Axeda Ready Demo for Freescale FRDM-KL46Z as accident alert system
Dependencies: FRDM_MMA8451Q KL46Z-USBHost MAG3110 SocketModem TSI mbed FATFileSystem
Fork of AxedaGo-Freescal_FRDM-KL46Z revert by
KL46Z-USBHost/USBHost/USBHost.cpp
- Committer:
- AxedaCorp
- Date:
- 2014-07-02
- Revision:
- 1:5ad12c581db4
- Parent:
- 0:65004368569c
File content as of revision 1:5ad12c581db4:
// Simple USBHost for FRDM-KL46Z #include "USBHost.h" #include <algorithm> template <bool>struct CtAssert; template <>struct CtAssert<true> {}; #define CTASSERT(A) CtAssert<A>(); #ifdef _USB_DBG #define USB_DBG(...) do{fprintf(stderr,"[%s@%d] ",__PRETTY_FUNCTION__,__LINE__);fprintf(stderr,__VA_ARGS__);fprintf(stderr,"\n");} while(0); #define USB_DBG2(...) do{fprintf(stderr,"[%s@%d] ",__PRETTY_FUNCTION__,__LINE__);fprintf(stderr,__VA_ARGS__);fprintf(stderr,"\n");} while(0); #define USB_DBG_HEX(A,B) debug_hex(A,B) #define USB_DBG_ERRSTAT() report.print_errstat(); void debug_hex(uint8_t* buf, int size); #else #define USB_DBG(...) while(0) #define USB_DBG2(...) while(0) #define USB_DBG_HEX(A,B) while(0) #define USB_DBG_ERRSTAT() while(0) #endif #ifdef _USB_TEST #define USB_TEST_ASSERT(A) while(!(A)){fprintf(stderr,"\n\n%s@%d %s ASSERT!\n\n",__PRETTY_FUNCTION__,__LINE__,#A);exit(1);}; #define USB_TEST_ASSERT_FALSE(A) USB_TEST_ASSERT(!(A)) #else #define USB_TEST_ASSERT(A) while(0) #define USB_TEST_ASSERT_FALSE(A) while(0) #endif #define USB_INFO(...) do{fprintf(stderr,__VA_ARGS__);}while(0); USBHost* USBHost::inst = NULL; USBHost* USBHost::getHostInst() { if (inst == NULL) { inst = new USBHost(); inst->init(); } return inst; } USBHost::USBHost() { DeviceLists_count = 0; } /* virtual */ bool USBHost::addDevice(int hub, int port, bool lowSpeed) { USBDeviceConnected* dev = new USBDeviceConnected; USBEndpoint* ep = new USBEndpoint; ep->setDevice(dev); dev->init(hub, port, lowSpeed); dev->setAddress(0); dev->setEpCtl(ep); uint8_t desc[18]; wait_ms(100); int rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 1<<8, 0, desc, 8); USB_TEST_ASSERT(rc == USB_TYPE_OK); USB_DBG_HEX(desc, 8); DeviceDescriptor* dev_desc = reinterpret_cast<DeviceDescriptor*>(desc); ep->setSize(dev_desc->bMaxPacketSize); int new_addr = USBDeviceConnected::getNewAddress(); rc = controlWrite(dev, 0x00, SET_ADDRESS, new_addr, 0, NULL, 0); USB_TEST_ASSERT(rc == USB_TYPE_OK); dev->setAddress(new_addr); wait_ms(100); rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 1<<8, 0, desc, sizeof(desc)); USB_TEST_ASSERT(rc == USB_TYPE_OK); USB_DBG_HEX(desc, sizeof(desc)); dev->setVid(dev_desc->idVendor); dev->setPid(dev_desc->idProduct); dev->setClass(dev_desc->bDeviceClass); USB_INFO("hub: %d port: %d speed: %s vid: %04x pid: %04x class: %02x addr: %d\n", hub, port, (lowSpeed ? "low " : "full"), dev->getVid(), dev->getPid(), dev->getClass(), dev->getAddress()); USB_TEST_ASSERT(DeviceLists_count < MAX_DEVICE_CONNECTED); DeviceLists[DeviceLists_count++] = dev; if (dev->getClass() == HUB_CLASS) { const int config = 1; int rc = controlWrite(dev, 0x00, SET_CONFIGURATION, config, 0, NULL, 0); USB_TEST_ASSERT(rc == USB_TYPE_OK); wait_ms(100); Hub(dev); } return true; } // enumerate a device with the control USBEndpoint USB_TYPE USBHost::enumerate(USBDeviceConnected * dev, IUSBEnumerator* pEnumerator) { if (dev->getClass() == HUB_CLASS) { // skip hub class return USB_TYPE_OK; } uint8_t desc[18]; USB_TYPE rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 1<<8, 0, desc, sizeof(desc)); USB_TEST_ASSERT(rc == USB_TYPE_OK); USB_DBG_HEX(desc, sizeof(desc)); if (rc != USB_TYPE_OK) { return rc; } DeviceDescriptor* dev_desc = reinterpret_cast<DeviceDescriptor*>(desc); dev->setClass(dev_desc->bDeviceClass); pEnumerator->setVidPid(dev->getVid(), dev->getPid()); rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 2<<8, 0, desc, 4); USB_TEST_ASSERT(rc == USB_TYPE_OK); USB_DBG_HEX(desc, 4); int TotalLength = desc[2]|desc[3]<<8; uint8_t* buf = new uint8_t[TotalLength]; rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 2<<8, 0, buf, TotalLength); USB_TEST_ASSERT(rc == USB_TYPE_OK); //USB_DBG_HEX(buf, TotalLength); // Parse the configuration descriptor parseConfDescr(dev, buf, TotalLength, pEnumerator); delete[] buf; // only set configuration if not enumerated before if (!dev->isEnumerated()) { USB_DBG("Set configuration 1 on dev: %p", dev); // sixth step: set configuration (only 1 supported) int config = 1; USB_TYPE res = controlWrite(dev, 0x00, SET_CONFIGURATION, config, 0, NULL, 0); if (res != USB_TYPE_OK) { USB_DBG("SET CONF FAILED"); return res; } // Some devices may require this delay wait_ms(100); dev->setEnumerated(); // Now the device is enumerated! USB_DBG("dev %p is enumerated", dev); } return USB_TYPE_OK; } // this method fills the USBDeviceConnected object: class,.... . It also add endpoints found in the descriptor. void USBHost::parseConfDescr(USBDeviceConnected * dev, uint8_t * conf_descr, uint32_t len, IUSBEnumerator* pEnumerator) { uint32_t index = 0; uint32_t len_desc = 0; uint8_t id = 0; int nb_endpoints_used = 0; USBEndpoint * ep = NULL; uint8_t intf_nb = 0; bool parsing_intf = false; uint8_t current_intf = 0; EndpointDescriptor* ep_desc; while (index < len) { len_desc = conf_descr[index]; id = conf_descr[index+1]; switch (id) { case CONFIGURATION_DESCRIPTOR: USB_DBG("dev: %p has %d intf", dev, conf_descr[4]); dev->setNbIntf(conf_descr[4]); break; case INTERFACE_DESCRIPTOR: if(pEnumerator->parseInterface(conf_descr[index + 2], conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7])) { if (intf_nb++ <= MAX_INTF) { current_intf = conf_descr[index + 2]; dev->addInterface(current_intf, conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7]); nb_endpoints_used = 0; USB_DBG("ADD INTF %d on device %p: class: %d, subclass: %d, proto: %d", current_intf, dev, conf_descr[index + 5],conf_descr[index + 6],conf_descr[index + 7]); } else { USB_DBG("Drop intf..."); } parsing_intf = true; } else { parsing_intf = false; } break; case ENDPOINT_DESCRIPTOR: ep_desc = reinterpret_cast<EndpointDescriptor*>(conf_descr+index); if (parsing_intf && (intf_nb <= MAX_INTF) ) { if (nb_endpoints_used < MAX_ENDPOINT_PER_INTERFACE) { ENDPOINT_TYPE type = (ENDPOINT_TYPE)(ep_desc->bmAttributes & 0x03); ENDPOINT_DIRECTION dir = (ep_desc->bEndpointAddress & 0x80) ? IN : OUT; if(pEnumerator->useEndpoint(current_intf, type, dir)) { ep = new USBEndpoint; ep->setDevice(dev); ep->setType(type); ep->setAddress(ep_desc->bEndpointAddress); ep->setSize(ep_desc->wMaxPacketSize); USB_DBG("ADD USBEndpoint %p, on interf %d on device %p", ep, current_intf, dev); dev->addEndpoint(current_intf, ep); nb_endpoints_used++; } } } break; case HID_DESCRIPTOR: //lenReportDescr = conf_descr[index + 7] | (conf_descr[index + 8] << 8); break; default: break; } index += len_desc; } } USB_TYPE USBHost::controlRead(USBDeviceConnected* dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) { SETUP_PACKET setup = {requestType, request, value, index}; int result = ControlRead(dev, &setup, buf, len); //USB_DBG2("result=%d %02x", result, LastStatus); return (result >= 0) ? USB_TYPE_OK : USB_TYPE_ERROR; } USB_TYPE USBHost::controlWrite(USBDeviceConnected* dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) { SETUP_PACKET setup = {requestType, request, value, index}; int result = ControlWrite(dev, &setup, buf, len); if (result >= 0) { return USB_TYPE_OK; } USB_DBG("result=%d %02x", result, LastStatus); USB_DBG_HEX(buf, len); return USB_TYPE_ERROR; } USB_TYPE USBHost::bulkRead(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking) { USB_TEST_ASSERT(blocking); int result = BulkRead(ep, buf, len); if (result >= 0) { return USB_TYPE_OK; } //USB_DBG2("result=%d %02x", result, host->LastStatus); return USB_TYPE_ERROR; } USB_TYPE USBHost::bulkWrite(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking) { USB_TEST_ASSERT(blocking); int result = BulkWrite(ep, buf, len); if (result >= 0) { return USB_TYPE_OK; } USB_DBG2("result=%d %02x", result, LastStatus); return USB_TYPE_ERROR; } USB_TYPE USBHost::interruptRead(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking) { int result = InterruptRead(ep, buf, len); if (result >= 0) { return