Axeda Ready Demo for Freescale FRDM-KL46Z as accident alert system

Dependencies:   FRDM_MMA8451Q KL46Z-USBHost MAG3110 SocketModem TSI mbed FATFileSystem

Fork of AxedaGo-Freescal_FRDM-KL46Z revert by Axeda Corp

KL46Z-USBHost/USBHost/USBHost.cpp

Committer:
AxedaCorp
Date:
2014-07-02
Revision:
1:5ad12c581db4
Parent:
0:65004368569c

File content as of revision 1:5ad12c581db4:

// Simple USBHost for FRDM-KL46Z
#include "USBHost.h"
#include <algorithm>

template <bool>struct CtAssert;
template <>struct CtAssert<true> {};
#define CTASSERT(A) CtAssert<A>();


#ifdef _USB_DBG
#define USB_DBG(...) do{fprintf(stderr,"[%s@%d] ",__PRETTY_FUNCTION__,__LINE__);fprintf(stderr,__VA_ARGS__);fprintf(stderr,"\n");} while(0);
#define USB_DBG2(...) do{fprintf(stderr,"[%s@%d] ",__PRETTY_FUNCTION__,__LINE__);fprintf(stderr,__VA_ARGS__);fprintf(stderr,"\n");} while(0);
#define USB_DBG_HEX(A,B) debug_hex(A,B)
#define USB_DBG_ERRSTAT() report.print_errstat();
void debug_hex(uint8_t* buf, int size);
#else
#define USB_DBG(...) while(0)
#define USB_DBG2(...) while(0)
#define USB_DBG_HEX(A,B) while(0)
#define USB_DBG_ERRSTAT() while(0)
#endif

#ifdef _USB_TEST
#define USB_TEST_ASSERT(A) while(!(A)){fprintf(stderr,"\n\n%s@%d %s ASSERT!\n\n",__PRETTY_FUNCTION__,__LINE__,#A);exit(1);};
#define USB_TEST_ASSERT_FALSE(A) USB_TEST_ASSERT(!(A))
#else
#define USB_TEST_ASSERT(A) while(0)
#define USB_TEST_ASSERT_FALSE(A) while(0)
#endif

#define USB_INFO(...) do{fprintf(stderr,__VA_ARGS__);}while(0);

USBHost* USBHost::inst = NULL;

USBHost* USBHost::getHostInst()
{
    if (inst == NULL) {
        inst = new USBHost();
        inst->init();
    }
    return inst;
}

USBHost::USBHost() {
    DeviceLists_count = 0;
}

/* virtual */ bool USBHost::addDevice(int hub, int port, bool lowSpeed) {
    USBDeviceConnected* dev = new USBDeviceConnected;
    USBEndpoint* ep = new USBEndpoint;
    ep->setDevice(dev);
    dev->init(hub, port, lowSpeed);
    dev->setAddress(0);
    dev->setEpCtl(ep);
    uint8_t desc[18];
    wait_ms(100);

    int rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 1<<8, 0, desc, 8);
    USB_TEST_ASSERT(rc == USB_TYPE_OK);
    USB_DBG_HEX(desc, 8);
    DeviceDescriptor* dev_desc = reinterpret_cast<DeviceDescriptor*>(desc);
    ep->setSize(dev_desc->bMaxPacketSize);

    int new_addr = USBDeviceConnected::getNewAddress();
    rc = controlWrite(dev, 0x00, SET_ADDRESS, new_addr, 0, NULL, 0);
    USB_TEST_ASSERT(rc == USB_TYPE_OK);
    dev->setAddress(new_addr);
    wait_ms(100);

    rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 1<<8, 0, desc, sizeof(desc));
    USB_TEST_ASSERT(rc == USB_TYPE_OK);
    USB_DBG_HEX(desc, sizeof(desc));

    dev->setVid(dev_desc->idVendor);
    dev->setPid(dev_desc->idProduct);
    dev->setClass(dev_desc->bDeviceClass);
    USB_INFO("hub: %d port: %d speed: %s vid: %04x pid: %04x class: %02x addr: %d\n",
        hub, port, (lowSpeed ? "low " : "full"), dev->getVid(), dev->getPid(), dev->getClass(),
        dev->getAddress());

