SmartWheels self-driving race car. Designed for NXP Cup. Uses FRDM-KL25Z, area-scan camera, and simple image processing to detect and navigate any NXP spec track.

Dependencies:   TSI USBDevice mbed-dev

Fork of SmartWheels by haofan Zheng

Hardwares/ArduCAM.cpp

Committer:
hazheng
Date:
2017-04-08
Revision:
57:0d8a155d511d
Parent:
56:7d3395ae022d
Child:
63:d9a81b3d69f5

File content as of revision 57:0d8a155d511d:

#include "ArduCAM.h"

//#define SW_DEBUG
#include "GlobalVariable.h"
#include "SWCommon.h"


#include "CamRegBuf.h"

#include "ArduUTFT.h"

#include <string>

#define CAM_BLK_CAL_ACTIVE

//#define CAM_DISP_DEBUG
//#define CAM_DISP_DEBUG_CENTER
//#define CAM_DISP_IMG

#define IMG_PROC_SIGNAL 0xBB

#ifdef __cplusplus
extern "C" {
#endif

const static uint8_t CAM_BLK_CAL_LEFT  = ((RESOLUTION_WIDTH / 2) - 1);
const static uint8_t CAM_BLK_CAL_RIGHT = ((RESOLUTION_WIDTH / 2) + 1);

static DigitalOut cam_cs(PIN_ACC_CS, 1);

static uint8_t temp_mid_pos = RESOLUTION_WIDTH / 2;
static uint8_t black_calibrate = 70;
static volatile uint8_t centerLine[CAM_ROI_UPPER_LIMIT];
static Thread * m_imgProcessThread = NULL;
static Ticker m_tickerImgProc;

//void image_processing();
void cal_black_calibrate();
void tick_image_proc();

inline void ardu_cam_spi_write_8(int address, int value)
{
    // take the SS pin low to select the chip:
#ifdef SW_DEBUG
    g_sw_spi_lock.lock();
#endif
    cam_cs = 0;
    //  send in the address and value via SPI:
    g_spi_port.write(address | 0x80);
    g_spi_port.write(value);
    // take the SS pin high to de-select the chip:
    cam_cs = 1;
#ifdef SW_DEBUG
    g_sw_spi_lock.unlock();
#endif
}
 
inline uint8_t ardu_cam_spi_read_8(int address)
{ 
    // take the SS pin low to select the chip:
#ifdef SW_DEBUG
    g_sw_spi_lock.lock();
#endif
    cam_cs = 0;
    //  send in the address and value via SPI:
    g_spi_port.write(address & 0x7F);
    uint8_t value = static_cast<uint8_t>(g_spi_port.write(0x00));
    // take the SS pin high to de-select the chip:
    cam_cs = 1;
#ifdef SW_DEBUG
    g_sw_spi_lock.unlock();
#endif
    return value;
}
/*
inline void ardu_cam_spi_set_burst()
{
    cam_cs = 0;
    
    g_spi_port.write(BURST_FIFO_READ & 0x7F);
    
    cam_cs = 1;
}

inline uint16_t ardu_cam_spi_burst_read_16()
{
    cam_cs = 0;
    
    uint16_t value = static_cast<uint16_t>(g_spi_port.write(0x00));
    value = (value << 8) & 0xFF00;
    value = value | static_cast<uint16_t>(g_spi_port.write(0x00));
    
    cam_cs = 1;
    return value;
}
*/


bool ardu_cam_init()
{
    //char buf[20];
    
    CamRegBuf * camReg = new CamRegBuf(g_core, CAM_SCCB_WRITE, CAM_SCCB_READ);

    camReg->WriteRegSet(ResetProg);
    wait_ms(10);
    camReg->WriteRegSet(QVGA);
    wait_ms(10);
    
#if defined(ARDUCAM_OV2640)
    camReg->SCCBWrite(0xff, 0x01);
#endif
    //uint8_t camVer = camReg->SCCBRead(CAM_PID_ADDR);
    //sprintf(buf, "Cam VerH %#x", camVer);
    //g_core.GetUSBServer().PushReliableMsg('D', buf);
    
