][0]*yActual*y+p[1][2]*r*r*y-p[1][1]*x*y+p[1][0]*y*y)); s[1][0] = ((xActual-x)*(p[2][0]*r*r+p[1][0]*(xActual-x)+p[0][0]*(-yActual+y))+(yActual-y)*(p[2][1]*r*r+p[1][1]*(xActual-x)+p[0][1]*(-yActual+y)))/r/r/r; s[1][1] = p[2][2]+SIGMA_GAMMA*SIGMA_GAMMA+p[1][2]*(xActual-x)/r/r+p[0][2]*(-yActual+y)/r/r-(yActual-y)*(p[2][0]*r*r+p[1][0]*(xActual-x)+p[0][0]*(-yActual+y))/r/r/r/r+(xActual-x)*(p[2][1]*r*r+p[1][1]*(xActual-x)+p[0][1]*(-yActual+y))/r/r/r/r; // calculate Kalman matrix K float k[3][2]; k[0][0] = -((s[1][0]*(-p[0][2]+(p[0][1]*(-xActual+x))/r/r+(p[0][0]*(yActual-y))/r/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]))+(s[1][1]*((p[0][0]*(-xActual+x))/r+(p[0][1]*(-yActual+y))/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]); k[0][1] = (s[0][0]*(-p[0][2]+(p[0][1]*(-xActual+x))/r/r+(p[0][0]*(yActual-y))/r/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1])-(s[0][1]*((p[0][0]*(-xActual+x))/r+(p[0][1]*(-yActual+y))/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]); k[1][0] = -((s[1][0]*(-p[1][2]+(p[1][1]*(-xActual+x))/r/r+(p[1][0]*(yActual-y))/r/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]))+(s[1][1]*((p[1][0]*(-xActual+x))/r+(p[1][1]*(-yActual+y))/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]); k[1][1] = (s[0][0]*(-p[1][2]+(p[1][1]*(-xActual+x))/r/r+(p[1][0]*(yActual-y))/r/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1])-(s[0][1]*((p[1][0]*(-xActual+x))/r+(p[1][1]*(-yActual+y))/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]); k[2][0] = -((s[1][0]*(-p[2][2]+(p[2][1]*(-xActual+x))/r/r+(p[2][0]*(yActual-y))/r/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]))+(s[1][1]*((p[2][0]*(-xActual+x))/r+(p[2][1]*(-yActual+y))/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]); k[2][1] = (s[0][0]*(-p[2][2]+(p[2][1]*(-xActual+x))/r/r+(p[2][0]*(yActual-y))/r/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1])-(s[0][1]*((p[2][0]*(-xActual+x))/r+(p[2][1]*(-yActual+y))/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]); // calculate pose correction float distanceMeasured = sqrt((xMeasured-x)*(xMeasured-x)+(yMeasured-y)*(yMeasured-y)); float gammaMeasured = atan2(yMeasured-y, xMeasured-x)-alpha; if (gammaMeasured > PI) gammaMeasured -= 2.0f*PI; else if (gammaMeasured < -PI) gammaMeasured += 2.0f*PI; float distanceEstimated = sqrt((xActual-x)*(xActual-x)+(yActual-y)*(yActual-y)); float gammaEstimated = atan2(yActual-y, xActual-x)-alpha; if (gammaEstimated > PI) gammaEstimated -= 2.0f*PI; else if (gammaEstimated < -PI) gammaEstimated += 2.0f*PI; x += k[0][0]*(distanceMeasured-distanceEstimated)+k[0][1]*(gammaMeasured-gammaEstimated); y += k[1][0]*(distanceMeasured-distanceEstimated)+k[1][1]*(gammaMeasured-gammaEstimated); alpha += k[2][0]*(distanceMeasured-distanceEstimated)+k[2][1]*(gammaMeasured-gammaEstimated); this->x = x; this->y = y; this->alpha = alpha; // calculate correction of covariance matrix for Kalman filter P p[0][0] = k[0][1]*p[2][0]+p[0][0]*(1-(k[0][0]*(-xActual+x))/r-(k[0][1]*(yActual-y))/r/r)+p[1][0]*(-((k[0][1]*(-xActual+x))/r/r)-(k[0][0]*(-yActual+y))/r); p[0][1] = k[0][1]*p[2][1]+p[0][1]*(1-(k[0][0]*(-xActual+x))/r-(k[0][1]*(yActual-y))/r/r)+p[1][1]*(-((k[0][1]*(-xActual+x))/r/r)-(k[0][0]*(-yActual+y))/r); p[0][2] = k[0][1]*p[2][2]+p[0][2]*(1-(k[0][0]*(-xActual+x))/r-(k[0][1]*(yActual-y))/r/r)+p[1][2]*(-((k[0][1]*(-xActual+x))/r/r)-(k[0][0]*(-yActual+y))/r); p[1][0] = k[1][1]*p[2][0]+p[0][0]*(-((k[1][0]*(-xActual+x))/r)-(k[1][1]*(yActual-y))/r/r)+p[1][0]*(1-(k[1][1]*(-xActual+x))/r/r-(k[1][0]*(-yActual+y))/r); p[1][1] = k[1][1]*p[2][1]+p[0][1]*(-((k[1][0]*(-xActual+x))/r)-(k[1][1]*(yActual-y))/r/r)+p[1][1]*(1-(k[1][1]*(-xActual+x))/r/r-(k[1][0]*(-yActual+y))/r); p[1][2] = k[1][1]*p[2][2]+p[0][2]*(-((k[1][0]*(-xActual+x))/r)-(k[1][1]*(yActual-y))/r/r)+p[1][2]*(1-(k[1][1]*(-xActual+x))/r/r-(k[1][0]*(-yActual+y))/r); p[2][0] = (1+k[2][1])*p[2][0]+p[0][0]*(-((k[2][0]*(-xActual+x))/r)-(k[2][1]*(yActual-y))/r/r)+p[1][0]*(-((k[2][1]*(-xActual+x))/r/r)-(k[2][0]*(-yActual+y))/r); p[2][1] = (1+k[2][1])*p[2][1]+p[0][1]*(-((k[2][0]*(-xActual+x))/r)-(k[2][1]*(yActual-y))/r/r)+p[1][1]*(-((k[2][1]*(-xActual+x))/r/r)-(k[2][0]*(-yActual+y))/r); p[2][2] = (1+k[2][1])*p[2][2]+p[0][2]*(-((k[2][0]*(-xActual+x))/r)-(k[2][1]*(yActual-y))/r/r)+p[1][2]*(-((k[2][1]*(-xActual+x))/r/r)-(k[2][0]*(-yActual+y))/r); for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { this->p[i][j] = p[i][j]; } } } /** * This method is called periodically by the ticker object and contains the * algorithm of the speed controller. */ void Controller::run() { // calculate the planned velocities using the motion planner translationalMotion.incrementToVelocity(translationalVelocity, PERIOD); rotationalMotion.incrementToVelocity(rotationalVelocity, PERIOD); // calculate the values 'desiredSpeedLeft' and 'desiredSpeedRight' using the kinematic model desiredSpeedLeft = (translationalMotion.velocity-WHEEL_DISTANCE/2.0f*rotationalMotion.velocity)/WHEEL_RADIUS*60.0f/2.0f/PI; desiredSpeedRight = -(translationalMotion.velocity+WHEEL_DISTANCE/2.0f*rotationalMotion.velocity)/WHEEL_RADIUS*60.0f/2.0f/PI; // calculate actual speed of motors in [rpm] short valueCounterLeft = counterLeft.read(); short valueCounterRight = counterRight.read(); short countsInPastPeriodLeft = valueCounterLeft-previousValueCounterLeft; short countsInPastPeriodRight = valueCounterRight-previousValueCounterRight; previousValueCounterLeft = valueCounterLeft; previousValueCounterRight = valueCounterRight; actualSpeedLeft = speedLeftFilter.filter((float)countsInPastPeriodLeft/COUNTS_PER_TURN/PERIOD*60.0f); actualSpeedRight = speedRightFilter.filter((float)countsInPastPeriodRight/COUNTS_PER_TURN/PERIOD*60.0f); // calculate motor phase voltages float voltageLeft = KP*(desiredSpeedLeft-actualSpeedLeft)+desiredSpeedLeft/KN; float voltageRight = KP*(desiredSpeedRight-actualSpeedRight)+desiredSpeedRight/KN; // calculate, limit and set duty cycles float dutyCycleLeft = 0.5f+0.5f*voltageLeft/MAX_VOLTAGE; if (dutyCycleLeft < MIN_DUTY_CYCLE) dutyCycleLeft = MIN_DUTY_CYCLE; else if (dutyCycleLeft > MAX_DUTY_CYCLE) dutyCycleLeft = MAX_DUTY_CYCLE; pwmLeft.write(dutyCycleLeft); float dutyCycleRight = 0.5f+0.5f*voltageRight/MAX_VOLTAGE; if (dutyCycleRight < MIN_DUTY_CYCLE) dutyCycleRight = MIN_DUTY_CYCLE; else if (dutyCycleRight > MAX_DUTY_CYCLE) dutyCycleRight = MAX_DUTY_CYCLE; pwmRight.write(dutyCycleRight); // calculate the values 'actualTranslationalVelocity' and 'actualRotationalVelocity' using the kinematic model actualTranslationalVelocity = (actualSpeedLeft-actualSpeedRight)*2.0f*PI/60.0f*WHEEL_RADIUS/2.0f; actualRotationalVelocity = (-actualSpeedRight-actualSpeedLeft)*2.0f*PI/60.0f*WHEEL_RADIUS/WHEEL_DISTANCE; // calculate the actual robot pose float deltaTranslation = actualTranslationalVelocity*PERIOD; float deltaOrientation = actualRotationalVelocity*PERIOD; float sinAlpha = sin(alpha+deltaOrientation); float cosAlpha = cos(alpha+deltaOrientation); x += cosAlpha*deltaTranslation; y += sinAlpha*deltaTranslation; float alpha = this->alpha+deltaOrientation; while (alpha > PI) alpha -= 2.0f*PI; while (alpha < -PI) alpha += 2.0f*PI; this->alpha = alpha; // calculate covariance matrix for Kalman filter P p[0][0] = p[0][0]+SIGMA_TRANSLATION*SIGMA_TRANSLATION*cosAlpha*cosAlpha+deltaTranslation*deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2])*sinAlpha*sinAlpha-deltaTranslation*(p[0][2]+p[2][0])*sinAlpha; p[0][1] = p[0][1]-deltaTranslation*p[2][1]*sinAlpha+cosAlpha*(deltaTranslation*p[0][2]+(SIGMA_TRANSLATION*SIGMA_TRANSLATION-deltaTranslation*deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2]))*sinAlpha); p[0][2] = p[0][2]-deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2])*sinAlpha; p[1][0] = p[1][0]-deltaTranslation*p[1][2]*sinAlpha+cosAlpha*(deltaTranslation*p[2][0]+(SIGMA_TRANSLATION*SIGMA_TRANSLATION-deltaTranslation*deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2]))*sinAlpha); p[1][1] = p[1][1]+deltaTranslation*deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2])*cosAlpha*cosAlpha+deltaTranslation*(p[1][2]+p[2][1])*cosAlpha+SIGMA_TRANSLATION*SIGMA_TRANSLATION*sinAlpha*sinAlpha; p[1][2] = p[1][2]+deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2])*cosAlpha; p[2][0] = p[2][0]-deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2])*sinAlpha; p[2][1] = p[2][1]+deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2])*cosAlpha; p[2][2] = p[2][2]+SIGMA_ORIENTATION*SIGMA_ORIENTATION; }