    USB_TEST_ASSERT(DeviceLists_count < MAX_DEVICE_CONNECTED);
    DeviceLists[DeviceLists_count++] = dev;

    if (dev->getClass() == HUB_CLASS) {
        const int config = 1;
        int rc = controlWrite(dev, 0x00, SET_CONFIGURATION, config, 0, NULL, 0);
        USB_TEST_ASSERT(rc == USB_TYPE_OK);
        wait_ms(100);
        Hub(dev);
    }
    return true;
}

// enumerate a device with the control USBEndpoint
USB_TYPE USBHost::enumerate(USBDeviceConnected * dev, IUSBEnumerator* pEnumerator)
{
    if (dev->getClass() == HUB_CLASS) { // skip hub class
        return USB_TYPE_OK;
    }
    uint8_t desc[18];
    USB_TYPE rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 1<<8, 0, desc, sizeof(desc));
    USB_TEST_ASSERT(rc == USB_TYPE_OK);
    USB_DBG_HEX(desc, sizeof(desc));
    if (rc != USB_TYPE_OK) {
        return rc;
    }
    DeviceDescriptor* dev_desc = reinterpret_cast<DeviceDescriptor*>(desc);
    dev->setClass(dev_desc->bDeviceClass);
    pEnumerator->setVidPid(dev->getVid(), dev->getPid());

    rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 2<<8, 0, desc, 4);
    USB_TEST_ASSERT(rc == USB_TYPE_OK);
    USB_DBG_HEX(desc, 4);

    int TotalLength = desc[2]|desc[3]<<8;
    uint8_t* buf = new uint8_t[TotalLength];
    rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 2<<8, 0, buf, TotalLength);
    USB_TEST_ASSERT(rc == USB_TYPE_OK);
    //USB_DBG_HEX(buf, TotalLength);

    // Parse the configuration descriptor
    parseConfDescr(dev, buf, TotalLength, pEnumerator);
    delete[] buf;
    // only set configuration if not enumerated before
    if (!dev->isEnumerated()) {
        USB_DBG("Set configuration 1 on dev: %p", dev);
        // sixth step: set configuration (only 1 supported)
        int config = 1;
        USB_TYPE res = controlWrite(dev, 0x00, SET_CONFIGURATION, config, 0, NULL, 0);
        if (res != USB_TYPE_OK) {
            USB_DBG("SET CONF FAILED");
            return res;
        }
        // Some devices may require this delay
        wait_ms(100);
        dev->setEnumerated();
        // Now the device is enumerated!
        USB_DBG("dev %p is enumerated", dev);
    }
    return USB_TYPE_OK;
}

// this method fills the USBDeviceConnected object: class,.... . It also add endpoints found in the descriptor.
void USBHost::parseConfDescr(USBDeviceConnected * dev, uint8_t * conf_descr, uint32_t len, IUSBEnumerator* pEnumerator)
{
    uint32_t index = 0;
    uint32_t len_desc = 0;
    uint8_t id = 0;
    int nb_endpoints_used = 0;
    USBEndpoint * ep = NULL;
    uint8_t intf_nb = 0;
    bool parsing_intf = false;
    uint8_t current_intf = 0;
    EndpointDescriptor* ep_desc;

