W5500 driver for mbed OS 5
Dependents: http-webserver-example mbed-os-example-sockets
Fork of W5500Interface by
W5500Interface.h
- Committer:
- Bongjun
- Date:
- 2018-08-09
- Revision:
- 6:e2ab76b2be07
- Parent:
- 2:06b6f9f7c071
- Child:
- 8:c71c66d43703
File content as of revision 6:e2ab76b2be07:
/** ****************************************************************************** * @file W5500Interface.h * @author Bongjun Hur (modified version from Sergei G (https://os.mbed.com/users/sgnezdov/)) * @brief Header file of the NetworkStack for the W5500 Device ****************************************************************************** * @attention * * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE * TIME. AS A RESULT, WIZnet SHALL NOT BE HELD LIABLE FOR ANY * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. * * <h2><center>© COPYRIGHT 2017,2018 WIZnet Co.,Ltd.</center></h2> ****************************************************************************** */ #ifndef W5500_INTERFACE_H #define W5500_INTERFACE_H #include "mbed.h" #include "W5500.h" //#include "rtos.h" /** w5500_socket struct * W5500 socket */ struct w5500_socket { int fd; nsapi_protocol_t proto; bool connected; void (*callback)(void *); void *callback_data; }; /** W5500Interface class * Implementation of the NetworkStack for the W5500 */ class W5500Interface : public NetworkStack, public EthInterface { public: W5500Interface(SPI* spi, PinName cs, PinName reset); W5500Interface(PinName mosi, PinName miso, PinName sclk, PinName cs, PinName reset); int init(); int init(uint8_t * mac); int init(const char* ip, const char* mask, const char* gateway); int init(uint8_t * mac, const char* ip, const char* mask, const char* gateway); /** Start the interface * @return 0 on success, negative on failure */ virtual int connect(); /** Stop the interface * @return 0 on success, negative on failure */ virtual int disconnect(); /** Get the internally stored IP address * @return IP address of the interface or null if not yet connected */ virtual const char *get_ip_address(); /** Get MAC address and fill mac with it. */ void get_mac(uint8_t mac[6]) ; /** Get the internally stored MAC address * @return MAC address of the interface */ virtual const char *get_mac_address(); protected: /** Opens a socket * * Creates a network socket and stores it in the specified handle. * The handle must be passed to following calls on the socket. * * A stack may have a finite number of sockets, in this case * NSAPI_ERROR_NO_SOCKET is returned if no socket is available. * * @param handle Destination for the handle to a newly created socket * @param proto Protocol of socket to open, NSAPI_TCP or NSAPI_UDP * @return 0 on success, negative error code on failure */ virtual nsapi_error_t socket_open(nsapi_socket_t *handle, nsapi_protocol_t proto); // virtual int socket_open(void **handle, nsapi_protocol_t proto); /** Close the socket * * Closes any open connection and deallocates any memory associated * with the socket. * * @param handle Socket handle * @return 0 on success, negative error code on failure */ virtual nsapi_error_t socket_close(nsapi_socket_t handle); /** Bind a specific address to a socket * * Binding a socket specifies the address and port on which to recieve * data. If the IP address is zeroed, only the port is bound. * * @param handle Socket handle * @param address Local address to bind * @return 0 on success, negative error code on failure. */ virtual nsapi_error_t socket_bind(nsapi_socket_t handle, const SocketAddress &address); /** Listen for connections on a TCP socket * * Marks the socket as a passive socket that can be used to accept * incoming connections. * * @param handle Socket handle * @param backlog Number of pending connections that can be queued * simultaneously * @return 0 on success, negative error code on failure */ virtual nsapi_error_t socket_listen(nsapi_socket_t handle, int backlog); /** Connects TCP socket to a remote host * * Initiates a connection to a remote server specified by the * indicated address. * * @param handle Socket handle * @param address The SocketAddress of the remote host * @return 0 on success, negative error code on failure */ virtual nsapi_error_t socket_connect(nsapi_socket_t handle, const SocketAddress &address); /** Accepts