gugus

Dependencies:   mbed

Revision:
0:1a0321f1ffbc
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Controller.cpp	Fri May 18 12:18:21 2018 +0000
@@ -0,0 +1,362 @@
+/*
+ * Controller.cpp
+ * Copyright (c) 2018, ZHAW
+ * All rights reserved.
+ */
+
+#include <cmath>
+#include "Controller.h"
+
+using namespace std;
+
+const float Controller::PERIOD = 0.001f;                    // period of control task, given in [s]
+const float Controller::PI = 3.14159265f;                   // the constant PI
+const float Controller::WHEEL_DISTANCE = 0.170f;            // distance between wheels, given in [m]
+const float Controller::WHEEL_RADIUS = 0.0375f;             // radius of wheels, given in [m]
+const float Controller::COUNTS_PER_TURN = 1200.0f;          // resolution of encoder counter
+const float Controller::LOWPASS_FILTER_FREQUENCY = 300.0f;  // frequency of lowpass filter for actual speed values, given in [rad/s]
+const float Controller::KN = 40.0f;                         // speed constant of motor, given in [rpm/V]
+const float Controller::KP = 0.2f;                          // speed controller gain, given in [V/rpm]
+const float Controller::MAX_VOLTAGE = 12.0f;                // supply voltage for power stage in [V]
+const float Controller::MIN_DUTY_CYCLE = 0.02f;             // minimum allowed value for duty cycle (2%)
+const float Controller::MAX_DUTY_CYCLE = 0.98f;             // maximum allowed value for duty cycle (98%)
+const float Controller::SIGMA_TRANSLATION = 0.0001;         // standard deviation of estimated translation per period, given in [m]
+const float Controller::SIGMA_ORIENTATION = 0.0002;         // standard deviation of estimated orientation per period, given in [rad]
+const float Controller::SIGMA_DISTANCE = 0.01;              // standard deviation of distance measurement, given in [m]
+const float Controller::SIGMA_GAMMA = 0.03;                 // standard deviation of angle measurement, given in [rad]
+
+/**
+ * Creates and initializes a Controller object.
+ * @param pwmLeft a pwm output object to set the duty cycle for the left motor.
+ * @param pwmRight a pwm output object to set the duty cycle for the right motor.
+ * @param counterLeft an encoder counter object to read the position of the left motor.
+ * @param counterRight an encoder counter object to read the position of the right motor.
+ */
+Controller::Controller(PwmOut& pwmLeft, PwmOut& pwmRight, EncoderCounter& counterLeft, EncoderCounter& counterRight) : pwmLeft(pwmLeft), pwmRight(pwmRight), counterLeft(counterLeft), counterRight(counterRight) {
+    
+    // initialize periphery drivers
+    
+    pwmLeft.period(0.00005f);
+    pwmLeft.write(0.5f);
+    
+    pwmRight.period(0.00005f);
+    pwmRight.write(0.5f);
+    
+    // initialize local variables
+    
+    translationalMotion.setProfileVelocity(1.5f);
+    translationalMotion.setProfileAcceleration(1.5f);
+    translationalMotion.setProfileDeceleration(3.0f);
+    
+    rotationalMotion.setProfileVelocity(3.0f);
+    rotationalMotion.setProfileAcceleration(15.0f);
+    rotationalMotion.setProfileDeceleration(15.0f);
+    
+    translationalVelocity = 0.0f;
+    rotationalVelocity = 0.0f;
+    actualTranslationalVelocity = 0.0f;
+    actualRotationalVelocity = 0.0f;
+    
+    previousValueCounterLeft = counterLeft.read();
+    previousValueCounterRight = counterRight.read();
+    
+    speedLeftFilter.setPeriod(PERIOD);
+    speedLeftFilter.setFrequency(LOWPASS_FILTER_FREQUENCY);
+    
+    speedRightFilter.setPeriod(PERIOD);
+    speedRightFilter.setFrequency(LOWPASS_FILTER_FREQUENCY);
+    
+    desiredSpeedLeft = 0.0f;
+    desiredSpeedRight = 0.0f;
+    
+    actualSpeedLeft = 0.0f;
+    actualSpeedRight = 0.0f;
+    
+    x = 0.0f;
+    y = 0.0f;
+    alpha = 0.0f;
+    
+    p[0][0] = 0.001f;
+    p[0][1] = 0.0f;
+    p[0][2] = 0.0f;
+    p[1][0] = 0.0f;
+    p[1][1] = 0.001f;
+    p[1][2] = 0.0f;
+    p[2][0] = 0.0f;
+    p[2][1] = 0.0f;
+    p[2][2] = 0.001f;
+    
+    // start periodic task
+    
+    ticker.attach(callback(this, &Controller::run), PERIOD);
+}
+
+/**
+ * Deletes the Controller object and releases all allocated resources.