    while (index < len) {
        len_desc = conf_descr[index];
        id = conf_descr[index+1];
        switch (id) {
            case CONFIGURATION_DESCRIPTOR:
                USB_DBG("dev: %p has %d intf", dev, conf_descr[4]);
                dev->setNbIntf(conf_descr[4]);
                break;
            case INTERFACE_DESCRIPTOR:
                if(pEnumerator->parseInterface(conf_descr[index + 2], conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7])) {
                    if (intf_nb++ <= MAX_INTF) {
                        current_intf = conf_descr[index + 2];
                        dev->addInterface(current_intf, conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7]);
                        nb_endpoints_used = 0;
                        USB_DBG("ADD INTF %d on device %p: class: %d, subclass: %d, proto: %d", current_intf, dev, conf_descr[index + 5],conf_descr[index + 6],conf_descr[index + 7]);
                    } else {
                        USB_DBG("Drop intf...");
                    }
                    parsing_intf = true;
                } else {
                    parsing_intf = false;
                }
                break;
            case ENDPOINT_DESCRIPTOR:
                ep_desc = reinterpret_cast<EndpointDescriptor*>(conf_descr+index);
                if (parsing_intf && (intf_nb <= MAX_INTF) ) {
                    if (nb_endpoints_used < MAX_ENDPOINT_PER_INTERFACE) {
                        ENDPOINT_TYPE type = (ENDPOINT_TYPE)(ep_desc->bmAttributes & 0x03);
                        ENDPOINT_DIRECTION dir = (ep_desc->bEndpointAddress & 0x80) ? IN : OUT;
                        if(pEnumerator->useEndpoint(current_intf, type, dir)) {
                            ep = new USBEndpoint;
                            ep->setDevice(dev);
                            ep->setType(type);
                            ep->setAddress(ep_desc->bEndpointAddress);
                            ep->setSize(ep_desc->wMaxPacketSize);
                            USB_DBG("ADD USBEndpoint %p, on interf %d on device %p", ep, current_intf, dev);
                            dev->addEndpoint(current_intf, ep);
                            nb_endpoints_used++;
                        }
                    }
                }
                break;
            case HID_DESCRIPTOR:
                //lenReportDescr = conf_descr[index + 7] | (conf_descr[index + 8] << 8);
                break;
            default:
                break;
        }
        index += len_desc;
    }
}

USB_TYPE USBHost::controlRead(USBDeviceConnected* dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) {
    SETUP_PACKET setup = {requestType, request, value, index};
    int result = ControlRead(dev, &setup, buf, len);
    //USB_DBG2("result=%d %02x", result, LastStatus);
    return (result >= 0) ? USB_TYPE_OK : USB_TYPE_ERROR;
}

USB_TYPE USBHost::controlWrite(USBDeviceConnected* dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) {
    SETUP_PACKET setup = {requestType, request, value, index};
    int result = ControlWrite(dev, &setup, buf, len);
    if (result >= 0) {
        return USB_TYPE_OK;
    }
    USB_DBG("result=%d %02x", result, LastStatus);
    USB_DBG_HEX(buf, len);
    return USB_TYPE_ERROR;
}

USB_TYPE USBHost::bulkRead(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking) {
    USB_TEST_ASSERT(blocking);
    int result = BulkRead(ep, buf, len);
    if (result >= 0) {
        return USB_TYPE_OK;
    }
    //USB_DBG2("result=%d %02x", result, host->LastStatus);
    return USB_TYPE_ERROR;
}

USB_TYPE USBHost::bulkWrite(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking) {
    USB_TEST_ASSERT(blocking);
    int result = BulkWrite(ep, buf, len);
    if (result >= 0) {
        return USB_TYPE_OK;
    }
    USB_DBG2("result=%d %02x", result, LastStatus);
    return USB_TYPE_ERROR;
}

USB_TYPE USBHost::interruptRead(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking) {
    int result = InterruptRead(ep, buf, len);
    if (result >= 0) {
        return USB_TYPE_OK;
    }
    return USB_TYPE_ERROR;
}

int USBHost::ControlRead(USBDeviceConnected* dev, SETUP_PACKET* setup, uint8_t* data, int size) {
    USB_TEST_ASSERT(dev);
    USBEndpoint* ep = dev->getEpCtl();
    USB_TEST_ASSERT(ep);
    setAddr(dev->getAddress(), dev->getSpeed());
    token_setup(ep, setup, size); // setup stage
    if (LastStatus != ACK) {
        USB_DBG("setup %02x", LastStatus);
        return -1;
    }
    int read_len = 0;
    while(read_len < size) {
        int size2 = std::min(size-read_len, ep->getSize());
        int result = token_in(ep, data+read_len, size2);
        //USB_DBG("token_in result=%d %02x", result, LastStatus);
        if (result < 0) {
            USB_DBG("token_in %d/%d %02x", read_len, size, LastStatus);
            return result;
        }
        read_len += result;
        if (result < ep->getSize()) {
            break;
        }
    }    
    ep->setData01(DATA1);
    int result = token_out(ep); // status stage
    if (result < 0) {
        USB_DBG("status token_out %02x", LastStatus);
        if (LastStatus == STALL) {
            ep->setLengthTransferred(read_len);
            return read_len;
        }
        return result;
    }
    ep->setLengthTransferred(read_len);
    return read_len;
}