a connection on a TCP socket * * The server socket must be bound and set to listen for connections. * On a new connection, creates a network socket and stores it in the * specified handle. The handle must be passed to following calls on * the socket. * * A stack may have a finite number of sockets, in this case * NSAPI_ERROR_NO_SOCKET is returned if no socket is available. * * This call is non-blocking. If accept would block, * NSAPI_ERROR_WOULD_BLOCK is returned immediately. * * @param server Socket handle to server to accept from * @param handle Destination for a handle to the newly created socket * @param address Destination for the remote address or NULL * @return 0 on success, negative error code on failure */ virtual nsapi_error_t socket_accept(nsapi_socket_t server, nsapi_socket_t *handle, SocketAddress *address=0); /** Send data over a TCP socket * * The socket must be connected to a remote host. Returns the number of * bytes sent from the buffer. * * This call is non-blocking. If send would block, * NSAPI_ERROR_WOULD_BLOCK is returned immediately. * * @param handle Socket handle * @param data Buffer of data to send to the host * @param size Size of the buffer in bytes * @return Number of sent bytes on success, negative error * code on failure */ virtual nsapi_size_or_error_t socket_send(nsapi_socket_t handle, const void *data, nsapi_size_t size); /** Receive data over a TCP socket * * The socket must be connected to a remote host. Returns the number of * bytes received into the buffer. * * This call is non-blocking. If recv would block, * NSAPI_ERROR_WOULD_BLOCK is returned immediately. * * @param handle Socket handle * @param data Destination buffer for data received from the host * @param size Size of the buffer in bytes * @return Number of received bytes on success, negative error * code on failure */ virtual nsapi_size_or_error_t socket_recv(nsapi_socket_t handle, void *data, nsapi_size_t size); /** Send a packet over a UDP socket * * Sends data to the specified address. Returns the number of bytes * sent from the buffer. * * This call is non-blocking. If sendto would block, * NSAPI_ERROR_WOULD_BLOCK is returned immediately. * * @param handle Socket handle * @param address The SocketAddress of the remote host * @param data Buffer of data to send to the host * @param size Size of the buffer in bytes * @return Number of sent bytes on success, negative error * code on failure */ virtual nsapi_size_or_error_t socket_sendto(nsapi_socket_t handle, const SocketAddress &address, const void *data, nsapi_size_t size); /** Receive a packet over a UDP socket * * Receives data and stores the source address in address if address * is not NULL. Returns the number of bytes received into the buffer. * * This call is non-blocking. If recvfrom would block, * NSAPI_ERROR_WOULD_BLOCK is returned immediately. * * @param handle Socket handle * @param address Destination for the source address or NULL * @param data Destination buffer for data received from the host * @param size Size of the buffer in bytes * @return Number of received bytes on success, negative error * code on failure */ virtual nsapi_size_or_error_t socket_recvfrom(nsapi_socket_t handle, SocketAddress *address, void *buffer, nsapi_size_t size); /** Register a callback on state change of the socket * * The specified callback will be called on state changes such as when * the socket can recv/send/accept successfully and on when an error * occurs. The callback may also be called spuriously without reason. * * The callback may be called in an interrupt context and should not * perform expensive operations such as recv/send calls. * * @param handle Socket handle * @param callback Function to call on state change * @param data Argument to pass to callback */ virtual void socket_attach(nsapi_socket_t handle, void (*callback)(void *), void *data); virtual NetworkStack* get_stack() {return this;} private: WIZnet_Chip _w5500; char ip_string[20]; char mask_string[20]; char gw_string[20]; char mac_string[20]; bool ip_set; int listen_port; //void signal_event(nsapi_socket_t handle); //void event(); //w5500 socket management struct w5500_socket w5500_sockets[MAX_SOCK_NUM]; w5500_socket* get_sock(int fd); void init_socks(); /* Thread *_daemon; void daemon(); */ }; #endif