+ */
+Controller::~Controller() {
+    
+    ticker.detach();
+}
+
+/**
+ * Sets the desired translational velocity of the robot.
+ * @param velocity the desired translational velocity, given in [m/s].
+ */
+void Controller::setTranslationalVelocity(float velocity) {
+    
+    this->translationalVelocity = velocity;
+}
+
+/**
+ * Sets the desired rotational velocity of the robot.
+ * @param velocity the desired rotational velocity, given in [rad/s].
+ */
+void Controller::setRotationalVelocity(float velocity) {
+    
+    this->rotationalVelocity = velocity;
+}
+
+/**
+ * Gets the actual translational velocity of the robot.
+ * @return the actual translational velocity, given in [m/s].
+ */
+float Controller::getActualTranslationalVelocity() {
+    
+    return actualTranslationalVelocity;
+}
+
+/**
+ * Gets the actual rotational velocity of the robot.
+ * @return the actual rotational velocity, given in [rad/s].
+ */
+float Controller::getActualRotationalVelocity() {
+    
+    return actualRotationalVelocity;
+}
+
+/**
+ * Sets the actual x coordinate of the robots position.
+ * @param x the x coordinate of the position, given in [m].
+ */
+void Controller::setX(float x) {
+    
+    this->x = x;
+}
+
+/**
+ * Gets the actual x coordinate of the robots position.
+ * @return the x coordinate of the position, given in [m].
+ */
+float Controller::getX() {
+    
+    return x;
+}
+
+/**
+ * Sets the actual y coordinate of the robots position.
+ * @param y the y coordinate of the position, given in [m].
+ */
+void Controller::setY(float y) {
+    
+    this->y = y;
+}
+
+/**
+ * Gets the actual y coordinate of the robots position.
+ * @return the y coordinate of the position, given in [m].
+ */
+float Controller::getY() {
+    
+    return y;
+}
+
+/**
+ * Sets the actual orientation of the robot.
+ * @param alpha the orientation, given in [rad].
+ */
+void Controller::setAlpha(float alpha) {
+    
+    this->alpha = alpha;
+}
+
+/**
+ * Gets the actual orientation of the robot.
+ * @return the orientation, given in [rad].
+ */
+float Controller::getAlpha() {
+    
+    return alpha;
+}
+
+/**
+ * Correct the pose with given actual and measured coordinates of a beacon.
+ * @param xActual the actual x coordinate of the beacon, given in [m].
+ * @param yActual the actual y coordinate of the beacon, given in [m].
+ * @param xMeasured the x coordinate of the beacon measured with a sensor(i.e. a laser scanner), given in [m].
+ * @param yMeasured the y coordinate of the beacon measured with a sensor(i.e. a laser scanner), given in [m].