    //camVer = camReg->SCCBRead(CAM_VER_ADDR);
    //sprintf(buf, "Cam VerL %#x", camVer);
    //g_core.GetUSBServer().PushReliableMsg('D', buf);


    delete camReg;
    camReg = NULL;
    
    
    
    
    uint8_t VerNum = ardu_cam_spi_read_8(0x40);
    VerNum = ardu_cam_spi_read_8(0x40);
    
    
    //sprintf(buf, "Ardu Ver %#x", VerNum);
    //g_core.GetUSBServer().PushReliableMsg('D', buf);
    
    ardu_cam_spi_write_8(ARDUCHIP_TEST1, ARDUCHIP_TEST_MSG);
    uint8_t testV = ardu_cam_spi_read_8(ARDUCHIP_TEST1);
    if(VerNum != ARDUCHIP_VER_NUM || testV != ARDUCHIP_TEST_MSG)
    {
        //g_core.GetUSBServer().PushReliableMsg('D', "CameraInit Fa");
        return false;
    }
    //g_core.GetUSBServer().PushReliableMsg('D', "CameraInit Su");
    
    //ardu_cam_set_mode(MCU2LCD_MODE);
    ardu_cam_spi_write_8(ARDUCHIP_CAP_CTRL, 0x00);
    //ardu_cam_start_capture();
    
    
    //unsigned char tempV = ardu_cam_read_reg(ARDUCHIP_MODE);
    //sprintf(buf, "Ardu Stat %#x", tempV);
    //g_core.GetUSBServer().PushReliableMsg('D', buf);
    
    //tempV = ardu_cam_read_reg(ARDUCHIP_CAP_CTRL);
    //sprintf(buf, "Ardu FS1 %#x", tempV);
    //g_core.GetUSBServer().PushReliableMsg('D', buf);
    cal_black_calibrate();
    //m_imgProcessThread = new Thread(osPriorityRealtime); //osPriorityAboveNormal //osPriorityHigh //osPriorityRealtime
    //m_imgProcessThread->set_priority(osPriorityRealtime);
    //m_imgProcessThread->start(callback(image_processing));
    //m_tickerImgProc.attach(&tick_image_proc, 0.1f);
    
    return true;
}

void ardu_cam_start_capture()
{
    ardu_cam_spi_write_8(ARDUCHIP_FIFO, FIFO_CLEAR_MASK);
    
    ardu_cam_spi_write_8(ARDUCHIP_FIFO, FIFO_START_MASK);
}

uint32_t ardu_cam_get_fifo_length()
{
    uint32_t len1,len2,len3,length=0;
    len1 = ardu_cam_spi_read_8(FIFO_SIZE1);
    len2 = ardu_cam_spi_read_8(FIFO_SIZE2);
    len3 = ardu_cam_spi_read_8(FIFO_SIZE3) & 0x07;
    length = ((len3 << 16) | (len2 << 8) | len1) & 0x07ffff;
    return length;
}

uint8_t ardu_cam_get_pixel()
{
    uint16_t VH = ardu_cam_spi_read_8(SINGLE_FIFO_READ);
    uint16_t VL = ardu_cam_spi_read_8(SINGLE_FIFO_READ);
    //uint16_t VL = ardu_cam_spi_burst_read_16();
    
    VL = (VL & 0x00FF) | ((VH << 8) & 0xFF00);
    uint8_t ch = ((VL & 0xF800) >> 9);// << 2;
    float pixel = (static_cast<float>(ch) * 0.21);
    
    ch = ((VL & 0x07E0) >> 3);// << 2;
    pixel += (static_cast<float>(ch) * 0.72);
    
    ch = (VL & 0x001F) << 2;
    pixel += (static_cast<float>(ch) * 0.07);
    
    return static_cast<uint8_t>(pixel);
}

void ardu_cam_print_debug()
{
    uint32_t len = ardu_cam_get_fifo_length();
    //char buf[20];
    //sprintf(buf, "Cam L %#x", len);
    //g_core.GetUSBServer().PushReliableMsg('D', buf);
    
    //if(len < (RESOLUTION_HEIGHT * RESOLUTION_WIDTH * 2))
    //    return;
    