int USBHost::ControlWrite(USBDeviceConnected* dev, SETUP_PACKET* setup, uint8_t* data, int size) {
    USB_TEST_ASSERT(dev);
    USBEndpoint* ep = dev->getEpCtl();
    USB_TEST_ASSERT(ep);
    setAddr(dev->getAddress(), dev->getSpeed());
    token_setup(ep, setup, size); // setup stage
    if (LastStatus != ACK) {
        USB_DBG("setup %02x", LastStatus);
        return -1;
    }
    int write_len = 0;
    if (data != NULL) {
        write_len = token_out(ep, data, size);
        if (write_len < 0) {
            return -1;
        }
    }
    ep->setData01(DATA1);
    int result = token_in(ep); // status stage
    if (result < 0) {
        USB_DBG("result=%d %02x", result, LastStatus);
        //return result;
    }
    ep->setLengthTransferred(write_len);
    return write_len;
}

int USBHost::InterruptRead(USBEndpoint* ep, uint8_t* data, int size) {
    USB_TEST_ASSERT(ep);
    USBDeviceConnected* dev = ep->getDevice();
    USB_TEST_ASSERT(dev);
    setAddr(dev->getAddress(), dev->getSpeed());
    setEndpoint();
    const int retryLimit = 0;
    int read_len = 0;
    for(int n = 0; read_len < size; n++) {
        int size2 = std::min(size-read_len, ep->getSize());
        int result = token_in(ep, data+read_len, size2, retryLimit);
        if (result < 0) {
            if (LastStatus == NAK) {
                if (n == 0) {
                    return -1;
                }
                break;
            }
            //USB_DBG("token_in result=%d %02x", result, LastStatus);
            return result;
        }
        read_len += result;
        if (result < ep->getSize()) {
            break;
        }
    }
    ep->setLengthTransferred(read_len);
    return read_len;
}

int USBHost::BulkRead(USBEndpoint* ep, uint8_t* data, int size, int timeout_ms) {
    USB_TEST_ASSERT(ep);
    USBDeviceConnected* dev = ep->getDevice();
    USB_TEST_ASSERT(dev);
    setAddr(dev->getAddress());
    setEndpoint();
    int retryLimit = (timeout_ms == 0) ? 0 : 10;
    int read_len = 0;
    Timer t;
    for(int n = 0; read_len < size; n++) {
        int size2 = std::min(size-read_len, ep->getSize());
        int result = token_in(ep, data+read_len, size2, retryLimit);
        if (result < 0) {
            if (LastStatus == NAK) {
                if (n == 0) {
                    return -1;
                }
                break;
            }
            //USB_DBG("token_in result=%d %02x", result, LastStatus);
            return result;
        }
        read_len += result;
        if (result < ep->getSize()) {
            break;
        }
        if (timeout_ms > 0 && t.read_ms() > timeout_ms) {
            USB_DBG("timeout_ms: %d", timeout_ms);
            break;
        }
    }
    ep->setLengthTransferred(read_len);
    return read_len;
}

int USBHost::BulkWrite(USBEndpoint* ep, const uint8_t* data, int size) {
    USB_TEST_ASSERT(ep);
    USBDeviceConnected* dev = ep->getDevice();
    USB_TEST_ASSERT(dev);
    setAddr(dev->getAddress());
    setEndpoint();
    int write_len = 0;
    for(int n = 0; write_len < size; n++) {
        int size2 = std::min(size-write_len, ep->getSize());
        int result = token_out(ep, data+write_len, size2);
        if (result < 0) {
            if (LastStatus == NAK) {
                if (n == 0) {
                    return -1;
                }
                break;
            }
            USB_DBG("token_out result=%d %02x", result, LastStatus);
            return result;
        }
        write_len += result;
        if (result < ep->getSize()) {
            break;
        }
    }
    ep->setLengthTransferred(write_len);
    return write_len;
}

int USBHost::IsochronousRead(USBEndpoint* ep, uint8_t* data, int size) {
    USBDeviceConnected* dev = ep->getDevice();
    USB_TEST_ASSERT(dev);
    setAddr(dev->getAddress());
    int result = token_iso_in(ep, data, size);
    if (result >= 0) {
         ep->setLengthTransferred(result);
    }
    return result;
}