+ */
+void Controller::correctPoseWithBeacon(float xActual, float yActual, float xMeasured, float yMeasured) {
+    
+    // create copies of current state and covariance matrix for Kalman filter P
+    
+    float x = this->x;
+    float y = this->y;
+    float alpha = this->alpha;
+    
+    float p[3][3];
+    
+    for (int i = 0; i < 3; i++) {
+        for (int j = 0; j < 3; j++) {
+            p[i][j] = this->p[i][j];
+        }
+    }
+    
+    // calculate covariance matrix of innovation S
+    
+    float s[2][2];
+    float r = sqrt((xActual-x)*(xActual-x)+(yActual-y)*(yActual-y));
+    
+    s[0][0] = 1.0f/r/r*(p[1][0]*xActual*yActual+p[1][1]*yActual*yActual+r*r*SIGMA_DISTANCE*SIGMA_DISTANCE+p[0][0]*(xActual-x)*(xActual-x)-p[1][0]*yActual*x+p[0][1]*(xActual-x)*(yActual-y)-p[1][0]*xActual*y-2.0f*p[1][1]*yActual*y+p[1][0]*x*y+p[1][1]*y*y);
+    s[0][1] = -(1.0f/r/r/r*(-p[1][1]*xActual*yActual+p[1][0]*yActual*yActual-p[0][2]*xActual*r*r-p[1][2]*yActual*r*r-p[0][1]*(xActual-x)*(xActual-x)+p[1][1]*yActual*x+p[0][2]*r*r*x+p[0][0]*(xActual-x)*(yActual-y)+p[1][1]*xActual*y-2.0f*p[1][0]*yActual*y+p[1][2]*r*r*y-p[1][1]*x*y+p[1][0]*y*y));
+    s[1][0] = ((xActual-x)*(p[2][0]*r*r+p[1][0]*(xActual-x)+p[0][0]*(-yActual+y))+(yActual-y)*(p[2][1]*r*r+p[1][1]*(xActual-x)+p[0][1]*(-yActual+y)))/r/r/r;
+    s[1][1] = p[2][2]+SIGMA_GAMMA*SIGMA_GAMMA+p[1][2]*(xActual-x)/r/r+p[0][2]*(-yActual+y)/r/r-(yActual-y)*(p[2][0]*r*r+p[1][0]*(xActual-x)+p[0][0]*(-yActual+y))/r/r/r/r+(xActual-x)*(p[2][1]*r*r+p[1][1]*(xActual-x)+p[0][1]*(-yActual+y))/r/r/r/r;
+    
+    // calculate Kalman matrix K
+    
+    float k[3][2];
+    
+    k[0][0] = -((s[1][0]*(-p[0][2]+(p[0][1]*(-xActual+x))/r/r+(p[0][0]*(yActual-y))/r/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]))+(s[1][1]*((p[0][0]*(-xActual+x))/r+(p[0][1]*(-yActual+y))/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]);
+    k[0][1] = (s[0][0]*(-p[0][2]+(p[0][1]*(-xActual+x))/r/r+(p[0][0]*(yActual-y))/r/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1])-(s[0][1]*((p[0][0]*(-xActual+x))/r+(p[0][1]*(-yActual+y))/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]);
+    k[1][0] = -((s[1][0]*(-p[1][2]+(p[1][1]*(-xActual+x))/r/r+(p[1][0]*(yActual-y))/r/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]))+(s[1][1]*((p[1][0]*(-xActual+x))/r+(p[1][1]*(-yActual+y))/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]);
+    k[1][1] = (s[0][0]*(-p[1][2]+(p[1][1]*(-xActual+x))/r/r+(p[1][0]*(yActual-y))/r/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1])-(s[0][1]*((p[1][0]*(-xActual+x))/r+(p[1][1]*(-yActual+y))/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]);
+    k[2][0] = -((s[1][0]*(-p[2][2]+(p[2][1]*(-xActual+x))/r/r+(p[2][0]*(yActual-y))/r/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]))+(s[1][1]*((p[2][0]*(-xActual+x))/r+(p[2][1]*(-yActual+y))/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]);