USB_TYPE_OK; } return USB_TYPE_ERROR; } int USBHost::ControlRead(USBDeviceConnected* dev, SETUP_PACKET* setup, uint8_t* data, int size) { USB_TEST_ASSERT(dev); USBEndpoint* ep = dev->getEpCtl(); USB_TEST_ASSERT(ep); setAddr(dev->getAddress(), dev->getSpeed()); token_setup(ep, setup, size); // setup stage if (LastStatus != ACK) { USB_DBG("setup %02x", LastStatus); return -1; } int read_len = 0; while(read_len < size) { int size2 = std::min(size-read_len, ep->getSize()); int result = token_in(ep, data+read_len, size2); //USB_DBG("token_in result=%d %02x", result, LastStatus); if (result < 0) { USB_DBG("token_in %d/%d %02x", read_len, size, LastStatus); return result; } read_len += result; if (result < ep->getSize()) { break; } } ep->setData01(DATA1); int result = token_out(ep); // status stage if (result < 0) { USB_DBG("status token_out %02x", LastStatus); if (LastStatus == STALL) { ep->setLengthTransferred(read_len); return read_len; } return result; } ep->setLengthTransferred(read_len); return read_len; } int USBHost::ControlWrite(USBDeviceConnected* dev, SETUP_PACKET* setup, uint8_t* data, int size) { USB_TEST_ASSERT(dev); USBEndpoint* ep = dev->getEpCtl(); USB_TEST_ASSERT(ep); setAddr(dev->getAddress(), dev->getSpeed()); token_setup(ep, setup, size); // setup stage if (LastStatus != ACK) { USB_DBG("setup %02x", LastStatus); return -1; } int write_len = 0; if (data != NULL) { write_len = token_out(ep, data, size); if (write_len < 0) { return -1; } } ep->setData01(DATA1); int result = token_in(ep); // status stage if (result < 0) { USB_DBG("result=%d %02x", result, LastStatus); //return result; } ep->setLengthTransferred(write_len); return write_len; } int USBHost::InterruptRead(USBEndpoint* ep, uint8_t* data, int size) { USB_TEST_ASSERT(ep); USBDeviceConnected* dev = ep->getDevice(); USB_TEST_ASSERT(dev); setAddr(dev->getAddress(), dev->getSpeed()); setEndpoint(); const int retryLimit = 0; int read_len = 0; for(int n = 0; read_len < size; n++) { int size2 = std::min(size-read_len, ep->getSize()); int result = token_in(ep, data+read_len, size2, retryLimit); if (result < 0) { if (LastStatus == NAK) { if (n == 0) { return -1; } break; } //USB_DBG("token_in result=%d %02x", result, LastStatus); return result; } read_len += result; if (result < ep->getSize()) { break; } } ep->setLengthTransferred(read_len); return read_len; } int USBHost::BulkRead(USBEndpoint* ep, uint8_t* data, int size, int timeout_ms) { USB_TEST_ASSERT(ep); USBDeviceConnected* dev = ep->getDevice(); USB_TEST_ASSERT(dev); setAddr(dev->getAddress()); setEndpoint(); int retryLimit = (timeout_ms == 0) ? 0 : 10; int read_len = 0; Timer t; for(int n = 0; read_len < size; n++) { int size2 = std::min(size-read_len, ep->getSize()); int result = token_in(ep, data+read_len, size2, retryLimit); if (result < 0) { if (LastStatus == NAK) { if (n == 0) { return -1; } break; } //USB_DBG("token_in result=%d %02x", result, LastStatus); return result; } read_len += result; if (result < ep->getSize()) { break; } if (timeout_ms > 0 && t.read_ms() > timeout_ms) { USB_DBG("timeout_ms: %d", timeout_ms); break; } } ep->setLengthTransferred(read_len); return read_len; } int USBHost::BulkWrite(USBEndpoint* ep, const uint8_t* data, int size) { USB_TEST_ASSERT(ep); USBDeviceConnected* dev = ep->getDevice(); USB_TEST_ASSERT(dev); setAddr(dev->getAddress()); setEndpoint(); int write_len = 0; for(int n = 0; write_len < size; n++) { int size2 = std::min(size-write_len, ep->getSize()); int result = token_out(ep, data+write_len, size2); if (result < 0) { if (LastStatus == NAK) { if (n == 0) { return -1; } break; } USB_DBG("token_out result=%d %02x", result, LastStatus); return result; } write_len += result; if (result < ep->getSize()) { break; } } ep->setLengthTransferred(write_len); return write_len; } int USBHost::IsochronousRead(USBEndpoint* ep, uint8_t* data, int size) { USBDeviceConnected* dev = ep->getDevice(); USB_TEST_ASSERT(dev); setAddr(dev->getAddress()); int result = token_iso_in(ep, data, size); if (result >= 0) { ep->setLengthTransferred(result); } return result; }