    //Begin output the picture
    std::string lineBuf;
#if defined(MANUAL_REDUCE_RESULOTION_BY2)
    lineBuf.resize((RESOLUTION_WIDTH / 2) + 1);
#else
    lineBuf.resize(RESOLUTION_WIDTH + 1);
#endif
    
    //ardu_cam_spi_set_burst();

    //ardu_cam_get_pixel(); //Get the first dummy pixel


    for (uint8_t i = 0; i < RESOLUTION_HEIGHT; ++i)
    {
#if defined(MANUAL_REDUCE_RESULOTION_BY2)
        lineBuf[0] = i / 2;
        
        for (int j = 0; j < RESOLUTION_WIDTH; ++j)
        {
            if(i % 2 == 0 || j % 2 == 0)
            {
                ardu_cam_get_pixel();
            }
            else
            {
                lineBuf[(j / 2) + 1] = ardu_cam_get_pixel();
            }
        }
        
        if(i % 2 == 0)
        {
            
        }
        else
        {
            g_core.GetUSBServer().PushReliableMsg('P', lineBuf);
            wait(0.35);
        }
        
#else

        lineBuf[0] = i;
        
        for (int j = 0; j < RESOLUTION_WIDTH; ++j)
        {
            //uint8_t p = ardu_cam_get_pixel();
            lineBuf[j + 1] = ardu_cam_get_pixel();
        }
        
        //g_core.GetUSBServer().PushReliableMsg('P', lineBuf);
        wait(0.35);
        
#endif
        
    }

}

uint8_t ardu_cam_is_capture_finished()
{
    return (ardu_cam_spi_read_8(ARDUCHIP_TRIG) & CAP_DONE_MASK);
}

void cal_black_calibrate()
{
    ardu_cam_start_capture();
    
    while (!(ardu_cam_spi_read_8(ARDUCHIP_TRIG) & CAP_DONE_MASK));
    
    float temp = 0.0f;
    static uint16_t pixel = 0x00;
    for (uint8_t j = 0; j < RESOLUTION_WIDTH; ++j)
    {
        pixel = static_cast<uint16_t>(ardu_cam_spi_read_8(SINGLE_FIFO_READ)) << 8;
        pixel = pixel | ardu_cam_spi_read_8(SINGLE_FIFO_READ);

        if(CAM_BLK_CAL_LEFT < j && j <= CAM_BLK_CAL_RIGHT)
        {
            temp += static_cast<uint8_t>((pixel >> 3) & 0x00FF);
        }
    }
    temp = temp / (CAM_BLK_CAL_RIGHT - CAM_BLK_CAL_LEFT);
    black_calibrate = temp * 0.7f;
}

inline void get_img_row_info(const uint8_t display, const uint8_t rowI, uint8_t * left, uint8_t * right)
{
    *left = 0;
    *right = RESOLUTION_WIDTH;
    uint8_t isRightFound = 0;
    static uint16_t pixel = 0x0000;
    static uint8_t pGreen = 0x00;
    
    for (uint8_t j = 0; j < RESOLUTION_WIDTH; ++j)
    {
        pixel = static_cast<uint16_t>(ardu_cam_spi_read_8(SINGLE_FIFO_READ)) << 8;
        pixel = pixel | ardu_cam_spi_read_8(SINGLE_FIFO_READ);

        pGreen = static_cast<uint8_t>((pixel & 0x07E0) >> 3);
        if((pGreen < black_calibrate))
        {
            if(j < temp_mid_pos)
            {
                *left = j;
#ifdef CAM_DISP_DEBUG
                ardu_utft_write_DATA(0xF8, 0x00);
#endif
            }
            else if(!isRightFound)
            {
                *right = j;
                isRightFound = 1;
#ifdef CAM_DISP_DEBUG
                ardu_utft_write_DATA(0xF8, 0x00);
#endif
            }
        }
#ifdef CAM_DISP_DEBUG
        else
        {
            ardu_utft_write_DATA(static_cast<uint8_t>(pixel >> 8), static_cast<uint8_t>(pixel));
        }
        