+    k[2][1] = (s[0][0]*(-p[2][2]+(p[2][1]*(-xActual+x))/r/r+(p[2][0]*(yActual-y))/r/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1])-(s[0][1]*((p[2][0]*(-xActual+x))/r+(p[2][1]*(-yActual+y))/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]);
+    
+    // calculate pose correction
+    
+    float distanceMeasured = sqrt((xMeasured-x)*(xMeasured-x)+(yMeasured-y)*(yMeasured-y));
+    float gammaMeasured = atan2(yMeasured-y, xMeasured-x)-alpha;
+    
+    if (gammaMeasured > PI) gammaMeasured -= 2.0f*PI;
+    else if (gammaMeasured < -PI) gammaMeasured += 2.0f*PI;
+    
+    float distanceEstimated = sqrt((xActual-x)*(xActual-x)+(yActual-y)*(yActual-y));
+    float gammaEstimated = atan2(yActual-y, xActual-x)-alpha;
+    
+    if (gammaEstimated > PI) gammaEstimated -= 2.0f*PI;
+    else if (gammaEstimated < -PI) gammaEstimated += 2.0f*PI;
+    
+    x += k[0][0]*(distanceMeasured-distanceEstimated)+k[0][1]*(gammaMeasured-gammaEstimated);
+    y += k[1][0]*(distanceMeasured-distanceEstimated)+k[1][1]*(gammaMeasured-gammaEstimated);
+    alpha += k[2][0]*(distanceMeasured-distanceEstimated)+k[2][1]*(gammaMeasured-gammaEstimated);
+    
+    this->x = x;
+    this->y = y;
+    this->alpha = alpha;
+    
+    // calculate correction of covariance matrix for Kalman filter P
+    
+    p[0][0] = k[0][1]*p[2][0]+p[0][0]*(1-(k[0][0]*(-xActual+x))/r-(k[0][1]*(yActual-y))/r/r)+p[1][0]*(-((k[0][1]*(-xActual+x))/r/r)-(k[0][0]*(-yActual+y))/r);
+    p[0][1] = k[0][1]*p[2][1]+p[0][1]*(1-(k[0][0]*(-xActual+x))/r-(k[0][1]*(yActual-y))/r/r)+p[1][1]*(-((k[0][1]*(-xActual+x))/r/r)-(k[0][0]*(-yActual+y))/r);
+    p[0][2] = k[0][1]*p[2][2]+p[0][2]*(1-(k[0][0]*(-xActual+x))/r-(k[0][1]*(yActual-y))/r/r)+p[1][2]*(-((k[0][1]*(-xActual+x))/r/r)-(k[0][0]*(-yActual+y))/r);
+    
+    p[1][0] = k[1][1]*p[2][0]+p[0][0]*(-((k[1][0]*(-xActual+x))/r)-(k[1][1]*(yActual-y))/r/r)+p[1][0]*(1-(k[1][1]*(-xActual+x))/r/r-(k[1][0]*(-yActual+y))/r);
+    p[1][1] = k[1][1]*p[2][1]+p[0][1]*(-((k[1][0]*(-xActual+x))/r)-(k[1][1]*(yActual-y))/r/r)+p[1][1]*(1-(k[1][1]*(-xActual+x))/r/r-(k[1][0]*(-yActual+y))/r);
+    p[1][2] = k[1][1]*p[2][2]+p[0][2]*(-((k[1][0]*(-xActual+x))/r)-(k[1][1]*(yActual-y))/r/r)+p[1][2]*(1-(k[1][1]*(-xActual+x))/r/r-(k[1][0]*(-yActual+y))/r);
+    
+    p[2][0] = (1+k[2][1])*p[2][0]+p[0][0]*(-((k[2][0]*(-xActual+x))/r)-(k[2][1]*(yActual-y))/r/r)+p[1][0]*(-((k[2][1]*(-xActual+x))/r/r)-(k[2][0]*(-yActual+y))/r);
+    p[2][1] = (1+k[2][1])*p[2][1]+p[0][1]*(-((k[2][0]*(-xActual+x))/r)-(k[2][1]*(yActual-y))/r/r)+p[1][1]*(-((k[2][1]*(-xActual+x))/r/r)-(k[2][0]*(-yActual+y))/r);
+    p[2][2] = (1+k[2][1])*p[2][2]+p[0][2]*(-((k[2][0]*(-xActual+x))/r)-(k[2][1]*(yActual-y))/r/r)+p[1][2]*(-((k[2][1]*(-xActual+x))/r/r)-(k[2][0]*(-yActual+y))/r);
+    
+    for (int i = 0; i < 3; i++) {
+        for (int j = 0; j < 3; j++) {
+            this->p[i][j] = p[i][j];
+        }
+    }
+}
+
+/**
+ * This method is called periodically by the ticker object and contains the
+ * algorithm of the speed controller.
+ */
+void Controller::run() {
+    
+    // calculate the planned velocities using the motion planner
+    
+    translationalMotion.incrementToVelocity(translationalVelocity, PERIOD);
+    rotationalMotion.incrementToVelocity(rotationalVelocity, PERIOD);
+    
+    // calculate the values 'desiredSpeedLeft' and 'desiredSpeedRight' using the kinematic model
+    
+    desiredSpeedLeft = (translationalMotion.velocity-WHEEL_DISTANCE/2.0f*rotationalMotion.velocity)/WHEEL_RADIUS*60.0f/2.0f/PI;
+    desiredSpeedRight = -(translationalMotion.velocity+WHEEL_DISTANCE/2.0f*rotationalMotion.velocity)/WHEEL_RADIUS*60.0f/2.0f/PI;
+    
+    // calculate actual speed of motors in [rpm]
+    
+    short valueCounterLeft = counterLeft.read();
+    short valueCounterRight = counterRight.read();
+    
+    short countsInPastPeriodLeft = valueCounterLeft-previousValueCounterLeft;
+    short countsInPastPeriodRight = valueCounterRight-previousValueCounterRight;
+    
+    previousValueCounterLeft = valueCounterLeft;
+    previousValueCounterRight = valueCounterRight;
+    
+    actualSpeedLeft = speedLeftFilter.filter((float)countsInPastPeriodLeft/COUNTS_PER_TURN/PERIOD*60.0f);
+    actualSpeedRight = speedRightFilter.filter((float)countsInPastPeriodRight/COUNTS_PER_TURN/PERIOD*60.0f);
+    
+    // calculate motor phase voltages
+    
+    float voltageLeft = KP*(desiredSpeedLeft-actualSpeedLeft)+desiredSpeedLeft/KN;
+    float voltageRight = KP*(desiredSpeedRight-actualSpeedRight)+desiredSpeedRight/KN;
+    
+    // calculate, limit and set duty cycles
+    
+    float dutyCycleLeft = 0.5f+0.5f*voltageLeft/MAX_VOLTAGE;
+    if (dutyCycleLeft < MIN_DUTY_CYCLE) dutyCycleLeft = MIN_DUTY_CYCLE;
+    else if (dutyCycleLeft > MAX_DUTY_CYCLE) dutyCycleLeft = MAX_DUTY_CYCLE;
+    pwmLeft.write(dutyCycleLeft);
+    
+    float dutyCycleRight = 0.5f+0.5f*voltageRight/MAX_VOLTAGE;
+    if (dutyCycleRight < MIN_DUTY_CYCLE) dutyCycleRight = MIN_DUTY_CYCLE;
+    else if (dutyCycleRight > MAX_DUTY_CYCLE) dutyCycleRight = MAX_DUTY_CYCLE;
+    pwmRight.write(dutyCycleRight);
+    
+    // calculate the values 'actualTranslationalVelocity' and 'actualRotationalVelocity' using the kinematic model
+    
+    actualTranslationalVelocity = (actualSpeedLeft-actualSpeedRight)*2.0f*PI/60.0f*WHEEL_RADIUS/2.0f;
+    actualRotationalVelocity = (-actualSpeedRight-actualSpeedLeft)*2.0f*PI/60.0f*WHEEL_RADIUS/WHEEL_DISTANCE;
+    
+    // calculate the actual robot pose
+    
+    float deltaTranslation = actualTranslationalVelocity*PERIOD;
+    float deltaOrientation = actualRotationalVelocity*PERIOD;
+    
+    float sinAlpha = sin(alpha+deltaOrientation);
+    float cosAlpha = cos(alpha+deltaOrientation);
+    
+    x += cosAlpha*deltaTranslation;
+    y += sinAlpha*deltaTranslation;
+    float alpha = this->alpha+deltaOrientation;
+    
+    while (alpha > PI) alpha -= 2.0f*PI;
+    while (alpha < -PI) alpha += 2.0f*PI;
+    
+    this->alpha = alpha;
+    
+    // calculate covariance matrix for Kalman filter P
+    
+    p[0][0] = p[0][0]+SIGMA_TRANSLATION*SIGMA_TRANSLATION*cosAlpha*cosAlpha+deltaTranslation*deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2])*sinAlpha*sinAlpha-deltaTranslation*(p[0][2]+p[2][0])*sinAlpha;
+    p[0][1] = p[0][1]-deltaTranslation*p[2][1]*sinAlpha+cosAlpha*(deltaTranslation*p[0][2]+(SIGMA_TRANSLATION*SIGMA_TRANSLATION-deltaTranslation*deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2]))*sinAlpha);
+    p[0][2] = p[0][2]-deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2])*sinAlpha;
+    
+    p[1][0] = p[1][0]-deltaTranslation*p[1][2]*sinAlpha+cosAlpha*(deltaTranslation*p[2][0]+(SIGMA_TRANSLATION*SIGMA_TRANSLATION-deltaTranslation*deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2]))*sinAlpha);
+    p[1][1] = p[1][1]+deltaTranslation*deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2])*cosAlpha*cosAlpha+deltaTranslation*(p[1][2]+p[2][1])*cosAlpha+SIGMA_TRANSLATION*SIGMA_TRANSLATION*sinAlpha*sinAlpha;
+    p[1][2] = p[1][2]+deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2])*cosAlpha;
+    
+    p[2][0] = p[2][0]-deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2])*sinAlpha;
+    p[2][1] = p[2][1]+deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2])*cosAlpha;
+    p[2][2] = p[2][2]+SIGMA_ORIENTATION*SIGMA_ORIENTATION;
+}
+