#elif defined(CAM_DISP_IMG)
        ardu_utft_write_DATA(static_cast<uint8_t>(pixel >> 8), static_cast<uint8_t>(pixel));
#endif
    }
}

volatile const uint8_t* ardu_cam_get_center_array()
{
    return centerLine;
}

void image_processing()
{
    DebugCounter counter(10, PTE4);
    //while(true)
    {
        ardu_cam_start_capture();
    
        while (!(ardu_cam_spi_read_8(ARDUCHIP_TRIG) & CAP_DONE_MASK));
        
        temp_mid_pos = RESOLUTION_WIDTH / 2;
#ifdef CAM_BLK_CAL_ACTIVE
        static float calTemp = 0.0f;
        calTemp = 0.0f;
        static uint16_t greenPixel = 0x00;
        for (uint8_t j = 0; j < RESOLUTION_WIDTH; ++j)
        {
            if(CAM_BLK_CAL_LEFT < j && j <= CAM_BLK_CAL_RIGHT)
            {
                greenPixel = static_cast<uint16_t>(ardu_cam_spi_read_8(SINGLE_FIFO_READ)) << 8;
                greenPixel = greenPixel | ardu_cam_spi_read_8(SINGLE_FIFO_READ);
                greenPixel = (greenPixel & 0x07E0) >> 3;
                calTemp += static_cast<uint8_t>(greenPixel);
            }
            else
            {
                ardu_cam_spi_read_8(SINGLE_FIFO_READ);
                ardu_cam_spi_read_8(SINGLE_FIFO_READ);
            }
        }
        calTemp = calTemp / static_cast<float>(CAM_BLK_CAL_RIGHT - CAM_BLK_CAL_LEFT);
        black_calibrate = static_cast<uint8_t>(calTemp * 0.7f);
#endif
        //cal_black_calibrate();
        uint8_t leftPos = 0;
        uint8_t rightPos = 0;
        for (uint8_t i = 0; i < CAM_ROI_UPPER_LIMIT; ++i)
        /*{
            for (uint8_t j = 0; j < RESOLUTION_WIDTH; ++j)
            {
                ardu_cam_spi_read_8(SINGLE_FIFO_READ);
                ardu_cam_spi_read_8(SINGLE_FIFO_READ);
            }
        }*/
        //for(uint8_t i = CAM_ROI_UPPER_LIMIT; i < (2 * CAM_ROI_UPPER_LIMIT); ++i)
        {
#if defined(CAM_DISP_IMG) or defined(CAM_DISP_DEBUG)
            ardu_utft_set_camimg_row(CAM_ROI_UPPER_LIMIT - i);
#endif
            get_img_row_info(0, i, &leftPos, &rightPos);
            temp_mid_pos = (leftPos + rightPos) / 2;

#ifdef CAM_DISP_DEBUG_CENTER
            ardu_utft_set_camimg_rowcol(CAM_ROI_UPPER_LIMIT - i, temp_mid_pos);
            ardu_utft_write_DATA(0xF8, 0x00);
#endif

            centerLine[CAM_ROI_UPPER_LIMIT - i - 1] = temp_mid_pos;
        }
        
        
        counter.Update();
        //Thread::signal_wait(IMG_PROC_SIGNAL, osWaitForever);
    }
}


void ardu_cam_display_img_utft()
{
    ardu_cam_start_capture();
    
    while (!(ardu_cam_spi_read_8(ARDUCHIP_TRIG) & CAP_DONE_MASK));
    
    temp_mid_pos = RESOLUTION_WIDTH / 2;
    
    for (uint8_t i = 0; i < CAM_ROI_UPPER_LIMIT; ++i)
    {
        ardu_utft_set_camimg_row(CAM_ROI_UPPER_LIMIT - i);
        for (uint8_t j = 0; j < RESOLUTION_WIDTH; ++j)
        {
            uint8_t VH = ardu_cam_spi_read_8(SINGLE_FIFO_READ);
            uint8_t VL = ardu_cam_spi_read_8(SINGLE_FIFO_READ);
            
            ardu_utft_write_DATA(VH, VL);
        }
        
    }
}

void tick_image_proc()
{
    m_imgProcessThread->signal_set(IMG_PROC_SIGNAL);
}

#ifdef __cplusplus
}
#endif